
Panel Discussion Questions
1. What are the biggest road-blocks to progress in multi-modal 

biometrics?

2. To overcome the paucity of multi-modal data, the practice has 
developed of creating multi-modal data by “randomly” matching 
together uni-modal samples to form multi-modal samples.  Is this 
valid?

3. What are the advantages and disadvantages of signal, score, and 
decision level fusion?

4. In current research, developing a multi-biometrics algorithm requires 
a researcher to develop an algorithm for each modality and a fusion 
algorithm.  Is this good for the field?



Panel Discussion Questions
5. Is now the appropriate time to develop a multi-biometric standard 

through international standards bodies?

6. Travel documents call for face, finger, and iris.  Considering perceived 
accuracies of these modalities, what are the implications for multi-
modal research?

7. How much data is needed?

8. How would you define a standard multi-modal data sample?
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Multi-biometrics, Déjà vu?

• Evidence multi-biometrics improve 
performance

• Open questions:
– Are some combinations “better” than others?
– What is a good baseline to assess 

improvement?
– How will we identify good combinations?
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Early multi-biometrics approach

From Wilder, Phillips, Jiang, Wiener,  1996
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Prototype Multi-biometrics 
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Factors Effecting Performance
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Multi-Biometric Algorithm 
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First Step

• Multi-biometrics Challenge Webpage

• Goal:  provide a resource for advancing 
and assessing multi-biometrics

• Based on success of Gait Challenge 
Problem webpage (www.gaitchallenge.org)



Multi-biometrics Challenge 
Webpage

• Data Sets
– Publicly available
– Contemporaneously multi-modal

• Define
– Challenge problems
– Experiments

• Make available baseline algorithms and 
benchmark performance



Initial Data Sets and Problems

• Multi-modal
– Gait and 2D face
– 2D face, 3D face and Infrared
– 2D face and ear

• Multi-sample and multi-algorithm
– 2D face
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Example: Face + Ear Biometric
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An Unfair Comparison
1 Gallery Image 1 Probe Image

1 Matching

2 Gallery Images 2 Probe Images

2 Matchings
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Multi-Modal User Authentication                                       Santa Barbara, December 2003

A (more) Fair Comparison

Control for number of probe images –
combine results from two probes.

Control for number of matchings –
use two gallery images per subject. 

Questions of equivalent sampling of 
possible images of each type remain.



Multi-Modal User Authentication                                       Santa Barbara, December 2003

Face + Ear Recognition

= 83.3%

+ = 91.6%
(Fa + Fb probes)

+ = 98.7%



Multi-Modal User Authentication                                       Santa Barbara, December 2003

When Is Multi-Modal Better 
Than Uni-Modal In Biometrics?

When multi-modal performance is 
statistically significantly greater than 
performance from the same number of 
uni-modal gallery and probe images.

Not yet shown in any published paper! 
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Outline

• When does fusion make sense?

• Why face and voice?

• What is needed to for further multi-modal R&D?
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When does fusion make sense?

• For improved performance
– More inputs for better decision making

• For improved robustness
– Fall back systems when one mode degrades

• When an application allows it at low “cost”
– Scenario can easily accommodate more sensors
– Benefits outweigh cost of additional sensors 
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Why face and voice?

• Most natural way we recognize each other
– Unobtrusive, standoff sensors

• Low cost sensors
– Cheap audio and video recording devices and storage

• Complementary information
– Studies have shown accuracy improvement with both
– Relatively disjoint channels provide robustness
– Two different inputs make spoofing more difficult

• Both convey static and dynamic information to exploit
– Face: Facial structure + lip dynamics and visemes
– Voice: Vocal apparatus + prosodics, accents, and idiolect
– Potential gains for tighter integration and early fusion

• Lip-reading can help supply better spoken text to aid voice 
recognizer

– Text-independent text-dependent
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What is needed to for R&D?
Infrastructure

• Data
– Synthetic multi-modal corpora OK for initial work
– Some multi-modal corpora exist

 XM2VTS , VidTIMIT
– Future corpora need to better reflect realistic conditions (acoustic 

noise and lighting conditions) 
• Evaluation measures – MoP vs. MoE 

– Should distinguish between technology-focused vs. application 
focused evaluation measure

– Is multi-modal combination an application of technologies or a 
technology itself?

