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Introduction and Welcome 
 

The proliferation of information access terminals, coupled with the increasing use of information 
sensitive applications, such as electronic commerce and health care, has triggered a real need for reliable, 
user-friendly, and commonly acceptable control mechanisms for accessing private and confidential 
information. The goal is to protect the individuals who use such applications as well as the organizations 
offering them. The conventional means of identity verification for access control such as passwords, 
personal identification numbers, passports, and identification cards can easily be compromised. In view of 
this, it appears that the required level of reliability in determining the identities of individuals may only be 
achieved through the use of biometrics.  

Many applications concentrate on one biometric modality only (for example, fingerprint or iris-
scan) due to their high discrimination power. However, the suitability of each modality to a given 
application depends on various factors including the attitudes of users and their personalities as well as 
the operational environments and conditions. Authentication systems that are required to be robust in 
natural environments (e.g., in the presence of noise and illumination changes) cannot rely on a single 
modality. In addition, a single modality is not always appropriate, convenient, or available. Thus, fusion 
with other modalities is essential. Successful integration of multiple biometric modalities must be based 
on a thorough understanding of the individual sensing technologies and modalities and of their 
interaction. 

Developing such systems requires advances in many different recognition and verification 
technologies, including those based on analyzing speech, vision, and behavior. Most importantly, 
advancement in this field requires the creation of a community of researchers willing to work in an 
interdisciplinary manner going beyond the well-established research communities. Speech researchers, for 
example, need to go beyond their traditional area of expertise and interact with computer vision or human 
interface researchers. Multimodal databases have to be collected and interdisciplinary research needs to 
be pursued. Finally, careful evaluation and assessment of multimodal systems has to take place. 

The interdisciplinary nature of multimodal user authentication led us to organize this workshop 
with the specific goal of providing a forum for researchers from different disciplines to help establish 
collaborations and partnerships and to promote the sharing of information and cross-discipline research. 
The workshop is supported by a University of California Discovery Grant from the Industry-University 
Cooperative Research Program and a sponsorship from France Télécom R&D. It is held in cooperation 
with the International Speech Communication Association (ISCA), EURASIP and the IEEE Signal 
Processing Society. 

We would like to give special thanks to the three invited speakers (Josef Bigun, Gary Strong and 
James Wayman), who all accepted with enthusiasm the challenge of preparing overview talks, and to 
Jonathon Phillips (and the panelists) for organizing the panel discussion. Finally, our gratitude goes to the 
workshop scientific contributors and the members of the International Scientific Committee for their help 
in reviewing the submitted papers. It is also our pleasure to acknowledge and thank Tim Robinson from 
the University of California, Santa Barbara, for handling the workshop submissions and for his precious 
help in communicating with the authors and other important tasks. 

We hope that this workshop will be successful from both a technical and social point of view and 
that the contacts and discussions you will have will be beneficial for your future research or business. 
Meanwhile, be sure to enjoy the beauty of Santa Barbara. 

 

The Workshop Organizing Committee: 
Jean-Luc Dugelay, Jean-Claude Junqua, Ken Rose, Matthew Turk 
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Abstract 
  

This article addresses the setting up of a Biometric 
Authentication System (BAS) based on the fusion of two 
user-friendly biometric modalities: signature and speech. 
All biometric data used in this work were extracted from 
the BIOMET multimodal database [1]. The Signature 
Verification system relies on Hidden Markov Models 
(HMMs) [2], and we use two kinds of Speaker 
Verification systems. The first one is text-dependent and 
uses Dynamic Time Warping (DTW) [3] to compute a 
decision score. The second one is text-independent and 
based on Gaussian Mixture Models (GMMs) [4]. We first 
present the BIOMET database and describe precisely the 
two modalities of interest before giving a presentation of 
each monomodal BAS as well as their performance 
evaluation. We then compare performances of two 
classical learning-based fusion techniques: an additive 
CART-trees [5] classifier built with boosting [6], and 
Support Vector Machines (SVMs) [7]. In particular, the 
signature modality was fused with clean and noisy 
speech, at two different levels of degradation. The impact 
of noise in fusion performance is studied relative to that 
of each of the speech experts alone.  
 
 
1 Introduction 

 
Many commercial applications require a step of 

Identity Verification before accessing to a service or to 
sensitive data. As the media and channels through which 
the Identity Verification process takes place are becoming 
more diverse, multimodal biometric authentication 
systems could be used with convenience to improve user 
security. Moreover, several studies have already proven 
that combining different biometric modalities 
significantly improves the performances compared to 
system working with a single modality [8, 9]. We present 
in this article a bi-modal biometric system based on two 
well-accepted modalities: signature and speech. The two 
main virtues of those modalities are their physical non-

intrusiveness and their capabilities to be easily sampled 
by personal computers or common electronic devices. 
Indeed, smart phones, tablet PC and Personal Digital 
Assistant (PDA) already allow the use of these two 
biometric modalities.  

Speaker Verification systems usually work either in 
text-dependent or text-independent mode. In this paper, 
we use these two Speaker Verification (SV) working 
modes along with the on-line hand-written signature to set 
up our multimodal BAS. Indeed, these two SV modes 
may be very complementary for many applications. For 
example, during a phone access to sensitive data the text-
dependent system can focus on keywords while the text-
independent system works on the whole client utterance. 
Therefore, we finally have three different biometric 
systems. 

We perform score fusion of those 3 systems by means 
of two different learning-based techniques: an additive 
CART-tree [5] classifier built with boosting [6], and 
Support Vector Machines (SVMs) [7]. SVMs have 
already been successfully used on multimodal biometric 
data [9, 10]. They have proven to be a powerful tool for 
classification, and well-suited for applications in which 
few data is available, as it is the case in identity 
verification. Also, decision trees have successfully been 
used to fuse the scores of biometric experts, for example 
in [11]. Moreover, boosting is known to be a very 
efficient tool to fit additive tree based classifiers [12]. It 
significantly improves performance and is also well-
suited for applications with few training data. Hence, we 
decided to use boosting to fit an additive CART-tree 
classifier for multimodal fusion purposes. Finally, we 
propose a comparison of these two fusion paradigms on 
the BIOMET data, as well as a test of their robustness in 
the presence of noise in part of this data. Indeed, the 
capture of speech in a real life application is often done in 
noisy conditions. It is therefore important to study the 
impact of noise in expert scores fusion as recently done in 
[13].  

This paper is organised as follows: section 2 describes 
the speech and signature data from the BIOMET 



database. Section 3 gives the principles of the signature 
verification expert, detailed in [14], as well as related 
experimental results. Section 4 describes the two speech 
verification experts. Fusion by additive CART-tree 
classifier and by SVM are studied in Section 5, with clean 
speech data first, and then with degraded speech data. 

 
2. BIOMET brief description 
 

BIOMET is a multimodal biometric database including 
face, image, finger print, signature and voice. We exploit 
signature and voice data from 68 people with time 
variability, captured in the two last BIOMET acquisition 
campaigns, which have a five months spacing between 
them. More details on the BIOMET database can be 
found in [1]. 

 
2.1 Signature data 
 

The digitizer captures from each signature, at a rate of 
200 samples per second, 5 parameters, including the 
coordinates of each point sampled on the trajectory (x(t), 
y(t)), the axial pen pressure p(t) in such a point, and the 
position of the pen in space (azimuth and altitude angles). 
The total number of genuine signatures available per 
person is 15 and 12 impostor signatures, made by four 
different impostors.  

 
2.2 Speech data 
 

Both speech sessions of the BIOMET database were 
recorded in quiet environment and using the same kind of 
microphone. Sampling rate is 16 kHz and sample size is 
16 bits. In both sessions, each speaker uttered twice the 
10 digits in ascending and descending order before 
reading sentences. The amount of available speech for 
each speaker is about 90 seconds by session. 

 
3. Signature verification 
 
3.1 Pre-processing and encoding signatures 
 

There is noise in the data, on one hand due to the 
parameter quantification performed by the digitizer, and 
on the other hand its high sampling rate. Different 
filtering strategies were thus chosen according to each 
parameter, as motivated in [14]. Finally, 12 dynamic 
parameters are extracted on each point of the signature.  

 
3.2 Modelling signatures 
 

As we have few signatures for training a signer's 
HMM, we used Bagging [15] to produce an "aggregated 

HMM" of each signer's characteristics. Indeed, by 
combining models learned on different samplings of a 
given data set, one builds a model with a more complex 
and more stable output. We generated T different training 
sets, by sampling with replacement from the N original 
signatures at disposal for training purposes. We thus built 
T component models, which are T continuous left-to-right 
HMMs [2] with 2 states and 3 gaussians per state. We 
then computed a composite score S(O) on signature O, by 
averaging the T output scores obtained from the 
component models when a signature is presented.  

We then built a classifier as follows: in order to decide 
whether the claimed identity of signer i is authentic or 
not, we compute the absolute difference of the composite 
score Si(O) of his/her current signature O and the average 
value Si* of the T component models' output scores on 
their respective training data set (we have T data sets); 
finally, we compare this quantity to a threshold. Indeed, a 
signature O is accepted if and only if: 

| Si(O) - Si* | < τ  (1) 
where τ is a global threshold, computed once for all 
signers, on a devoted database, as explained in Section 
3.3.  

 
3.3 Experimental setup 
 

In order to train each signer's aggregate model, all the 
signatures of the third campaign are used (N=10 
signatures most of the time per person). Following the 
fact that the improvement of bagging is evident within ten 
replications of the original training set [15, 16], we chose 
T=10 as the number of component models to be used.  

Among each signer’s genuine signatures, 10 out of 15 
are used to train the corresponding aggregate model, as 
described above. The remaining 5 genuine signatures and 
the 12 impostor signatures may be devoted to compute the 
global threshold τ in (1), or to test the system, according 
to the signer's number in the database: indeed, the 
database of 68 clients was split in two databases BA and 
BT of 34 clients each: BA to compute the thresholdτ, and 
BT to test the system once the threshold has been 
computed.  

The optimal threshold is computed on BA following 
two criteria: the Equal Error Rate (EER) corresponding to 
FA = FR, FA being the False Acceptance Rate and FR the 
False Rejection Rate, and the minimum of the Total Error 
Rate (TE), that is the number of errors made by the 
system (of type FA and of type FR), over the total number 
of signatures (genuine signatures and forgeries as well) 
presented in BA. As we use an aggregate model for each 
signer, the optimal threshold is found on database BA as 
follows: for each possible value of τ, for each signature O 
belonging to signer i of BA, the corresponding composite 
score S(O) is computed by averaging the T=10 scores of 



the T component models of signer i. Then the decision of 
acceptance or rejection is taken according to (1).  

The system is then tested on BT. Table 1 shows the 
performance obtained for both criteria EER and TE on 
such database, with the corresponding 95% confidence 
interval [17].  

 
Table 1. Global performances of signers' 

aggregate models 
Criterion TE (%) FA (%) FR (%)
EER 11.1 [±2.6] 9.5 [±3.0] 14.8 [±5.4]
Minimum TE 11.9 [±2.7] 8.9 [±2.9] 20.1 [±6.0]

 
Roughly, we notice that the signature expert presents a 

Total Error Rate of around 10% (with both criteria EER 
and Minimum TE), with a rather large confidence 
interval. This result can be explained by the low number 
of samples available in the BIOMET database compared 
to other on-line signature databases [18]. Generally, this 
difficulty is indeed inherent to personal identity 
verification applications: one can hardly imagine building 
very large databases of biometric data for each 
application. Also, the signature modality, contrary to 
other biometric modalities, has the particularity of 
forgeries that are made by impostors that intentionally 
imitate the genuine signatures which increases this 
difficulty.  

 
4. Speech verification 
 
4.1 Introduction 
 

Speaker Verification systems decision is mostly based 
on a simple hypothesis test between two hypotheses 

λH and λH   with: 

λH : X has been uttered by λ 

λH : X has been uttered by another speaker 
Hence, the score is usually based on two similarity 

measures and the claimed identity is confirmed according 
to:  

 




  
(X)D
(X)D log

λ

λ

  
(2) 

 
where (X)Dλ  and (X)D

λ
 are respectively the 

similarity measures of the speech utterance X 
conditionally to λH and λH  and β is the decision 

threshold. As described in Section 4.2, the text-dependent 
Speaker Verification system relies on Dynamic Time 

Warping (DTW) [3] to compute (X)Dλ  and (X)D
λ

. In 

the text-independent approach, as described in Section 
4.3, (X)D λ  and (X)D

λ
respectively correspond to the 

probability density functions (X)Pλ  and (X)Pλ  

associated to the densities of  λH  and  λH   given X. 

The state-of-the-art approach consists in using Gaussian 
Mixture Models (GMMs) [4] to estimate those densities.  

The same kind of acoustic analysis is used in the text-
dependent and text-independent approach. Every 10ms, 
we first extract from each 20ms frame of speech a 32 
dimensional acoustic vector composed of 16 mel-scale 
filter bank cepstral coefficients augmented by associated 
delta coefficients. Delta cepstra are computed over ± 2 
feature vectors. 

 
4.2 Text-dependent Speaker Verification 
 

In the text-dependent Speaker Verification system,  the 
decision score is based on the DTW [3] distance between 
the training sequence Xλ of 4 digits with an utterance X of 
the same sequence of digits. As in [19], we use a cohort 
of speakers to compute (X)D

λ
. For each client λ, the 

cohort is composed of a set Γλ ={X1….XK} of K speech 
segments of speakers uttering the same sequence of digits. 

(X)D
λ

 is the mean over Γλ of the log-DTW distance 

between X and Xk with k=1…K.  (X)D λ corresponds to 
the log-DTW distance between X and Xλ . The decision 
score for a test sequence corresponds to the subtraction of   

( )(X)Dlog λ  with ( )(X)Dlog
λ

. 

 
4.3 Text-independent Speaker Verification 
 

In the text-independent Speaker Verification system, 
we use a single speaker-independent model to represent 

(X)Pλ . This model, also called UBM [4], corresponds to 

a 256 components GMM with diagonal covariance 
matrices. Each client model is obtained by a mean-only 
Bayesian adaptation of the UBM [4] using associated 
training speech data. The decision score for a test 
sequence corresponds to the mean log-likelihood ratio 
computed on the whole test utterance.  