• Common recognition algorithms
– To minimize barrier to entry
– Perhaps some notion of standardized scores
– Not ideal since it tends to focus on late fusion
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What is needed to for R&D?
Fusion Research

• Better theoretical framework
– Statistical combination (learned parameters)
– Rule-based
– Event-based

• Early vs. late
– Late: focused on fusion of separate system scores
– Early: requires internals and probably new classifiers 

• Use of external knowledge
– Measures of channel quality and conditions to know when to 

discount mode
– Modification of priors
– When/how to adapt or update fusion

• Fusion or combination
– Primary and secondary testing
– Fast, more errorful first pass providing short-list for slow, more 

accurate second pass
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Evaluation
MoPs to MoEs

• MoP: Technology-focused 
Measures of Performance

– Represents quantitative measure 
of core technology

• MoE: Application-focused 
Measures of Effectiveness

– Represents quantitative/qualitative 
measure of how technology 
helped final application
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Problem #1: Border Security
• Multi-biometric systems are too expensive for most IT 

and PAC applications. 
• However, many  countries are adopting multi-biometric 

systems for border security where high throughput 
makes MB systems cost effective.

Face?Iris?United Kingdom

FaceHandIsrael
FaceNone…Australia

FaceFingerCanada
FaceFinger Korea

FaceIrisJapan
FaceFinger (1+1 likely)European Un.
FaceFinger (1+1,4+4)United States



Problem #2: Sensitive 
Information

• There is a limited market for biometric systems for access 
to sensitive information.  

• A typical requirement is FAR<.01% and FRR<.1%. 
• No single “known” biometric can achieve this.
• For these markets, high cost ($1000) can be justified for 

“C2” certified biometric systems.  
• Certification would consider fraud prevention, overall 

system performance  as well as raw biometric 
performance.



Topic 1. Risk Analysis
• Generating an ROC or CMC curve is only half the solution.  One 

also has to determine the operating point on that curve!
• Risk analysis is a well defined topic in statistics.  The field of 

biometric statistical analysis would address the problem of reducing 
risk using biometric systems, and determining systems which 
minimize risk problem statements.

• This topic would be a collaborative effort between “biometricists” 
(experts in biometrics), sociologists, statisticians, and government.

• Relevant to multi-biometric systems because performance is a 
driving factor in system development. Performance reduces 
risk/cost.

• The problem should drive the choice of biometric in a well-defined 
way.  How is this quantified?

• Expertise in pattern matching is not required.



Topic 2. Fusion
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A fusion process must be determined for every use modality -
verification, identification, watch-list, reverse-surveillance, etc.



Fusion (continued)
• While the Bayes and Neyman Pearson theorems provide roadmaps 

for decision making, the instantiation of optimal fusion for each 
biometric modality is incomplete or non-existent.

No, No, NoNone, Weak, StrongIdentification 
No, No, NoNone, Weak, StrongWatchlist

Yes, No, NoNone,Weak,StrongVerification 

Optimal Fusion 
Methodology Proposed?

CorrelationProcess

• Significant mathematically groundbreaking work remains to be 
performed.  

• The field may be suffering from an over reliance on computers to
solve problems via brute force.



Topic 3. Mix and Match
• Because performance is expected to 

be so good, it may be cost prohibitive 
to retest a good system whenever a 
biometric subunit is upgraded!

• For Verification, Identification, or any 
other biometric modality,
– How does one define a universal score 

(Biometric Output)?
– What information is truly required to 

“plug in” a biometric? (Fusion Info)?
– What is the correct biometric 

independent score (Fusion Output)?
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