 
4.4 Experiments on speech data 
 
4.4.1 Evaluation protocol. In both text-dependent and 

λ accept   β ≥ 

λ reject   β < 

 



Rk

Rk,l Rk,r

Figure 1. An additive 
tree classifier. The 
observation space Rk is 
split into two subspaces 
Rk,l and Rk,r. 

independent Speaker Verification systems, the client or 
target speaker set is composed of 68 speakers from the 
BIOMET database. For the text dependent system, the 
training data for a target speaker is one utterance of 4 
digits (about 2s of speech). The cohort of speakers is 
composed of 50 utterances of the same digits. Test data is 
composed of 5 genuine accesses and 12 impostor 
accesses. In the text-independent system, (X)Pλ  is 

trained using the whole speech data available in the 
BIOMET database (about 4 hours of speech). Half of 
these 4 hours of speech are uttered by speakers that are 
not impostors nor clients. Each client model is adapted 
from the speaker using the 10 digits utterance (about 15s 
of speech). Test data is composed of a segment of speech 
of approximately 15s, taken from read utterances. The 
training speech material is based on digit vocabulary and 
the test speech material is based on uttered word. For each 
speaker we performed 5 genuine and 12 impostor 
accesses. Both systems have been evaluated under 3 
different conditions of noise in test utterances: without 
noise, with a gaussian white noise of -10dB, and with a 
gaussian white noise of 0dB. 

 
4.4.2 Results. Performances of text-independent and text-
dependent Speaker Verification systems are given 
respectively in Table 2 and Table 3. 
 
 

Table 2. Performances of the text-independent 
Speaker Verification system 

SNR Criterion Error (%) FA (%) FR (%)
EER 7.3 [±2.2] 5.8 [±2.4] 10.7 [±4.7]without 

noise Min. TE 6.3 [±2.0] 2.0 [±1.4] 16.0 [±5.5]
EER 12.0 [±2.7] 13.2 [±3.4] 9.5 [±4.4]  10 dB 
Min. TE 8.0 [±2.3] 2.0 [±1.4] 23.2 [±6.4]
EER 29.4 [±3.8] 34.0 [±4.8] 19.0 [±5.9]  0 dB  
Min. TE 17.0 [±3.1] 6.0 [±2.4] 45.0 [±7.5]

 
 

Table 3. Performances of the text-dependent 
Speaker Verification system 

   SNR Criterion Error (%) FA (%) FR (%)
EER 13.5 [±2.9] 16.4 [±3.7] 7.1 [±3.9]without 

noise Min. TE 10.3 [±2.6] 7.6 [±2.7] 17.0 [±5.7]
EER 16.0 [±3.1] 19.8 [±4.0] 7.7 [±4.0]10 dB 
Min. TE 11.9 [±2.7] 7.8 [±2.7] 22.1 [±6.3]
EER 21.2 [±3.4] 25.3 [±4.4] 11.8 [±4.9]0 dB  
Min. TE 16.5 [±3.1] 6.3 [±2.4] 42.0 [±7.4]

 
5. Fusion 
5.1 Additive Tree Classifier 
 

Boosting permits to construct efficient additive 
modelization from a so-called weak learner. This weak-
learner here corresponds to a classical binary tree built 
with the CART [5] algorithm. This algorithm permits one 
to construct a tree by recursive split of the observation 
space, here corresponding to the 3-D scores space of the 
signature modality expert and both speech verification 
experts.  
For instance, as shown in Figure 1, Rk  is split in Rk,l and 
Rk,r  when maximizing ∆H: 

where  )rk,H(R  and )lk,H(R  ),kH(R  are entropies 
of  

nodes Rk, Rk,l and Rk,r with: 
 

 
 
in which Nk,l, Nk,r and Nk are respectively the number of 

observations in nodes Rk,l, Rk,r and Rk, and Nλ(Rk) is the 
number of observations of class λ in Rk. 

 In our experiments, a node Rk is split only if Nk > 50. 
The score iS  associated to each vector s=[s1, s2, s3] is 

)sλp(
)sp(λ

logSi = , with )(Rp)sp( λλ =  and 

)(Rp)sp(
λ

λ =  if s is affected to the region R by the 

tree. 
Given CART, a one-tree      
building algorithm, we 
use RealAdaboost [20] to 
fit an additive model. In 
this iterative algorithm, 
observations that have 
been incorrectly 
classified by the previous 
trees in the training 
ensemble are resampled 
with higher probability, 
leading to a new 
probability distribution 

for the next training ensemble.  
The fusion decision score S  is then obtained as the 

mean over all trees of iS .  
 

5.2 Support Vector Machines 
 

( ) ( )(R)plog(R)p(R)plog(R)pH(R) λλλλ ⋅+⋅=

)N(R
)(RN(R)p and 

N
Np ,

N
Np k

k
λ

λk

rk,

rk

lk,

l ===

)H(Rp - )H(Rp - )H(RH rk,lk,
rl

k=∆



In few words, SVMs' goal is to look for a hyperplane 
in a large dimension space which is considered because 
the input data are not linearly separable in the original 
space. We maximize the distance between the surface and 
the data, which leads to good generalization performance. 
Let X=(xi) be the data with labels Y=(yi) where yi = +1 or 
-1 represents the class of each person, and Φ is the 
function which sends the input data X in the feature space 
F. The distance between the hyperplane  

H(w,b) = {x ∈ F : <w , x > + b = 0} 
and X is called the margin ∆. Following the Structural 

Risk Minimization (SRM) principle, Vapnik [7] has 
shown that maximizing the margin (or minimizing ||w||) 
leads to an efficient generalization criterion. One defines 
in F the kernel K as:  

K(x,y) = <Φ(x),Φ(y)>  
Thanks to this function, we avoid handling directly 

elements in F. The optimal hyperplane is found by 
solving, as shown in [7], a quadratic convex problem and, 
from the optimality conditions of Karush-Kuhn-Tucker, 
one can rewrite w in the following condensed manner: 

w = Σi ∈ SV αi yi Φ(xi ) (3) 
where SV = {i: αi > 0} denotes the set of support 

vectors. 
The choice of Φ or equivalently K is very important in 

order to obtain an efficient solution. Traditionally, one 
chooses the Vapnik polynomial kernel 
K(x,y)=<Φ(x),Φ(y)>d or the Gaussian kernel K(x,y)=exp(-
γ||x-y||2). We have chosen a linear kernel (d = 1). Indeed, 
the use of this type of kernel in a similar fusion case [8] 
gave better performance, compared to other choices. 

We will fuse the scores of the three experts, each 
designed for the same person. We thus put at the SVM 
three inputs, one per expert. The first one, for the 
signature modality, given signature O, is: 

(Si(O) – Si*)/σ  (4) 
where Si(O) and Si* are defined in Section 3.2; σ is the 

average of the standard deviations σ(i) computed for 
person i in FLB as follows: we consider the scores given 
by the T component models of person i on the T 
corresponding genuine signatures data sets generated for 
bagging; and we compute their standard deviation σ(i).  

The second and third inputs to the SVM are the 
quantities log {D λ  (X)/D λ (X)} in equation (2), where λ 
and λ  are respectively estimated in text-independent and 
text-dependent modes described in sections 4.2 and 4.3.  

 
5.3 Experiments 
 
5.3.1. Fusion database. Following the same protocol as 
the one of the signature framework, we split the database 
of 68 persons in 2 subsets of 34 persons each, 
respectively named FLB (Fusion Learning Base) and FTB 

(Fusion Test Base). For each person in FLB and FTB, we 
have in general at disposal 5 genuine bimodal values and 
12 imitation bimodal values.  

 
5.3.2. Results. Table 4 presents the results of the different 
verification systems (Signature, Text-independent (TI) 
Speech, and Text-dependent (TD) Speech) as well as the 
results of the two fusion systems (Additive Tree Classifier 
(ATC) and SVM) for individuals of FTB, with the 
corresponding 95% confidence interval. These results 
have been obtained through a minimization of the global 
error rate TE. 
 
Table 4. The performance of the fusion systems 

 Model TE (%) FA (%) FR (%) 
 Signature 11.9 [±2.7] 8.9 [±2.9] 20.1 [±6.0]

TI Speech 6.3 [±2.0] 2.0 [±1.4] 16.0 [±5.5]
TD Speech 10.3 [±2.6] 7.6 [±2.7] 17.0 [±5.7
ATC 2.8 [±1.4] 1.7 [±1.3] 5.2 [±3.3]

Speech 
without 
noise 

SVM 2.7 [±1.4] 1.3 [±1.1] 5.9 [±3.6]
TI Speech 8.0 [±2.3] 2.0 [±1.4] 23.2 [±6.4]
TD Speech 11.9 [±2.7] 7.8 [±2.7] 22.1 [±6.3]
ATC 2.9 [±1.4] 2.5 [±1.6] 3.9 [±2.9]

SNR:      
10dB  

SVM 2.9 [±1.4] 1.9 [±1.4] 5.3 [±3.4]
TI Speech 17.0 [±3.1] 6.0 [±2.4] 45.0 [±7.5]
TD Speech 16.5 [±3.1] 6.3 [±2.4] 42.0 [±7.4]
ATC 6.7 [±2.1] 4.7 [±2.1] 11.2 [±4.8]

SNR: 
0dB  

SVM 5.8 [±2.0] 2.4 [±1.5] 13.6 [±5.2]
Roughly, we notice that in all cases, fusion reduces 

error rates of the best monomodal system by a factor 2. 
Also, it appears that the ATC and the SVM are equivalent 
in these experiments, in all the configurations here 
considered (clean or noisy environments). Finally, both 
fusion systems here studied show a good robustness to 
noise.  

 
6. Conclusions 
 

In this article, we have shown that the use of data 
fusion allows to improve significantly the performance of 
three unimodal identity verification systems. Indeed, we 
had at our disposal one signature and two speaker 
verification systems. We compare an Additive Tree 
Classifier (ATC) and a SVM on the BIOMET multimodal 
database and also study their robustness to the presence of 
noise in speech data. Two levels of degraded speech data 
were considered. It appears that the ATC gives very good 
results, equivalent to those of the SVM, and that in clean 
or noisy environments. This shows the importance of the 
boosting algorithm here used to build the ATC. Also, 
both fusion systems are resistant to the presence of noise. 
Indeed, in the best conditions, the Total Error Rate is 
around 2.8% for both fusion systems, and this rate is 



hardly lowered (to 2.9%) in the presence of noise at -10 
dB. These results are encouraging, since few data is used 
to train the fusion systems.  
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Abstract 
In this paper, we present a voice-centric multimodal 

user authentication system called “BioAxs” that was 
deployed at our facility to provide fast and convenient 
physical access control to the laboratory. After discussing 
the convenience and robustness features present in the 
system, we describe the core components of the speaker 
verification engine that revolves around a real-time 
passphrase spotting strategy. Finally, we describe the 
multimodal authentication procedure and conclude with 
experimental field results obtained over a period of 14 
months.  

1. Introduction 
The BioAxs Project initially started as a research and 

development framework for the study and improvement 
of PSTL’s core speaker verification technology under real 
conditions. One of the major requirements for this study 
was the ability to collect and process a large amount of 
data under real conditions. For that reason, the task of 
physical access control that could be used by all 
employees on a daily basis for entering the building was 
selected. Based on the initial feedback from a first 
prototype, the approach rapidly evolved into a multimodal 
user authentication system with a mandate centered on 
user convenience and robustness. Currently, the system 
that is located at the building’s main entrance door 
services an average of 140 authentication requests per day 
for about 35 enrolled users. 

2. Mandate and system overview 
During the early stage, it became apparent that, in the 

context of our task, a fast and robust interaction model 
was a necessity.  Convenience became therefore a 
primary concern for success since employees could 
always resort to using their key to enter the building. An 
access terminal housing two biometric modalities 
(fingerprint and voiceprint) and one non-biometric 
modality (keypad) was built and installed outside near the 
main entrance door (first prototype deployed in April 
2002). Figure 1 shows a picture of the actual biometric 

terminal. The terminal is connected to a desktop computer 
located inside the building via a USB connection.  

The access terminal can run in monitoring mode or in 
user mode. In monitoring mode, the terminal monitors the 
three sensors in parallel to provide multimodal access 
control. As explained later in more detail, the 
authentication procedure enables single modality user 
authentication for fast interaction, and multi-modality is 
used to provide smooth uncertainty recovery. In user 
mode, the terminal allows users to manage their account 
and to run commands. In that mode, users must first login 
by entering their 10-digit account number. Once 
recognized, authorized users can, for instance, enroll (or 
re-enroll) their voiceprint as well as adapt their existing 
voiceprint. This self-service mode does not require the 
need for a system administrator. The system is available 
to all employees and to a selected number of frequent 
visitors (e.g. employees of United Postal Service). 

 
Figure 1. Picture of the biometric terminal showing (1) 
the fingerprint scanner, (2) the microphone, (3) the 
keypad, (4) the LED rack, and (5) the loudspeaker 
components. 

3. Overview of the user convenience and 
robustness features 

Convenience, performance, and robustness are primary 
concerns for global acceptance in real-world applications. 



In that respect, a multimodal strategy is specifically 
advantageous to deal with: 

� User preferences:  Some users may dislike a given 
modality or may feel uncomfortable in providing 
biometric samples for it. 
� Disabilities: Some users may not be able to interact 

with all the modalities due to physical or mental 
disabilities. 
� Redundancy: The environment may render some 

modalities unusable (e.g. loud noise in the case of 
voiceprint verification) or the user may be temporarily 
impaired (e.g. dirty or cut finger in the case of 
fingerprint verification). 
� Verification uncertainties: All modalities have 

limitations that can be characterized by their respective 
False Acceptance Rate (FAR) and False Rejection Rate 
(FRR) distributions. By combining multiple modalities 
together, verification uncertainties can be virtually 
eliminated. 

 
Modalities can be categorized based on their activation 

requirements. Modalities such as fingerprint and keypad 
require contact and inherently bundle the activation and 
verification phases into a single step. On the other hand, 
modalities such as speaker and face verification only 
require proximity. The proximity paradigm can offer 
maximum user convenience 1) when the modality does 
not require some type of external activation and 2) when 
the proximity constraints are not too restrictive. To 
provide users with a fast and convenient interaction 
model, a speaker verification engine was therefore 
developed based on the following main features: 

� Contact-less activation:  The system monitors the audio 
channel continuously without the need for explicit 
activation such as a push-to-talk button for instance. 
� Far-talking microphone: Users can either speak while 

standing by the biometric box or, more conveniently, 
they can speak to it as they are approaching; the typical 
operating range is between 1 and 10 feet. 
� Password-dependent voiceprint modeling: Users can 

register the voice passphrase of their choice to enter the 
building. The passphrase is used as an active trigger 
mechanism that allows people (including registered 
users) to maintain normal conversations in the vicinity 
on the box. 
� Password-spotting input mode: Because the biometric 

box is located outside the building and is equipped with 
a far-talking microphone, an input strategy based on 
automatic endpoint detection was found unreliable in 
coping with extraneous noises (e.g. street, air 
conditioning equipment) and babble noise. A spotting 
strategy is not affected by endpoint errors. User 
convenience is therefore increased at the expense of an 
additional burden on the acceptance/rejection module 

especially in the case of short passwords (e.g. 
“California”). 
� Robust speech front-end: A speech front-end based on 

sub-band analysis [1] was developed. It incorporates 
normalization techniques 1) to deal with stationary 
noises via dynamic spectral band weighting and 2) to 
increase the robustness with respect to the distance to 
the microphone via a short-term spectral energy 
normalization algorithm. 

4. Overview of the speech front-end 
The speech front-end is based on a sub-band analysis 

module that generates a power spectrum from the audio 
stream sampled at 8KHz and filtered with a pre-emphasis 
coefficient of 0.98. A spectral vector composed of M 
equally distributed frequency bands is computed every 20 
milliseconds (32 bands are typically used for a frequency 
resolution of 125Hz). Each frequency band is then 
rescaled using eighth root compression. The front-end 
only generates static features. Experiments showed that a 
better accuracy could be obtained with 32 static 
parameters rather than 16 static and 16 dynamic 
parameters. The front-end also estimates the average 
background noise using a decaying average procedure 
that provides a frequency weighting factor wi[t] for each 
band i and instant t. The algorithm uses energy-dependent 
forgetting factors in order to limit the influence of speech 
in the estimation process.  

To preserve and exploit the redundant information and 
specificity of the voice contained in the audio signal no 
cepstral transformation, de-correlation or dimension 
reduction is performed. In contrast, other analyses such as 
fifth order PLP [2] tend to purposefully discard some of 
the speaker’s characteristics.  

The frequency band weights mentioned earlier are 
used at matching time during local distance computation 
to minimize the impact of the ambient noise. Every 20 
milliseconds, energy normalization is performed over a 
Time Spectral Pattern (TSP) of 300 milliseconds by 
computing a local loudness factor E[t] as follows: 
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where xi[t] and wi[t] represents, respectively, the 
compressed spectral value and the weighting factor at 
instant t for band i. The final energy-independent 
parameter vector y[t] is then computed as follows: 
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Figure 2 shows a 3D graphical view of the resulting 
analysis for the phrase “Beautiful Day”. The front-end 
provides the w[], x[] and y[] streams to the enrollment 



and verification procedures. The x[] stream which 
preserves the original loudness information of the speech 
is solely used for the purpose of automatic endpoint 
detection at training time.  

 
Figure 2. 3D view of the speech analysis y[t] generated 
by the front-end module for the phrase “Beautiful Day” that 
shows the evolution of the normalized frequency spectrum 
(32 bands) over time. 

5. Text-dependent voiceprint modeling 
The enrollment of a new speaker requires five 

repetitions of a user-selected passphrase and resembles 
the training procedure of a speaker-dependent word 
model. Table 1 shows some of the typical passphrases 
enrolled with the system. It is important to notice that 
most users prefer to use short passphrases. 

Table 1. List of typical user-selected passphrases  

California Garden View 

7423 Smoking Gun 

Osaka Japan Copenhagen 

Beautiful Day West Virginia 

Geronimo Treasure Island 

A voiceprint model is built by first finding the central 
repetition using a Dynamic Time Warping (DTW) 
alignment algorithm. The central repetition is the 
repetition for which the average alignment distance with 
respect to all the other repetitions is minimum. The model 
is then computed by aligning each repetition with the 
central repetition, and by averaging the sets of aligned 
parameter vectors. The interactive enrollment procedure 
verifies however the integrity of the repetitions at each 
step by building temporary voiceprint models. If the 
alignment score of a new repetition with respect to the 
partial model is too low, it is then discarded and the user 
is re-prompted. If the mismatch occurs on the second 
repetition, the enrollment procedure is restarted from the 
beginning.  

A voiceprint adaptation function is also available to 
improve the robustness of the model with speech data 
from separate sessions. That function must currently be 

initiated by the users themselves (i.e. via supervised 
adaptation). Actual statistics show that about 35% of the 
enrolled users are using that feature. 

6. Voiceprint detection and verification 
The detection and verification tasks are performed in 

parallel and in real-time. Figure 3 summarizes the general 
process that relies on the following three core modules: 

1) The Measurer module performs frame level matches 
and provides two types of local similarity scores, 

2) The Aligner module performs template level matches 
for all active voiceprint models, 

3) The Spotter module monitors template score 
trajectory curves in order to accept or reject 
hypotheses.  

As detailed below, the Aligner uses the analysis stream 
to generate passphrase-dependent data streams which are 
in turn monitored by the Spotter.  

 
Figure 3. Block diagram of the detection and verification 
process. 

6.1. The Measurer module 
To estimate the degree of similarity between a model 

frame  (jj
iM th parameter frame of voiceprint model i) and 

a test frame T, the Measurer computes 1) a frame 
recognition score Sr and 2) a frame verification score Sv. 
The biometric information about the speaker is contained 
in both scores. The recognition score is computed as the 
Euclidian distance between the two frames and is 
weighted by the dynamic frequency band weights as 
follows:  
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The recognition score is used for template detection by 
the Aligner. On the other hand, the verification score 
measures more specifically the degree of similarity to a 
specific voice and is computed as follows: 
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where  represents the background recognition 
score of test frame T. It is estimated by first matching the 
test frame T against all the parameter frames of all 
voiceprint models and is determined as follows: 
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where µT and σT respectively represent the mean and 
standard deviation of the recognition score distribution 
and ω is a control coefficient which was experimentally 
adjusted to 1.4. The verification score has a value ranging 
from -1.0 (high dissimilarity) to +1.0 (high similarity). 
The verification score tends to map non speaker-specific 
frames to the neutral value 0.0.  

6.2. The Aligner module 

 
Figure 4. 3D view of the endpoint-free alignment process 
between a text-dependent model of the passphrase 
“California” and the test utterance “Santa Barbara 
California”.   

The Aligner performs matches at the template level. 
Pattern matching is performed continuously and in 
parallel for all active voiceprint template models. The 
Aligner computes, at each instant t and for each template 
model, a set of scores that correspond to the best 
alignment of the template when constrained to end at 
instant t. More specifically, a template recognition score 
and a template verification score are generated using a 
DTW algorithm. The search procedure uses a speech 
recognition criterion exclusively (i.e. speech recognition 

is preferred over speaker verification during the 
alignment). Alignment penalties are used to account for 
insertions and deletions when computing template 
recognition scores. Template verification scores are 
computed in parallel with the recognition-centric search 
but alignment penalties are not used in this case.  

Figure 4 shows a 3D view illustrating the endpoint-free 
alignment process. The valley-shaped depression crossing 
the template model shows the portion of the signal where 
a good match for passphrase “California” is measured.  

6.3. The Spotter module 
The Spotter is responsible for the actual detection of 

enrolled voiceprint templates.  This task is achieved by 
monitoring the voiceprint-dependent score trajectory 
curves generated by the Aligner.  These curves typically 
exhibit a stable area which corresponds to the alignment 
of the templates against the background noise (i.e. when 
pattern has not been spoken). That stable value is 
template-dependent and referred to as “idle score” later. It 
is continuously estimated and updated by delayed 
decaying average to account for template duration. 

 The spotting strategy is based on the principle of 
relative emergence. The Spotter measures the global 
emergence of each voiceprint model at each instant. The 
global emergence is computed as a combination of 1) the 
recognition emergence and 2) the verification emergence. 
If the global emergence exceeds a given threshold, a 
detection event is sent to the application, otherwise silent 
rejection is performed. The emergence of trajectory S[t] at 
instant t is defined as: 

( )α])[ˆ(/])[(][ tSftSftEm =  

where  represents an estimate of the trajectory’s idle 
score, where f() is a transformation function that maps 
scores into distance-like values (the recognition and 
verification scores are currently remapped with affine 
transformations), and where α is a compression/expansion 
exponent currently set to 0.5. 

][ˆ tS

The emergence principle has the property of 
normalizing the score trajectories. The normalization 
compensates 1) for the static differences between 
templates that are due to differences in phonetic content, 
and 2) for dynamic differences that occur under different 
noise conditions. Static differences are more specifically 
explained by the fact that each phoneme in the language 
(e.g. ‘s’, ‘zh’, ‘ah’) responds differently in terms of mean 
score distribution when matched to a given stationary 
background noise. This natural bias is therefore 
automatically compensated for. Figure 5 shows the global 
emergence trajectory curves obtained for a male speaker 
with respect to his own voiceprint template under three 
different noise conditions. Brown noise was added to the 



original audio file (measured at 12 dB SNR) to generate 
the 8 and 3 dB SNR cases. In the example, the Spotter 
could detect and verify the true user’s speech at 12 and 8 
dB SNR but could not detect it at 3 dB SNR. If voiceprint 
detection should occur, the shape of the trajectory 
typically starts with a flat area centered on the neutral 
value 1.0 (i.e. where only background is matched), 
continues with a rise (i.e. the passphrase has been 
partially spoken at that point) and ends with a fall (i.e. the 
passphrase has been spoken in its entirety). The degree of 
match is measured by the depth below the 1.0 idle line. 

 
Figure 5. Global emergence versus time EmG[t] for the 
passphrase “California” under three noise level conditions 
spoken by the true speaker. The detection performance is 
impacted by the Signal-to-Noise Ratio. At lower SNR 
where the utterance is being masked by the noise, 
detection does not occur. 

Figure 6 shows, on the other hand, the global 
emergence trajectory curves for a male imposter 
(knowing the true user’s passphrase) under the same noise 
conditions.  

 
Figure 6. Global emergence versus time EmG[t] for the 
passphrase “California” under three noise level conditions 
spoken by an imposter.  In the example, the observed fall 
is not deep enough to trigger detection.  

The emergence criterion tends to penalize words and 
phrases that have a higher concentration of fricative and 
nasal sounds. Words in that category (e.g. ‘fishes’) can 
become difficult or virtually impossible to spot due to 
their higher confusability with the background.  

7. The BioAxs authentication procedure 
The authentication procedure is primarily unimodal in 

order to speed up the door access process but all 

modalities (keypad, fingerprint and voiceprint) are 
available at all times. Upon successful authentication, the 
entrance door’s contact relay is automatically activated 
and the name of the verified user is played back along 
with a series of beeps (from 1 to 5 beeps) indicative of the 
level of confidence. The multimodal approach helps in the 
recovery of imperfect matches. An ambiguity occurs 
when the authentication score is close to the modality’s 
Equal Error Rate. In that case, the security constraints of 
the helping modality can be reduced without 
compromising the overall security level, which in the end 
results in a more robust protocol. 

In the case where the user initiates the authentication 
process by saying his/her voice passphrase, one of three 
conditions can occur. Based on the authentication score, 
the system may 1) grant access, 2) deny access or 3) 
request additional credentials via another modality. In the 
latter case, the user can either place his/her finger on the 
scanner or enter his/her “magic” key (currently that key 
corresponds to first digit of the user’s account number) on 
the keypad. If the credentials are compatible with the 
hypothesized identity (cross-validation) then access is 
granted, it is denied otherwise. The user is however still 
allowed to retry by voice. 

Other multimodal strategies could be used. For 
instance, single modality access could be in effect during 
core business hours alone. During non-core hours such as 
at night or during weekends multimodal access (e.g. 2 out 
of 3 modalities) could be required to enter the building. In 
that case, the second modality brings increased security at 
some additional expense in user convenience. 

8. Experimental field results 
Over a period of about 14 months, the authentication 

system has serviced an average of 140 authentication 
requests per day for about 35 enrolled users out of which 
the vast majority (95%) are voiceprint-initiated requests. 
The remaining 5% are mostly fingerprint-initiated access 
requests. Keypad-initiated access, although available, is 
virtually not used since the process of entering an account 
number is slow and tedious. 

The vast majority of users are very pleased with the 
convenience brought by the system and keys are very 
rarely used. The speaker verification module’s 
performance measured under these real-environment 
conditions is about 8% False Rejection Rate for 0.1% 
False Acceptance Rate with 2.8% Equal Error Rate. 
About 37% of these initial rejections are however 
recovered via multi-modality (i.e. voiceprint or keypad 
cross-validation) reducing the False Rejection Rate to 
about 5%. 

All the speech data is recorded on disk for database 
collection purposes. Manual examination of some the 
audio files clearly indicates that intra-speaker variability 
(e.g. pitch, enunciation clarity, loudness, prosody 



changes) is not a negligible phenomenon. The natural 
variability is however difficult to measure. The 
phenomenon is exacerbated by the fact that users have the 
tendency at times to only achieve the articulation level 
needed to pass the authentication test. 

The data collected at the entrance door was also used 
in the context of a Gaussian Mixture Model (GMM) 
system. GMM systems [3] use a statistical approach based 
on single-state Hidden Markov Modeling. It has become a 
popular state-of-the-art approach for text-independent 
speaker verification and identification tasks. The GMM 
system developed at our laboratory uses an MFCC front-
end [4] generating 32 ceptral parameters (16 static + 16 
dynamic parameters) every 10 milliseconds that are 
computed from 64 Mel-frequency bands. The front-end 
uses on-line Cepstral Mean Subtraction (CMS) for 
channel and noise robustness.  A Universal Background 
Model (UBM) consisting of 256 Gaussian components is 
used. An adaptive procedure generates speaker models of 
variable size (i.e. from 64 to 96 Gaussian components per 
GMM model) to compensate for the differences in 
duration and in variability across the speaker enrollment 
data sets.  The system uses a background-dependent 
frame dropping procedure to eliminate non-speech data 
frames at enrollment and verification time. 

The performance of the GMM system obtained on the 
BioAxs data task is slightly better than the template-
based approach and was measured at about 7% False 
Rejection Rate for 0.1% False Acceptance Rate with 2.4% 
Equal Error Rate.  Unlike the BioAxs system, the GMM 
system does not however provide recognition results (i.e. 
the inherent time constraints within a passphrase are not 
preserved by the GMM modeling method) and therefore 
recognition errors as well as spotting errors are not 
accounted for.  

Table 2. Performance of the GMM system in text-
independent mode on the YOHO database as a function of 
the number of utterance used for verification. 

# of utterances Equal Error Rate 

1 1.91 % 

2 0.94 % 

4 0.55 % 

 
For comparison purposes, the same GMM system was 

also tested on the YOHO database in text-independent 
mode. The YOHO database that is available through the 
Linguistic Data Consortium (LDC) consists of a 
collection of 3-number combination lock utterances (e.g. 
“27-51-83”) from 138 speakers. In this case, the UBM 
size was increased to 512 Gaussian components and 
speaker models were built with a fixed size (128 Gaussian 
components per model). Table 2 shows the system’s 
performance on that database when trained with 50% of 
the available training data set. The performance of the 

GMM system on the YOHO database is comparable to 
that of other systems [5] [6] even though the system was 
tuned for text-dependent use. 

9. Conclusion 
We presented a voice-centric multimodal user 

authentication system called “BioAxs” which has been 
deployed at our laboratory to provide physical access 
control. More specifically, we focused our discussion on 
the architecture and technology choices that were adopted 
to provide a fast, convenient and robust interaction model. 
It was shown that multi-modality is a powerful and 
natural tool to enable both increased usability to users and 
increased security to resources. The BioAxs system is 
extensively used by all employees who all like the 
convenience of using short voice passphrases to enter the 
building. Although the current performance has reached a 
satisfactory level under challenging real environment 
conditions, further investigation on intra-speaker 
variability and noise robustness is needed. Ultimately the 
current False Acceptance Rate (i.e. 8% FAR for 0.1% 
FRR) must be reduced to increase the level of 
performance in such a way that users do not have to be 
too careful when talking to the system. 

Our current interest focuses on the improvement of the 
modeling framework to make use of more statistical 
information in conjunction with unsupervised adaptation 
techniques. 
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Abstract

Results are presented for the largest experimental study to
date that investigates the comparison and combination of
2D and 3D face recognition. To our knowledge, this is also
the only such study to incorporate significant time lapse be-
tween gallery and probe image acquisition, and to look at
the effect of depth resolution. Recognition results are ob-
tained in (1) single gallery and a single probe study, and
(2) a single gallery and multiple probe study. A total of 275
subjects participated in one or more data acquisition ses-
sions. Results are presented for gallery and probe datasets
of 200 subjects imaged in both 2D and 3D, with one to thir-
teen weeks time lapse between gallery and probe images of
a given subject yielding 951 pairs of 2D and 3D images.
Using a PCA-based approach tuned separately for 2D and
for 3D, we find that 3D outperforms 2D. However, we also
find a multi-modal rank-one recognition rate of 98.5% in a
single probe study and 98.8% in multi-probe study, which
is statistically significantly greater than either 2D or 3D
alone.

1. Introduction
The identification of the human face in 2D has been investi-
gated by many researchers, but relatively few 3D face iden-
tification studies have been reported[1, 2, 3, 4, 5]. One of
the main motivations of 3D face recognition is to overcome
the problems in general 2D recognition methods resulting
from illumination, expression or pose variations.

This study deals with face recognition using 2D and 3D.
Each modality captures different aspects of facial features,
2D intensity representing surface reflectance and 3D depth
values representing face shape data. Even though each
modality has its own advantages and disadvantages depend-
ing on certain circumstances, there is often some expecta-
tion that 3D data should yield better performance. How-
ever, no rigorous experimental study has been reported to
validate this expectation. The experiments reported in this
study are aimed at (1) examining the spatial / depth resolu-

tion needed for 3D face recognition (2) testing the hypothe-
sis that 3D face data provides better biometric performance
than 2D face data, using the PCA-based method, and (3) ex-
ploring whether a combination of 2D and 3D face data may
provide better performance than either one individually in
both a single probe study and a multiple probe study.

This is an extension of our earlier work [6]. We have
expanded the size of the dataset and have improved the
method of geometric normalization used in the 2D and 3D
PCA algorithms, resulting in improved recognition perfor-
mance, both individually and in combination. We have also
examined the effect of depth resolution on performance of
3D recognition.

2. Previous Work
In this section, methods that use multiple types of biometric
sources for identification purposes, multi-modal biometrics,
are reviewed. The term “multi-modal biometrics” is used
here to refer to the use of different sensor types without nec-
essarily indicating that different parts of the body are used.
The important aspects of these multi-modal studies are sum-
marized in Table 1. Due to the effectiveness of combining
multiple biometrics, such studies are included as well to re-
view their data fusion methods, types of biometric sources
and the size of experimental dataset. In addition to recog-
nition methods based solely on the human face, there are
other recognition methods using multiple biometric sources
in addition to face data. One commonality of the studies
described in Table 1 is that identification based on multiple
sensors / biometrics sources provides overall performance
improvement.

3. Methods and Materials
3.1. 2D and 3D Face Recognition Using PCA
Extensive work has been done on face recognition algo-
rithms based on PCA, popularly known as “eigenfaces”
[20]. A standard implementation of the PCA-based algo-
rithm [21] is used in the experiments reported here.



Table 1: Multi-biometrics studies for personal identification

Source Biometric Fusion Set
(year) sources methods size

Wang Face, metric- 90
(’03) [7] Iris based
Chang Face, pixel- 111

(’03) [8] Ear based
Shakhnaro- Face, metric- 26
vich(’02) [9] Gait based

Ross Face, Hands metric- 50
(’01) [10] Fingerprint based
Frischholz Face, Voice, metric- 150
(’00) [11] Lip Movement based

Ben-Yacoub Face, metric- 37
(’99) [12] Voice based

Hong Face, metric- 64
(’98) [13] Fingerprint based

Bigun Face, metric- 40
(’97) [14] Voice based

Kittler Face, Profile metric- 37
(’97) [15] Voice based
Brunelli Face, metric- / 89

(’95) [16] Voice rank-based

Studies that integrate multiple types of facial data

Chang 2D frontal& metric- 278
(’03) [6] 3D shape based
Wang 2D frontal metric- 50

(’02) [17] & 3D shape based
Beumier 2D frontal metric- 120
(’00) [18] & 3D profiles based

Achermann 2D frontal& metric-/ 30
(’96) [19] 2D profile rank-based

3.2. Normalization

The main objective of the normalization process is to min-
imize the uncontrolled variations that occur during the ac-
quisition process and to maintain the variations observed in
facial feature differences between individuals. The normal-
ized images are masked to omit the background and leave
only the face region (see Figure 1). While each subject is
asked to gaze at the camera during the acquisition, it is in-
evitable to obtain data with some level of pose variations
between acquisition sessions.

The 2D image data is typically treated as having pose
variation only around the Z axis, the optical axis. The PCA
software [21] uses two landmark points (the eye locations)
for geometric normalization to correct for rotation, scale,
and position of the face for 2D matching. However, the

face is a 3D object, and if 3D data is acquired there is the
opportunity to correct for pose variation around the X, Y,
and Z axes.

A transformation matrix is first computed based on the
surface normal angle difference in X (roll) and Y (pitch) be-
tween manually selected landmark points (two eye tips and
center of lower chin) and predefined reference points of a
standard face pose and location. Pose variation around the
Z axis (yaw) is corrected by measuring the angle difference
between the line across the two eye points and a horizontal
line. At the end of the pose normalization, the nose tip of
every subject is transformed to the same point in 3D relative
to the sensor (see Figure 2). The geometric normalization in
2D gives the same pixel distance between eye locations to
all faces. This is necessary because the absolute scale of the
face is unknown in 2D. However, this is not the case with a
3D face image, and so the eye locations may naturally be at
different pixel locations in depth images of different faces.
Thus, the geometric scaling was not imposed to 3D data
points as it was in 2D. We found that missing data problems
with fully pose-corrected 2D outweighed the gains from the
additional pose correction [6], and so we use the typical
Z-rotation corrected 2D. Problems with the 3D are allevi-
ated to some degree by preprocessing the 3D data to fill in
holes and remove spikes (see Figure 3). This is done by
median filtering followed by linear interpolation using valid
data points around a hole.

A study of one gallery with four probes

A study of one gallery with three probes

Figure 1: Examples of masked images in 2D and 3D

3.3. Data Collection
A gallery image is an image that is enrolled into the sys-
tem to be identified. A probe image is a test image to be



(a) X-Y plane (b) Y-Z plane

Initial pose of a subject in 3D space

(a) X-Y plane (b) Y-Z plane

Corrected pose of a subject in 3D space

Figure 2: Pose normalization

matched against the gallery images. Images were acquired
at the University of Notre Dame between January and May
2003. Two four-week sessions were conducted for data col-
lection, approximately six weeks apart. The first session is
to collect gallery images and the second session is to collect
probe images for a single probe study in mind. For a study
with multiple probes, an image acquired in the first week
is used as a gallery and images acquired in later weeks are
used as probes. Thus, in the single probe study, there are at
least six and as many as thirteen weeks time lapse between
the acquisition of gallery image and its probe image, and at
least one and as many as thirteen weeks time lapse between
the gallery and the probe in the multiple probe study. All
subjects completed an IRB-approved consent form prior to
participating in each data acquisition session. A total of 275
different subjects participated in one or more data acquisi-
tion sessions. Among 275 subjects, 200 participated in both
a gallery acquisition and a probe acquisition. Thus, there
are 200 individuals in the single probe set, the same 200 in-
dividuals in the gallery, and 275 individuals in the training
set. The training set contains the 200 gallery images plus
an additional 75 for subjects whom good data was not ac-
quired in both the gallery and probe sessions. And for the
multiple probe study, 476 new probes are added to the 200
probes, yielding 676 probes in total. The training set of 275
subjects is the same as the set used in the single probe study.

In each acquisition session, subjects were imaged using
a Minolta Vivid 900 range scanner. Subjects stood approx-

(a) (b)

Processing missing data points in range data

(c) (d)

Processing spike noise in range data

Figure 3: Preprocessing in 3D data points

imately 1.5 meter from the camera, against a plain gray
background, with one front-above-center spotlight lighting
their face, and were asked to have a normal facial expression
(“FA” in FERET terminology [22]) and to look directly at
the camera. Almost all images were taken using the Mi-
nolta’s “Medium” lens and a small number of images was
taken with its “Tele” lens. The height of the Minolta Vivid
scanner was adjusted to the approximate height of the sub-
ject’s face, if needed. The Minolta Vivid 900 uses a pro-
jected light stripe to acquire triangulation-based range data.
It also captures a color image near-simultaneously with the
range data capture. The result is a 640 by 480 sampling of
range data and a registered 640 by 480 color image.

3.4. Distance Metrics
2D data represents a face by intensity variation whereas 3D
data represents a face by shape variation. It is obvious that
the “face space” could be very different between modalities.
Thus, during the decision process, certain metrics might
perform better in one space than in the other. In this experi-
ment, the Mahalanobis distance metric was explored during
the decision process for the gallery matching [23].

3.5. Data Fusion
The pixel level provides perhaps the simplest approach to
combining the information from multiple image-based bio-
metrics. The images can simply be concatenated together



to form one larger aggregate 2D-plus-3D face image. Met-
ric level fusion combines the match distances that are found
in the individual spaces. Having distance metrics from two
or more different spaces, a rule for combination of combine
the distances across the different biometrics for each per-
son in the gallery can be applied. The ranks can then be
determined based on the combined distances.

One of the early tasks in data fusion is to normalize the
scores that result from the metric function. Scores from
each space need to be normalized to be comparable. There
are several ways of transforming the scores including linear,
logarithm, exponential and logistic [19]. The scores from
different modalities are normalized so that the distribution
and the range are mapped to the same unit interval.

There are many ways of combining different metrics to
achieve the best decision process, including majority vote,
sum rule, multiplication rule, median rule, min rule, average
rule and so on. Depending on the task, a certain combina-
tion rule might be better than others. It is known that the
sum rule and multiplication rule generally provide plausi-
ble results [24, 19, 9, 7, 6, 18].

In our study, a weight is estimated based on the distri-
bution of the top three ranks in each space. The motivation
is that a larger distance between first- and second-ranked
matches implies greater certainty that the first-ranked match
is correct. The level of the certainty can be considered as a
weight representing the certainty. The weight can be ap-
plied to each metric as the combination rules are applied.
The multi-modal decision is made as follows. First the 2D
probe is matched against the 2D gallery, and the 3D probe
against the 3D gallery. This gives a set of N distances in
the 2D face space and another set of N distances in the 3D
face space, where N is the size of the gallery. A plain sum-
of-distances rule would sum the 2D and 3D distances for
each gallery subject and select the gallery subject with the
smallest sum. We use a confidence-weighted variation of
the sum-of-distances rule. For each of 2D and 3D, a “con-
fidence” is computed using the three distances in top ranks
as (second distance - first distance) / (third distance - first
distance). If the difference between the first and second
match is large compared to the typical distance, then this
confidence value will be large. The confidence values are
used as weights in distance metric. A simple product-of-
distances rule produced similar combination results, and a
min-distance rule produced slightly worse combination re-
sults.

4. Experiments

There are three main parts to this study. The first part is to
examine how the recognition performance is affected by the
X–Y in both 2D and 3D and depth resolution in 3D data.
The second part is to evaluate the performance of 2D and

3D independently in both single and multiple probe stud-
ies. Data fusion is considered, in the third part, to combine
results at the metric level with different fusion strategies.

The eigenvectors for each face space are tuned by drop-
ping the first M and last N eigenvectors to obtain an opti-
mum set of eigenvectors. Thus, in general we expect to have
a different set of eigenvectors 2D face space versus repre-
senting 3D face space. The cumulative match characteristic
(CMC) curve is generated to present the results.

4.1. Experimental Results: X–Y resolution
This experiment looks at the performance rate changes
while the spatial resolution is varied in texture and shape
images. One average pixel in X axis produced by the Mi-
nolta Vivid 900 covers 0.9765mm and one pixel in Y axis
covers 0.9791mm of surface area. A typical template size
that we initially used was 130 x 150 pixels (a face cov-
erage area of approximately 12.7cm x 14.7cm). Figure
4-(a) shows example of both 2D (top row) and 3D (bot-
tom row) images used for this experiment, starting from the
right most, 25%, 50%, 75%, 100% of the original dimen-
sion. Thus, every pixel is retrieved in the step of 3.97mm,
1.96mm, 1.31mm and 0.98mm from the original X and Y
data points in each image set.

The performance results are shown in Figure 4-(b). The
graph is plotted using the first rank match performance rate.
Both performance curves begin to drop at the resolution of
1.31mm in X–Y , (in 2D, 89.0% to 85.0%, and 94.5% to
89.5% in 3D). However, the spatial resolution changes at-
tempted in both 2D and 3D suggest that there is no sig-
nificant difference in performance rates from the original
resolution. We believe that performance degradation re-
sults from undersampling the face and missing differenti-
ating features. The stiff performance drop has been shown
in between 50% and 25% due to the insufficient facial fea-
tures to be differentiated between subjects in PCA method.

4.2. Experimental Results: Depth resolution
This experiment has a similar purpose as the previous one.
However, this examines the depth resolution required to
maintain the performance rate from the original depth res-
olution. According to the Minolta Vivid 900 specification,
its depth accuracy level may be obtained at 0.35mm. One
way to vary the original resolution is to change the pre-
cision level in floating point values of the Z coordinate.
A lower limit on precision could be 10−6mm. However,
the camera-to-subject distance and lens combination used
in our acquisition likely support an actual depth resolution
of no better than about 0.5mm on average. Fourteen dif-
ferent resolutions were examined so that every pixel value
representing the actual coordinate is retrieved in the unit



(a) Example of images in different spatial resolutions
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(b) Different spatial resolutions

Figure 4: Experiment in spatial resolutions changes

of 10−6mm, 10−5mm, 10−4mm, 10−3mm, 10−2mm,
10−1mm, 0.5mm, 1mm, 2mm, 3mm, 4mm, 5mm, 6mm
and 7mm as shown in Figure 5-(a). As shown in Figure
5-(b), the overall performance rate decreases as the depth
resolution gets coarser. It becomes prominent after 3mm.

However, it is interesting to note that the performance
rates between 0.5mm and 3mm maintain remarkably close
to the original resolution (within 2.5%). This may be par-
tially because as the resolution gets coarser, random noise
would be suppressed. As it gets even coarser, a face surface
becomes overly contoured and identification suffers from
such coarsely quantized surfaces.

10−6 10−5 10−4 10−3 10−2

10−1 0.5 1 2 3

4 5 6 7

(a) Example of images in different depth resolutions (in mm)

0.8
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

R
an

k 
O

ne
 M

at
ch

1 2 3 4 5 610 10 10 10 10 10 0.5 7
−6 −5 −4 −3 −2 −1 

(Unit : mm) 

3D Performance Results in Precision Changes 

Default Floating 
Precision Level

(b) Performance results in different depth resolutions

Figure 5: Experiment in depth resolution changes

4.3. Experimental Results: 2D versus 3D face
- Single probe study

This experiment is to investigate the performance of indi-
vidual 2D eigenface and 3D eigenface methods, given (1)
the use of the same PCA-based algorithm implementation,
(2) the same subject pool represented in training, gallery
and probe sets, and (3) the controlled variation in one pa-
rameter, time of image acquisition, between the gallery and
probe images. A similar comparison experiment between
2D and 3D acquired using stereo-based system was also
performed by Medioni et.al.[25].

There can be many ways of selecting eigenvectors to ac-
complish the face space creation. In this study, at first, one
vector is dropped at a time from the eigenvectors of largest
eigenvalues, and the rank-one recognition rate is computed
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Figure 6: Performance results in single probe study.

using the gallery and probe set again each time, and con-
tinue until a point is reached where the rank-one recognition
rate gets worse rather than better. We denote the number
of dropped eigenvectors of largest eigenvalues as M. Also,
one vector at a time is dropped from the eigenvectors of the
smallest eigenvalues, and the rank-one recognition is com-
puted using the gallery and probe set again each time, and
continue until a point is reached where the rank-one recog-
nition rate gets worse rather than better. We also denote the
number of dropped eigenvectors of smallest eigenvalues as
N.

During the eigenvector tuning process, the rank-one
recognition rate remains basically constant with from one to
20 eigenvectors dropped from the end of the list. This prob-
ably means that more eigenvectors can be dropped from the
end to create a lower-dimension face space. This would
make the overall process simpler and faster. The rank-one
recognition rate for dropping some of the first eigenvectors
tend to improve at the beginning but it start to decline as M
gets larger.

After the eigenvectors are tuned, both 2d and 3D are co-
incided at M = 2, and N = 20 to create the face spaces. With
the given optimal set of eigenvectors in 2D or 3D, the re-
sults show that rank-one recognition rate is 89.0% for 2D,
and 94.5% for 3D (see Figure 6).

4.4. Experimental Results: Multi-modal bio-
metrics using 2D and 3D

The purpose of this experiment is to investigate the value
of a multi-modal biometric using 2D and 3D face images,
compared against individual biometrics. The null hypothe-
sis for this experiment is that there is no significant differ-
ence in the performance rate between uni-biometrics (2D
or 3D alone) and multi-biometrics (both 2D and 3D to-
gether). According to Hall [26], a fusion can be usefully
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Figure 7: Performance results in multiple probe study.

done if an individual probability of correct inference is be-
tween 50% and 95% with one to seven classifiers. From our
results in the previous experiment, it is reasonable to fuse
the two individual biometrics which meet this fusion crite-
ria. Figure 6 shows the CMC with the rank-one recogni-
tion rate of 98.5% for the multi-modal biometric, achieved
by combining modalities at the distance metric level. In
the fusion methods that we considered, the multiplication
rule showed the most consistent regardless of the particular
score transformation. However, the min rule showed lower
performance than any other rules in different score trans-
formations (see Figure 8). Also, when the distance metrics
were weighted based on the confidence level during the de-
cision process, all the rules result in significantly better per-
formance than the individual biometric. A McNemar’s test
for significance of the difference in accuracy in the rank-one
match between the multi-modal biometric and either the 2D
face or the 3D face alone shows that multi-modal perfor-
mance is significantly greater, at the 0.05 level.

4.5. Experimental Results: 2D face versus 3D
face in biometrics - multiple probe study

In these experiments, there will be one or more probes for
a subject who appears in the gallery, with each probe be-
ing acquired in a different acquisition session separated by
a week or more. We are attempting to retrieve more practi-
cal use of face identification method by incorporating mul-
tiple probes to be matched against the gallery images. The
multiple probe dataset consists of 676 probes in total. Sub-
jects might have a different number of probes. For example,
there are 200 subjects with 1 or more probes, 166 subjects
with 2 or more probes and so on. In the probe dataset, the
number of probes can be up to 7 per subject. There might
be different rules to determine a correct match given several
probes to a gallery. In this experiment, a correct match is
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Figure 8: Performance results of fusion schemes used.

measured based on an each individual probe rather than on
some function of all probes per subject.

By using the same set of eigenvectors tuned in the single
probe study, we achieved similar results as in the previous
sections. While 3D performance dropped a little, 92.8%,
2D performance maintains slightly better than the previous
experiment, 89.5% (see Figure 7).

After combining these two biometrics in the multiple
probes, we also were able to obtain significantly better per-
formance, at 98.8%, than for either 2D or 3D alone. The
results of 2D and 3D combination show very similar perfor-
mance behavior as the single probe study. Product rule per-
forms better than minimum rule regardless of score trans-
formation (see Figure 8). Most combined methods consis-
tently perform significantly better than the single biomet-
rics. A McNemar’s test for significance of the difference
in accuracy in the rank-one match between the multi-modal
biometric and either the 2D face or the 3D face alone shows
that multi-modal performance is significantly greater, at the
0.05 level. Thus, significant performance improvement has
been accomplished by combining 2D and 3D facial data in
both single and multiple probe studies.

5. Summary and Discussion

The value of multi-modal biometrics with 2D intensity and
3D shape of facial data in the context of face recognition is
examined in a single probe study and a multiple probe study.
This is the largest experimental study (in terms of number
of subjects) that we know of to investigate the comparison
and combination of 2D and 3D data for face recognition. In
our results, each modality of facial data has roughly similar

value as an appearance-based biometric. The combination
of the face data from both modalities results in statistically
significant improvement over either individual biometric. In
general, our results appear to support the conclusion that
the path to higher accuracy and robustness in biometrics
involves use of multiple biometrics rather than the best pos-
sible sensor and algorithm for a single biometric.

We also have investigated the effect of spatial and depth
resolution on recognition performance. This was done by
producing successively coarser versions of the original im-
age. The original image has a depth accuracy at 0.35mm.
We found that performance drops only slightly in going to a
depth resolution of 0.5mm, but begins to drop drastically at
4mm. The pattern of results suggests that it would be inter-
esting to determine a sensor accuracy level needed to meet
a specific requirement of face recognition tasks. The accu-
racy requirement might be vary under different conditions
of subjects, such as facial muscle movement, or imaging
condition changes. This initial investigation in resolution
variation would bring a more explicitly decided resolution
level for further experiments.

The overall quality of 3D data collected using a range
camera is perhaps not as reliable as 2D intensity data. 3D
sensors in the current market are not as mature as 2D sen-
sors. Common problems with typical range finder images
include missing data in eyes, cheeks, or forehead as well as
several types of noise. These problems would lower the 3D
recognition rate in general even though there exist ways of
recovering some data in such areas.

The criteria used to decide which combination of eigen-
vectors to keep is the rank-one recognition rate on the
gallery and probe images. So, in a way, the gallery and
probe images are used in deciding what eigenvectors to use
for the space, and then the results are also reported on the
gallery and probe images, thereby “testing on training data”.
This can be addressed by having a validation set of images
to determine the set of eigenvectors to be used during the
identification process so that eigenvectors to keep before the
performance on the gallery and probe images are obtained.

It is generally accepted that performance estimates for
face recognition will be higher when the gallery and probe
images are acquired in the same acquisition session, com-
pared to performance when the probe image is acquired af-
ter some passage of time [27]. Most envisioned applications
for face recognition technology seem to occur in a scenario
in which the probe image would be acquired some time af-
ter the gallery image. In this context, it is worth noting that
the dataset used here incorporates a substantial time lapse
between gallery and probe image acquisition.

The dataset used in the experiments reported here will be
made available to other research groups as a part of the Hu-
man ID databases. See http://www.nd.edu/˜cvrl/ for more
information about the dataset and the release agreement.
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Abstract 
 
 We investigate the application of a face recognition 
system in a distributed environment.   Images of faces are 
captured by clients remotely and transmitted to a server for 
recognition or authentication using a central database. In 
many distributed scenarios, bandwidth may be limited and 
transmission of image data may not be feasible. We assume 
the client does not have processing limitations and can 
extract and transmit compressed features.  In addition, the 
compressed features can be used as an alternative 
representation of the faces in the database and thus reduce 
storage needs.  In this paper we explore the impact of 
feature compression on face recognition performance.  
Specifically, we consider the Bochum/USC face recognition 
system and propose an embedded coding scheme for Gabor-
based wavelet features extracted from optimally selected 
landmarks on the face. Our results show that the impact on 
recognition rates—even at the highest compression rates—
is minimal. 
 
1. Introduction 
 
 Distributed processing systems are fast becoming an 
important area of research. The paradigm of centralized 
computing is changing as mobile devices and sensors with 
enhanced processing power and multimedia capabilities 
proliferate. The emergence of distributed processing systems 
enables more flexible solutions to existing problems and 
simultaneously poses new challenges. 
 Applications such as user authentication can now be 
carried out using a multitude of devices in a wide variety of 
locales but must account for bandwidth limitations if data is 
to be transmitted between clients and a server.  Each time a 
user needs to be authenticated remotely, pertinent 
information (e.g. authentication features) must be sent to a 
central server for processing.  If the communication channel 
between the client and the server has limited bandwidth, it 
may be intractable to transmit large amounts of information. 
This is a considerable limitation for applications that rely on 
visual information, such as a face recognition system. 

 The bandwidth problem can be mitigated if the client 
shoulders the processing burden entirely.  However, there 
are scenarios where this is neither possible nor desirable. In 
many authentication systems, for example, it is often 
necessary to store the database centrally in order to add 
users dynamically and ensure security.  In addition, a central 
database is easier to maintain.  Therefore, it is reasonable to 
distribute the processing load between clients and the server.  
Because communication is inevitable in distributed 
processing systems, the flow of information can be 
facilitated using some form of compression. 
 In a distributed face recognition system a server 
maintains a large database of faces centrally and clients 
submit face information to the server for recognition.  It may 
be advantageous for the client to extract and transmit the 
features instead of the face image data in order to avoid 
bandwidth limitations altogether.  To further preserve 
bandwidth, the features themselves could be compressed 
prior to transmission. 
 Compression for distributed processing systems is a 
growing area of research.  Applications such as distributed 
speech recognition [1], distributed image classification [2], 
and distributed sensor networks [3] have been studied.  Yet, 
compression for distributed face recognition remains 
unexplored.  As intimated earlier, we are interested, in 
particular, in a scenario where the client has sufficient 
processing power but limited bandwidth.  Furthermore, we 
assume the server maintains the database centrally. 
 Based on the above assumptions, the Bochum/USC 
face recognition system [4] is a good study case.  This  
 system can easily be adapted to a distributed environment 
because it is based on general principles rather than 
statistical learning.  In fact, classification is based on a 
simple nearest neighbor distance metric.  This implies that 
faces can be easily added to the database without having to 
dynamically retrain the classifier.  The fundamental part of 
the algorithm involves an elastic bunch graph technique used 
to locate specific landmarks on the face from which Gabor 
wavelet features are extracted.   
 Prior research has shown that in bandwidth limited 
cases—where compression is inevitable—the decrease in 
classification accuracy is less when compressing feature 



vectors as opposed to the signal itself [1].  Therefore, we 
attempt to exploit the underlying structure of the Gabor 
wavelet features as a first step.  Although the wavelet 
features are extracted from selected landmarks on the face, 
they demonstrate some tendencies common to natural 
images, including energy concentration in the low-frequency 
sub-bands.  Given these observations, we propose a 
modified bit-plane coding technique similar to the 
embedded zerotree wavelet coder proposed by Shapiro [5].  
The compression scheme also has the advantage of being 
fully embedded, meaning that finer renditions of the features 
are transmitted progressively.  We show that the embedded 
coding scheme can achieve a bit-rate of 0.13 bits per pixel 
(based on 128 x 128 pixel images) while decreasing the 
overall face recognition rate on average by only 1%.  
Finally, we show that face recognition performance is 
considerably better using embedded feature coding 
compared to image compression using the state of the art 
JPEG2000 [10] technology, although, obviously, our 
scheme, unlike JPEG2000, does not provide a decodable 
version of the full image. 
 As mentioned earlier, in a distributed scenario the 
limiting factor is bandwidth. Although this is the main focus 
of our paper, we also address the case (which is not 
necessarily distributed) where the limiting factor is storage 
capacity.  When the image database is extremely large 
and/or storage space is limited, it is often desirable to 
compress the images in the database.  An alternative is to 
build a database of compressed features.  In this paper we 
also evaluate our proposed feature compression scheme for 
such a scenario, i.e., as a tool to provide a compressed 
representation of the database.  In this respect our proposed 
compression scheme performed favorably compared to 
JPEG2000. 
 The paper is organized as follows.  We first provide an 
overview of the Bochum/USC face recognition system, then 
discuss feature vector compression, including our proposed 
embedded coding technique, and conclude with an 
evaluation of the impact of compression on face recognition. 
 
2. The Bochum/USC Face Recognition System 
 
As discussed earlier, the performance of the Bochum/USC 
face recognition system is based largely on the efficacy of a 
bunch graph matching technique [6] used to optimally locate 
specific landmarks on the face.  Gabor wavelet features are 
then extracted from these landmarks and classified using a 
simple similarity measure.  In terms of feature compression, 
it is noteworthy that the algorithm does not rely heavily on 
the generalization capability of a classifier engine.  
Otherwise, distortion resulting from compression could 
displace vectors in feature space and consequently affect 
recognition performance.  Finally, it should also be noted 
that the Bochum/USC face recognition system achieved the 

best performance among competing algorithms in a FERET 
test administered between September 1996 and March 1997 
[7]. 
 Each elastic graph has 48 nodes placed at specific 
landmarks on the face.  The face recognition system 
addresses pose variations but for our present purposes we 
only consider frontal views of the face, as shown in Figure 
1. 
 

 
 

Figure 1. Spatial location of the 48 landmarks on the face. 
 

At each node location, a feature vector, or jet, is extracted 
using a Gabor-based wavelet expansion:  
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where x are the image coordinates, k∈ℜLD is the wave 
vector, l=1,…,L is the frequency index, d=1,…,D is the 
direction index, and φd=πd/D is the kernel direction.  Let 
Jk(x) be the Gabor jet extracted at each landmark by 
convolving the image I(x) with the Gabor wavelet of Eq. (1): 
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In the Bochum/USC face recognition system, the Gabor 
wavelet is sampled over L=5 levels in D=8 directions: 
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Where aj and φj, j=1,…,LD, are the wavelet coefficient 
magnitude and phase respectively.  A model graph is the 
collection of Gabor jets (i.e. feature vectors) at each of the 
N=48 landmarks.  Therefore, the Gabor jet at each landmark 
will have 80 elements (2LD) organized in the following 
manner: 
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The similarity between any two jets J and J′ can be 
computed by:  
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The similarity between two faces can be obtained by 
computing the node-wise similarity between corresponding 
jets on each face, according to Eq. (5).  This similarity 
function is phase insensitive but other similarity measures 
could be used.   
 
3. Feature Vector Compression 
 
One of the challenges in devising a compression scheme for 
feature vectors is to identify redundancy, irrelevance, and 
structure.  Assumptions can be made about the features used 
here.  In terms of irrelevance, it is reasonable to assume that 
certain landmarks impact recognition more than others.  In 
such a case, one option would be to apply a coarser 
quantization to less important landmarks.  Another option is 
to simply eliminate less important landmarks—equivalent to 
a bit-rate of 0.  In fact, the application of principal 
component analysis to represent the Gabor wavelet features 
using fewer parameters was studied in [8]. 
 In terms of redundancy, the symmetry of the facial 
landmarks could be exploited.  For instance, it is reasonable 
to assume that the Gabor jets extracted from the landmarks 
on the left eye will be similar to the Gabor jets extracted 
from the landmarks on the right eye.  A cursory study of the 
images in a database of 800 images showed that the features 
extracted from the left eye were strongly correlated with 
features extracted from the right eye.  On the other hand, the 
study also showed that most of the other symmetric 
landmarks—particularly those near the edge of the face—
showed little correlation. 
 Another option is to exploit the underlying structure of 
the wavelet coefficients.  It has been shown that wavelet 
coefficients extracted from natural images have a strong 
energy concentration in the low-frequency sub-bands [9].  
This trend can be used favorably for compression, as 
demonstrated by the use of wavelet coding in the new 
JPEG2000 image compression standard [10].  However, the 
Gabor wavelet coefficients are only extracted from selected 
landmarks.  Still, our evaluation of the Gabor jets showed 
that the wavelet coefficient energy was concentrated in the 
low-frequency sub-bands and furthermore, the energy of 

coefficients in high-frequency sub-bands tended to be 
correlated with the energy in low-frequency sub-bands. 
 
3.1. Embedded Coder 
 
The embedded zerotree wavelet (EZW) algorithm was 
introduced by Shapiro [5].  The EZW compression scheme 
codes data in a signal by using efficient entropy coding of its 
bit-plane representation.  Namely, the samples in the signal 
of interest (e.g. wavelet coefficients) are represented using 
bit-planes.  The embedded nature of the EZW algorithm 
arises from the fact that each bit-plane is coded separately 
and transmitted in order of importance from the LSB to the 
MSB plane.  Quantization is achieved by stopping this 
refinement process, i.e., by not sending bit-planes below a 
certain threshold.  Shapiro proposed using embedded coding 
on wavelet coefficients given that there is often a correlation 
between energy values across frequency levels. 

The bit-plane coding is accomplished by assigning one 
of four labels to the wavelet coefficients.  If a coefficient is 
above a threshold T (half the value of the bit-plane), it is 
assigned a significant positive or significant negative label, 
depending on its sign.  If the wavelet coefficient is below the 
threshold and all of its descendants (i.e. the coefficients in 
higher frequency sub-bands) are also below the threshold, 
then it is assigned a zerotree root label.  Otherwise, it is 
assigned an isolated zero label.  This means that only four 
labels are needed to code the coefficients at each bit-plane.  
Furthermore, if a coefficient is a zerotree root, it does not 
have to be transmitted at higher bit-planes.  The 
reconstruction value for significant coefficients at each bit-
plane is simply 3T/2 

EZW also includes a refinement stage where the 
reconstructed value of significant coefficients is refined.  
The refinement is simply ±T/4 and only requires one bit for 
transmission.  Thus, at each bit-plane two bit-streams are 
transmitted: the significant coefficient bit-stream s and the 
refinement bit-stream r.  Assuming the wavelet coefficients 
have low-frequency energy compaction, this technique can 
yield significant savings.  EZW is an embedded coder in that 
the bit-stream is generated and transmitted in order of 
importance. 

Ordinarily, in an image compression scheme, the 
wavelet coefficients might have to be stored in memory in 
order to define the tree structure.  This is because a typical 
wavelet transform algorithm generates all the coefficients of 
each wavelet subband but the tree is formed by grouping 
coefficients from different bands together.  Depending on 
the size of the original image, this can lead to a considerable 
memory requirement.  However, because in this case the 
Gabor wavelet coefficients are self-contained in relatively 
low-dimensional feature vectors, a tree structure (i.e. an 
energy coefficient dependence) can be easily defined 
without memory constraints.  It should be noted that other 
embedded coders have been developed since EZW and 



could be applied here but we choose EZW because of its 
simplicity. 

Note that, while in standard image coding applications, 
wavelet coefficients for each subband are generated for the 
whole image, in the Gabor jet case the data that is generated 
is naturally localized, since the transformation is only done 
in the neighborhood of the face landmarks. In short, because 
in our problem we have to operate with localized trees of 
coefficients at various frequencies it is more natural to 
extend the EZW tree, rather than group coefficients 
corresponding to the same frequency and orientation from 
different landmarks, before proceeding to a JPEG2000-style 
encoding. Moreover, when localization is preserved in the 
coding it is possible to tailor the level of quantization to the 
relative importance for recognition of the different 
landmarks.  
 
3.2. Modified Embedded Coder for Gabor Jets 
 
We modify the EZW principle to apply it to the Gabor jets 
extracted using the Bochum/USC face recognition system.  
The coefficients in the Gabor Jets are infinite precision.  
Therefore, in order to apply bit-plane coding, they were 
scaled to 8-bit finite precision.  The scaling can be done by 
normalizing relative to the maximum component of each 
Gabor jet and then sending this value as side information.  
Alternatively, the scaling can be done using a global scale 
factor for each landmark.  There is no reason why the 
coefficients could not be scaled to higher bit representations.  
The only change would be the number of bit-planes to code. 

The first modification to the EZW algorithm is the 
elimination of the significant negative label since the Gabor 
jet coefficients are all positive.  Another modification is the 
establishment of parent-child relationships and a scanning 
order to determine zerotree roots.  In natural images, a 
parent is a wavelet coefficient at any sub-band. Children are 
coefficients in higher frequency subbands corresponding to 
the same spatial location in the original image.  The 
scanning is done in zig-zag fashion, according to the 
traditional dyadic pyramid representation.  In the case of the 
Gabor jets, each of the eight directions is coded separately.  
We establish parent-child relationships in each direction.  
The scanning order is from the low-frequency coefficients 
(l=1) toward the highest frequency coefficients (l=5), as 
shown in Figure 2.  Define the threshold Ti at bit-plane i as: 
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Where, A is the maximum wavelet coefficient magnitude: 
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The entry in the bit-stream at bit-plane i for a given wavelet 
coefficient al,d is assigned one of three values: 
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Where, l=1,…,L is the decomposition level, d=1,…,D is the 
direction, and the symbols 0, 1, and 2 represent the 
significant positive, zerotree root, and isolated zero 
coefficients respectively.  The entry in the refinement bit-
stream is simply: 
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Example Gabor wavelet coefficients extracted from 
landmark 17 are shown in Figure 2 (averaged over all 
images in the database of faces).  The decreasing energy 
trend from low frequency to high frequency coefficients can 
also be seen in Figure 2. 
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Figure 2. Parent-child dependency and scanning order. 
 
4. Evaluation 
 
We evaluated the proposed compression scheme on a 
database of 800 faces (frontal view).  For each facial image 
there are 48 Gabor jets.  Each jet is coded separately and 
weighted equally.  The embedded coder can be applied to 
both the magnitude and phase elements but we only consider 
the magnitude here since the similarity measure of Eq. 5 is 
phase insensitive.  For each bit-plane, the coefficients are 
assigned one of three labels, zerotrees are established and 
the entropy of the bit-stream is computed.  Since the bit-



stream is embedded, the entropy of the bit-stream at any bit-
plane b is equal to the sum of entropies of itself and previous 
bit-planes: 
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Here, si and r i are the significant and refinement bit-streams 
at bit-plane i, respectively, and Si and Ri are the lengths of si 
and r i.  For an entire model graph, the entropy of each Gabor 
jet was averaged.  The compression ratio CR for the 
embedded coder is simply: 
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Where, P(aj = k) is the probability that the Gabor coefficient 
magnitude aj, j=1,…,LD, is equal to the 8-bit value k.  
Hence, Eq. (11), measures the compression ratio of the 
coefficient magnitudes of the original Gabor jets compared 
to the compressed Gabor jets (independent of the image 
size).  We use the mean squared error MSE to evaluate 
distortion of each Gabor jet: 
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where k
jâ  is the jth compressed coefficient magnitude at 

landmark k. 
 
4.1. Distortion Impact on Classification 
 
As discussed earlier, standard rate-distortion performance 
measures are not sufficient to gauge the impact of the 
compression on classification.  We thus devised the 
following experiment using a database of 800 images 
containing two frontal views of 400 different individuals.  
One half of the database was left uncompressed and treated 
as the central server database.  The other 400 images were 
treated as client faces.  In a second experiment, we explore 
feature compression for storage space reduction.  In this 
case compressed features rather than facial images represent 
the database.  This experiment can be regarded as the 
reverse of the distributed case. 

The model graphs corresponding to the client faces 
were compressed using the embedded coding technique 
described above.  The similarity was then computed between 
each compressed model graph and the model graphs of each 

face in the central database using Eq. 5.  The recognition 
rate was obtained using: 
 

 
database in the images of No.

 tries within matched modelsgraph  of No.
)(

X
XMatchP =≤  (13) 

 
For evaluation purposes we compared the rate-

distortion performance of the embedded quantizer to a 
standard scalar quantizer.  We also compared the 
performance of the feature compression using embedded 
coding to the performance obtained by compressing the 
images using JPEG2000 prior to feature extraction. 
 
5. Results 
 
Figure 3 shows the rate distortion performance of the 
embedded and scalar quantizers (EQ and SQ, respectively) 
averaged over all images in the database. 
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Figure 3. Rate-distortion performance. 

 
Clearly, the embedded coder achieves better compression at 
equal distortion.  This is encouraging in that it shows that 
the embedded coder is taking advantage of the Gabor 
wavelet structure.  EQ achieved a maximum compression 
ratio of roughly 6 to 1 compared to 4 to 1 for SQ.  Still, 
these results do not provide any indication of how the 
incurred distortion affects the face recognition performance.  
Furthermore, it is unclear what the compression ratio 
represents relative to the original images.  The entropy 
calculated using Eq. (10) measures bits per landmark 
coefficient.  In order to compare the rate performance of the 
embedded coder to image coding performance, the entropy 
H was scaled to bits per pixel (bpp): 
 

 
21II

LDN
HH bpp =  (14) 

 



Where, LD is the number of wavelet coefficients, N is 
the number of landmarks, and I1 and I2 are the original 
image dimensions (128 x 128 pixels in this case).  Figure 4 
shows the rate distortion performance of EQ and SQ in 
terms of the bit-rate obtained using Eq. (14). 
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Figure 4. Scaled rate-distortion performance. 

 
We have chosen to compare our proposed compression 

scheme with JPEG2000 (we used the version developed at 
EPFL, Switzerland).  We evaluate the performance of both 
EQ and JPEG2000 in two scenarios.  First, we consider the 
distributed case, where the features are extracted remotely, 
compressed and transmitted.  Second, we consider the 
limited storage case, where features are compressed to 
reduce the storage burden.  In this first case, we obtain 
recognition rates for compressed features compared to an 
uncompressed database.  In the second case, we obtain 
recognition rates for uncompressed features compared to a 
compressed database. 

Figure 5 shows the recognition rate of EQ and 
JPEG2000 vs. bit-rate for the distributed case. Figure 6 
shows the recognition rate of EQ and JPEG2000 vs. bit-rate 
for the storage case. 
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Figure 5. Recognition rates for the distributed case. 
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Figure 6. Recognition rates for the storage case. 

 
As can be seen from Figures 5 and 6, the performance of EQ 
is much better than JPEG2000.  In both the distributed and 
storage cases, EQ achieved a higher face recognition rate at 
an equal bit-rate.  In fact, for the storage case, the 
recognition rates obtained using EQ are notably higher than 
those obtained using JPEG2000.  This is noteworthy in that 
it is not uncommon to store a database of images using 
JPEG2000.  However, our results indicate that it would be 
more advantageous to instead store the compressed features, 
as suggested here. 

It should be noted that the recognition rates shown in 
Figure 5 and 6 are for when the face is matched exactly on 
the first try, i.e. for X=1 in Eq. (13).  We also consider other 
criteria for success, such as matching a face within other 
values of X.  These results are shown in Tables 1 through 4. 

The face recognition rates were evaluated for the three 
lowest bit-rates in (bits per pixel) using Eq. (13).  The 
recognition rates using EQ for the distributed case are 
shown in Table 1 compared to the recognition rates using 
only uncompressed features (with infinite precision Gabor 
jets).  The bit-rates shown in Table 1 were averaged over all 
images in the database.  The recognition rates obtained for 
model graphs extracted from JPEG2000 compressed images 
is shown in Table 2.  The images were compressed at the 
target bit-rates shown in Table 2, which are very close to 
those obtained using EQ. 

 
 

Table 1. Recognition rates using EQ (Distributed)  
 
P(Match≤X) Uncompressed 0.13 

bpp 
0.27 
bpp 

0.41 
bpp 

X=1 93.8% 92.5% 93.8% 94.0% 
X=2 95.0% 92.8% 94.3% 95.3% 
X=5 95.5% 93.5% 95.0% 95.8% 

 



 
Table 2. Recognition rates using JPEG2000 (Distributed) 

 
P(Match≤X) Uncompressed 0.15 

bpp 
0.30 
bpp 

0.40 
bpp 

X=1 93.8% 40.5% 90.0% 91.5% 
X=2 95.0% 44.5% 90.5% 92.3% 
X=5 95.5% 51.8% 91.5% 93.8% 

 
Table 3. Recognition rates using EQ (Storage)  

 
P(Match≤X) Uncompressed 0.13 

bpp 
0.27 
bpp 

0.41 
bpp 

X=1 93.8% 92.5% 94.0% 94.3% 
X=2 95.0% 93.3% 94.3% 95.0% 
X=5 95.5% 94.8% 95.3% 95.5% 

 
 

Table 4. Recognition rates using JPEG2000 (Storage) 
 

P(Match≤X) Uncompressed 0.15 
bpp 

0.30 
bpp 

0.40 
bpp 

X=1 93.8% 27.5% 79.5% 83.5% 
X=2 95.0% 31.3% 80.0% 84.8% 
X=5 95.5% 36.0% 81.8% 86.3% 

 
 
As can be seen from Table 1, the embedded coding for 
feature compression impacts recognition rates minimally.  
Even at the lowest bit-rate (equivalent to a 6 to 1 
compression ratio) there is an average decrease in 
classification performance of only 1%.  At the higher bit-
rates, the recognition rates are equivalent.  The impact of the 
result is most notable when compared to the performance 
using JPEG2000 image compression on the images prior to 
feature extraction (Table 2).  At the lowest bit-rate, the 
recognition rates are very poor.  The classification rates 
increase significantly for higher bit-rates but are still below 
the embedded coder rates.  The dramatic impact on 
recognition when compressing images at low bit-rates can be 
seen in Figure 7, which shows as example an uncompressed 
face image drawn from the database, together with the 
compressed images at the target bit-rates shown in Table 2.  
Clearly, the face in the image compressed at 0.15 bpp is 
unidentifiable. 

Tables 3 and 4 show the results for the storage case.  
Again, in this case, the database is compressed. In the case 
of EQ, the compressed features are stored, whereas in the 
case of JPEG2000, the compressed images are stored and 
features are extracted from the compressed images.  The 
difference in performance between EQ and JPEG2000 is 
more visible in Tables 3 and 4.  There is virtually no 
difference between Tables 1 and 3.  However, there is a 

further drop in JPEG2000 performance from Table 2 to 
Table 4. 

The fact that the EQ compressed feature recognition 
rates on average drop by only 1% compared to the 
uncompressed features, suggests that the structure of the 
features is being adequately preserved and large gains in 
compression can be made without a significant impact in 
classification performance.  Furthermore, it is clear that our 
proposed feature compression scheme can be used with 
equal success for distributed face recognition applications 
and also for storage savings, whereas this is not the case for 
JPEG2000. 

Finally, in comparing the results of Tables 1 through 4, 
the conclusion can be drawn that compressing feature 
vectors as opposed to images is preferable in distributed 
classification applications, as well as for reduced storage 
impact. 

 
 

 

 
 
 

Figure 7. Original (a), 0.40 (b), 0.30 (c), and 0.15 bpp (d). 
 
6. Conclusions and Future Work 
 
We addressed compression for distributed face recognition 
by investigating the impact of feature compression on 
overall face recognition rates. Given that the Bochum/USC 
face recognition system employs Gabor wavelet features, we 
propose using a modified embedded coding scheme.  Our 
evaluation showed that the embedded coder achieves a bit-
rate as low as 0.13 bpp with a minimal impact on 
recognition rates (a 1% decrease on average).  Furthermore, 
our evaluation showed that the classification performance is 
significantly better when compressing feature vectors 
compared to the classification performance obtained from 
features extracted from compressed images.  In addition to 
the distributed face recognition case, we also investigated 
the representation of a database of faces using compressed 

(a) (b) 

(c) (d) 



feature vectors.  Our results showed that significantly higher 
recognition rates could be achieved using our proposed 
compression scheme vs. the state of the art JPEG2000 
compression standard. 

Given these promising results, we believe it will be 
worthwhile to study variable coding rates for the facial 
landmarks. The variable rates could be determined using 
existing knowledge obtained from previous studies of the 
Bochum/USC face recognition system with parametric linear 
subspaces [6]. 
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ABSTRACT

Theobjectiveof this paperis to addresstheissuesinvolved
in deriving the evidencefrom a video sequenceof images
of a facewhen they arematchedwith the static imageof
thefaceavailableasa reference.This problemarisesin the
context of faceidentificationandverification.Thetestdata
consistsof a sequenceof faceimagesof a naturallymov-
ing person,capturedfrom oneor morecameras.An auto-
matic facerecognitionsysteminvolvesface/headtracking,
normalizingthefaceregion,representationandmatchingof
testandreferenceimagesto derive evidence,andcombin-
ing the evidencefrom multiple framesof the faceimages.
Theheadcontourpointsof themoving personareextracted
usingthemotion information. The faceregion is extracted
andnormalizedto accountfor scalingandorientationto de-
rive thenormalizedfaceimage.Thenormalizedfaceimage
or someselectedportionof thefaceimageis matchedwith
the referenceimageto derive partial evidence.The partial
evidenceobtainedfrom eachframein thevideosequenceis
combinedto decidetheidentity of theperson.

1. INTRODUCTION

Automaticfaceidentificationor verificationby machineap-
pearsto be difficult, while it is doneeffortlesslyby a hu-
manbeing. The main reasonfor this difficulty is that it is
difficult to articulatethe mechanismhumansuse. For ma-
chinerecognitionof faces,simplifiedassumptionsaremade
in thefeatureextractionandmatching,andthefaceimages
arecapturedunderrestrictedandseverely constraineden-
vironment. For example,mostfacerecognitionstudiesas-
sumethe availability of the croppedup faceimageso that
difficultiesdueto variationin scaleandorientationaremin-
imized [1]. Likewise, except for a few carefully designed
databasesthefaceimagedatais collectedmostlyfor frontal
pose,so that effectsof posevariationcanbe ignored. Ef-
fectsof illumination,shadowsandotherlighting conditions
arealsoreducedby collectingthedataundercontrolleden-
vironment.

This paperaddressthe issuesinvolved in deriving the
evidencefrom a video sequenceof imagesof a facewhen
they arematchedwith thestaticimageof thefaceavailable
asa reference.The testdataconsistsof faceimagesof a
naturallymoving person,capturedfrom oneor morecam-
eras. It is possiblethat noneof the capturedimagesmay
containa faceimagesuitablefor matchingdirectlywith the
referenceimage.However, theremaybesomeimagesin the
videotestsequencewhich maygive a goodmatchwith the
referenceimage,providedproperrepresentationandmatch-
ing methodsare available. Combiningthe evidencefrom
theseframesmay leadto a betterdecisionfor recognizing
the personin the video. Sincethe illumination conditions
during testareusuallydifferentfrom thosewith the refer-
encecollection,matchingof the imagesmay not result in
high confidencevalueseven for the authenticcase.More-
over, the changesdueto expression,poseandothervaria-
tions make the problemof matchinga test imagewith the
referencechallenging. It may be necessaryto derive evi-
denceby matchingselectedpartsof the referencefaceim-
agewith thecorrespondingpartsin thetestimage,andthen
combinethe partial evidenceto derive the evidenceat the
framelevel matching.

Matchingtwo faceimagesrequirerepresentationof the
image. For croppedup images,eigenvectorsare derived,
and the first few componentsof an imageprojectedonto
theseeigenvectorsareusedto representtheimagefor match-
ing [2]. Severalvariationsof the eigenvectorapproachare
availablein the literature[3],[4]. Othermatchingmethods
basedon elasticgraphrepresentationandstatisticaldistri-
bution of the facial featureshave alsobeeninvestigatedin
theliteraturefor facerecognition.[5]-[7].

The key elementsin the facerecognitionproblemare
representationandmatchingof faceimages.Wediscussthe
issuesinvolvedin thecontext of recognizingor verifying a
given still faceimagein a sequenceof imagesof the face
collectedby a camera.Characteristicsof thereferenceand
testimages,andtheissuesin developinga facerecognition
systemarediscussedin the next section. Subsequentsec-
tionsdiscusseachof theseissuesin moredetail. In Section



3, we considerthe issueof trackingandnormalizationof
the faceregion from a video. The effectsof matchingand
deriving the partial evidencesare discussedin Section4.
Thepartialevidenceobtainedfrom eachframein thevideo
sequencecanbecombinedusinganAutoassociativeneural
network (AANN) model,andit is discussedin Section5.

2. CHARACTERISTICS OF REFERENCE AND
TEST DATA

Thereferencedataconsistsof onedigital imageof theface
for eachperson. The referencefaceimageof a personis
generallyof highqualitywith croppedup(manuallyif needed)
region of theface.Thetestdataconsistof videosequences
of a single personwalking normally in a specifiedzone
whereit may be possibleto collect video sequenceswith
morethanonevideocamera,coveringdifferentviews/angles,
if necessary. The test subjectmay not be cooperative, in
termsof giving the specificviews to the camera,andalso
the subjectmay have differentfacial appearanceincluding
make up. The illumination alsomay be varying. Someof
the framesin the video may not have any portion of the
frontal face,andmaynot have eventhe facein thefield of
thecamera.In suchascenario,theobjective is to determine
whetherthepersonin view is sameasthepersonin oneof
thereferenceimages(identification),or is sameastheper-
sonin a specificreferenceimagewhoseidentitywewantto
verify from thevideo(verification). It is obvious thatonly
a few of theframesin thevideosequencemayhave a view
approximatelycorrespondingto thefrontal view of theface
of the person. It is thoseframesthat are likely to provide
high confidencevaluewith the referencefaceimage,pro-
videdsuitablerepresentationandmatchingareavailable.

Thefollowingstagesareinvolvedin developinganalgo-
rithm for matchingthevideotestsequencewith a reference
image:

(a) Facetrackingandnormalization,

(b) Matchingatestandreferencefaceimageandderiving
theevidence,

(c) Combiningtheevidence.

3. FACE TRACKING AND NORMALIZATION

Computervision basedapplicationssuchas facerecogni-
tion requiresautomaticdetectionandtrackingof humanhead
or facein an imagesequence.However, many applications
in theliteratureassumethatthefacesin theimagesequence
havebeenlocalized.

Methodshasbeenproposedin the literature for head
trackingbasedon intensitygradientsandcolor histograms
[8], statisticalmodelof color andshape[9], 3D modeling

[10], temporalinformation [11], GaussianMixture Model
[12], Kalmanfilter [13]. The methodproposedin this pa-
perusesthemotioninformationto extracttheheadcontour
points.

3.1. Extracting head contour points

The headcontourpointsareextractedfrom the gray level
interframedifferenceimage. TheRGB imageis converted
to graylevel image(

�
), andtheinterframedifferenceimage

( � ) is obtainedby�������	�
���
��� � � �����	�����
��� � �����	�
����������� (1)��� ��� �!� �"� �#�%$&���(')�
where � is the framenumberin thevideo, � and $ arethe
width andheightof theimage,respectively.

Thethresholdeddifferenceimage* is obtainedby*+�����	�
���
�,� - �
�.�0/"�������1�
���
�32�4� �65879$;:�<8�=�0>�: (2)

where 4 is thethreshold,which is thesmallestintegersuch
that *+�����1�
���
�?� � , for all � and � , whenever thereis no
moving region in thecameraview.

Thethresholdeddifferenceimageis scannedfrom topto
bottomto find out anapproximatetop pixel ��@BA;�C@BDE� of the
moving region. The headcontourpointsareextractedby
scanningthe thresholdeddifferenceimagefrom the pixel��@�A
�C@�DF� . Thisprocessis repeatedfor every two consecutive
framesin orderto trackthefaceregionin thevideo.Fig.1(a)
showsthethresholdeddifferenceimageasgivenby theEq.2
andFig.1(b)shows theextractedheadcontourpoints.

(a)Differenceimage (b) Contourpoints

Fig. 1. Head contour points.

3.2. Fitting an ellipse

The methodproposedin [14] is usedto fit an ellipse for
theextractedheadcontourpoints. In this methoda generic
conic is representedas the zero set of an implicit second
orderpolynomialasgivenin Eq.3. If F is a functionon an
opensetU, thenthezerosetof F is theset GH�JI8K?LNMPOQ ��KR�S� �UT .



Q ��VW�9X&�Y�ZVUX[�]\_^a`cb d�^aefb @geU`Yb h�^�b :�eibN/ (3)

whereV = [a b c d e f] and X =[ ^ ` ^;e=e ` ^ief�Bjlk . Q ��VW�9XWmn�S�h
o is calledthe”algebraicdistance”of apoint XWm to theconicQ ��Vp�CXq�S� � .
Oneway of fitting a conic is to minimize thealgebraic

distanceover the setof N datapoints in the leastsquares
senseasgivenin Eq.4.rV#�Z\_<tscu"vxwy{z}|~ ox��� Q �nVp�9X m � `a� (4)

The methodproposedin [14] minimize the algebraic
distancegivenin Eq.4subjectto theconstraintd ` ���_\R@�� � .
Themethodgivesthecenter, width, heightandangleof the
ellipsefor thegivenN contourpointsof thehead.Thewidth��:8�,� andheight �n:E�
� of theellipsefor theheadregionsatis-
fiestheconstraintgivenin Eq.5.�
� ���c: � � : � � �
� �=�c: � (5)

TheBresenham’sellipsegenerationalgorithmis usedto
generatetheellipseusingtheestimatedcenter, width,height
andanglevalues[15]. The generatedellipseandthe face
regionareasshown in Fig.2.

(a)Generatedellipse (b) Faceregion

Fig. 2. Fitting an ellipse.

The proposedmethodrequiresinitial headmovement.
If thereis no motionin thesuccessive frames,thenthepre-
viousellipsecoordinatesareretained.Experimentalresults
show that this methodis invariant to scaling,illumination
andfacial expressions.It is alsoinvariant to tilt, yaw and
poseof thefaceor headto someextent.

3.3. Face normalization

Theelliptic faceregion obtainedfrom thevideo is normal-
izedto accountfor scalingandorientationto derivethenor-
malizedfaceimageasshown in Fig.3.Thewidth andheight

of theellipseis usedto normalizetheelliptic faceregion to
a fixedsize,andtheangleis usedto normalizetheorienta-
tion. Figs.3(a)and3(b)show theunnormalizedandnormal-
izedfaceimages,respectively. Fig.4showstheresultof face
trackingfor two subjectsandthecorrespondingnormalized
faceimagesareshown in Fig.5.

(a)Unnormalizedface (b) Normalizedface

Fig. 3. Face normalization.

Fig. 4. Facetracking

Fig. 5. Normalizedfaceimages

An effective methodof comparinga testandreference
imageis by usingcorrelationfilters[16]. An importantmet-
ric in theuseof correlationfilters is thepeak-to-sidelobera-
tio (PSR)which quantifiesthesharpnessof thecorrelation
peak. For well-designedcorrelationfilters, PSRshouldbe



largefor authenticsandsmall for impostors.UsingPSRof
thecorrelationoutputonecanderive theevidencefor a se-
quenceof framesof testimagesandareferencefaceimage.
ThePSRis definedas�!�,� ���������&�C�E� (6)

wherep is the peakvaluein the correlationoutput, � and� are the meanand the standarddeviation in a side-lobe
region, excluding a ����� maskcenteredat the peak. The
sizeof theside-loberegionis typically � � �!� � for a �F�=�f�F�
faceimage.Thesewindow sizesareempiricallyderivedand
otherchoicesmaybebetterfor othercases.ThePSRplots
for a genuinetestsequence(subject1) anda few impostors
testsequencesareshown in Fig.6. Thethick line shows the
PSRvaluesfor thegenuinetestsequence.
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Fig. 6. PSR plot for genuine (subject 1) and impostor
test sequence

But despitethe exploitationof the behavior of the cor-
relation filtering, it may not be possiblemost of the time
to obtain goodmatchbetweenthe test and referenceface
images,dueto pose,tilt, illumination differencesandpar-
tial visibility of the facein a video frame. Fig.7 shows the
PSRplotsfor a genuinetestsequence(subject2) anda few
impostorstestsequences.In this casemostof the time the
genuinePSRvaluesarelower whencomparedto the plots
for the impostors. In suchcasesit is worth exploiting the
evidenceobtainedfrom selectedportionsof the reference
imageasdiscussedin thenext section.

4. MATCHING A TEST AND REFERENCE FACE
IMAGE

If a small portion of the faceimageis usedfor correlation
matching,it is likely thattherandomvariationsin thepixel

0 50 100 150 200 250 300
0

5

10

15

20

25

30
1

Frame #

P
S

R

Fig. 7. PSR plot for genuine (subject 2) and impostors
test sequence

valuesmay result in a poor matcheven for the authentic
case.Thereforeit is betterto representonly thesignificant
partof thefaceimage,by reducingvariationsdueto noise.
For this we proposea representationof the faceimageus-
ing 1-D eigenvectors. Thesevectorsarederived from the
referenceimageusing the columnsof the imagepixels as
1-D vectors.Fig.8shows theimageobtainedusingthefirst
15 eigenvectorsderived from the correspondingreference
image.Thereconstructedimagereducesthevariationsdue
to noise,althoughsomeblurring is also present. The se-
lectedportionsof thereconstructedreferenceimagesuchas
eyes,nose-mouthandmouthpartsasshown in Fig.9canbe
matchedwith the testimageto derive partialevidence.The
testimagealsois representedin termsof thefirst 15 eigen-
vectorsof thereferenceimage.It maybepossibleto select
the portionsof the referenceimagewhich neednot corre-
spondto any specificfeatureslike eyes, mouth, noseetc.
For example,onecanusesomecolumnsor rowsof theim-
agepixelsfor deriving thepartialevidence.

(a)Faceimage (b) Reconstructedfaceimage

Fig. 8. 1-D eigenvector representation of face image.

Figs.10and11 show the evidenceobtainedfrom eyes,
nose-mouthportionof the faceimagefor thetestsubject1



and2, respectively. ThegenuinetestsequencePSRvalues
arerepresentedby squareandtheimpostorsPSRvaluesare
representedbyplus.Figs.12and13show theevidencewhen
the threefeatures,eyes,nose-mouthandmouth(asshown
in Fig.9)areused.

Fig. 9. Eyes, nose-mouth and mouth portion of the
reconstructed reference image

Fig. 10. Partial evidence for test subject 1

5. COMBINING THE EVIDENCE

Theevidencesobtainedfromtheselectedportionsfromeach
frame in the video test sequencecan be combinedusing
anautoassociative neuralnetwork (AANN) model. AANN
modelis a feedforwardneuralnetwork performinganiden-
tity mappingof theinputspace.It canbeusedto capturethe
distribution of the input data[17],[18]. Thedistribution of
theimpostorevidencefor eachreferencesubjectis captured
usingafive layerAANN model.Fig.14shows thestructure
of the AANN modelusedin our study. It canbe denoted
as3L 6N 2N 6N 3L, whereL denotesa linear unit, andN
denotesa nonlinearunit. The integer value indicatesthe
numberof units usedin that layer. The secondandfourth
layersof the network have moreunits thanthe input layer.
The third layer hasfewer units than the first or fifth. The

Fig. 11. Partial evidence for test subject 2

activationfunctionsat thesecond,third andfourth layerare
nonlinear. Thenonlinearunitsuse70\_�&$q�n>8� asthetheactiva-
tion function,where> is theactivationvalueof theunit. The
standardbackpropagationlearningalgorithmis usedto ad-
just theweightsof thenetwork to minimizethemeansquare
errorfor eachfeaturevector.

Theevidencesarederivedfrom eachframein thevideo
testsequencewith respectto a referencesubject.Theseev-
idencesare given as input to the model correspondingto
the referencesubject. The output of the model is com-
paredwith the input to computethe normalizedsquared
error. This squarederror gives an indication of the con-
fidencewith which the input framebelongsto the impos-
tor class. The smallerthe error, the higher the confidence
with which we may label the input to belongto the impos-
tor class.Therefore,it seemslogical to assumethat larger
error givesan indicationof the confidencewith which the
input canbeassignedto theauthenticclass.Although it is
desirableto deriveasuitableconfidencemeasurefrom these
errorvalues,in thispaperwehaveusedtheerrorvalueitself
as the confidencevaluefor the authenticclass. The accu-
mulatederroris calculatedfrom theerrorobtainedfor each
framein the video sequence.This processis repeatedfor
all thereferencesubjects.The largestaccumulatederror is
usedto decidetheidentity of thetestsubject.Theresultof
the accumulatederror for the testsubject1 with respectto
its modelis given in Fig.15. The thick line correspondsto
the accumulatederrorwith respectto the referencesubject
1. Fig. 16 shows the correspondingplot for the subject2.
As canbe seenfrom the plot, asmore framesareusedto
accumulatetheerrorfor themodelof thesubject,it will ex-
ceedthe error from all othermodelsfor the genuinecase.
Thusthe evidencecollectedfrom selectedportionscanbe



Fig. 12. Partial evidence for test subject 1

combinedandaccumulatedto derivea betterdecisionfrom
thevideo testsequence.Note that the evidencefor theau-
thenticis significantlybetterin theseplotscomparedto the
evidenceobtainedby direct correlationmatchingshown in
Figs.6and7. In particular, notethattheevidencefor subject
2 hassignificantlyimprovedascomparedto theevidencein
Fig.7. It may be possibleto enhancethe evidencefurther
by selectingthe subsetof similar facesfrom the plots and
usingotherclues,suchasotherpartsof thefaceimageand
theknowledgeof thevideosequence.

6. CONCLUSION

This paperproposeda methodfor extracting the facere-
gion usingthemotion information. Theextractedfaceim-
ageis normalizedwith respectto scaleandorientation.The
selectedportion of the normalizedfaceimageis matched
with thereferenceimageto derivethepartialevidence.The
partialevidencesobtainedfrom eachframein thevideose-
quencearecombinedusingan autoassociative neuralnet-
work model. Theproposedmethodcanbeusedeffectively
for matchingavideotestsequencewith astill referenceim-
age.
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Abstract
This study examines issues involved in the comparison
and combination of face recognition using visible and
infra-red images. This is the only study that we know
of to focus on experiments involving time lapse between
gallery and probe image acquisitions. Most practical
applications of face recognition would seem to involve
time-lapse scenarios. We find that in a time lapse scenario,
(1) PCA-based recognition using visible images may
outperform PCA-based recognition using infra-red images,
(2) the combination of PCA-based recognition using visible
and infra-red imagery substantially outperforms either
one individually, and (3) the combination of PCA-based
recognition using visible and infra-red also outperforms a
current commercial state-of-the-art algorithm operating on
visible images. For example, in one particular experiment,
PCA on visible images gave 75% rank-one recognition,
PCA on IR gave 74%, FaceIt on visible gave 86%, and
combined PCA IR and visible gave 91%.

1 Introduction
Face recognition in the thermal domain has received rel-
atively little attention in the literature in comparison with
recognition in visible imagery. This is mainly because of
the lack of widely available IR image databases. Previous
work in this area shows that well-known face recognition
techniques, for example PCA, can be successfully applied
to IR images, where they perform as well on IR as on visible
imagery [1] or even better on IR than on visible imagery [2]
[3]. However, in all of these studies [1] [2] [3], the gallery
and probe images of a subject were acquired in the same
session, on the same day. In our current study, we also ex-
amine performance when there is substantial time elapsed
between gallery and probe image acquisition.

Socolinsky and Selinger [2] [3] used 91 subjects, and the
gallery and probe images were acquired within a very short
period of time. We will refer to such experiments as same
session recognition. Experiments in which the probe and
gallery images are acquired on different days or weeks will
be called time-lapse recognition. Socolinsky and Selinger

used a sensor capable of imaging both modalities (visible
and IR) simultaneously through a common aperture. This
enabled them to register the face with reliable visible im-
ages instead of IR images. They emphasized the IR sensor
calibration and their training set is the same as the gallery
set. In their experiments, several face recognition algo-
rithms were tested and the performance using IR appears
to be superior to that using visible imagery.

Wilder et al. [1] used 101 subjects and the images
were acquired without time lapse. They controlled only
for expression change. Several recognition algorithms were
tested and they concluded that the performance is not sig-
nificantly better for one modality than for another.

Additional work on IR face recognition has been done by
[4] and [5][6]. In [4], an image data set acquired by Socolin-
sky et al. was used to study multi-modal IR and visible face
recognition using the Identix FaceIt algorithm [7]. In [5][6],
IR face recognition was explored with a smaller dataset, but
combined IR and visible images for face recognition was
not addressed.

This study examines more varied conditions and uses
a relatively larger database, in both the number of images
and the number of subjects, compared with the databases
used by Wilder et al. and Socolinsky et al. [1] [2] [3].
We consider the performance of the PCA algorithm in
IR, including the impact of illumination change, facial
expression change and the short term (minutes) and longer
term (weeks) change in face appearance. This current work
is an extension of previous work [8] to more carefully
consider the relative effects of time lapse between gallery
and probe images on the performance of infrared versus
visible imagery, and also to investigate the accuracy of
eye center location as a possible cause for the inferior
performance of infrared relative to visible-light images in a
time-lapse scenario.

2 Data Collection
Most of the data used to obtain the results in this paper was
acquired at University of Notre Dame during 2002, where
IR images from 240 distinct subjects were acquired. Each



image acquisition session consists of four views with differ-
ent lighting and facial expressions. Image acquisitions were
held weekly for each subject and most subjects participated
multiple times. All subjects completed an IRB-approved
consent form for each acquisition session. IR images were
acquired with a Merlin 1 Uncooled long-wavelength IR
camera, which provides a real-time, 60Hz, 12 bit digital
data stream, has a resolution of 320 � 240 pixels and is sensi-
tive in the 7.0-14.0 micron range. Visible-light images were
taken by a Canon Powershot G2 digital camera with a reso-
lution of 1200 � 1600 and 8 bit output. Three Smith-Victor
A120 lights with Sylvania Photo-ECA bulbs provided stu-
dio lighting. The lights were located approximately eight
feet in front of the subject. One was approximately four
feet to the left, one was centrally located and one was lo-
cated four feet to the right. All three lights were trained on
the subject’s face. The side lights and central light are about
6 feet and 7 feet high, respectively. One lighting configura-
tion had the central light turned off and the others on. This
will be referred to as “FERET style lighting” or “LF”. The
other configuration has all three lights on; this will be called
“mugshot lighting” or “LM”. For each subject and illumina-
tion condition, two images were taken: one is with neutral
expression, which will be called “FA”, and the other image
is with a smiling expression, which will be called “FB”. For
all of these images the subject stood in front of a standard
gray background. Since glass and plastic lenses are opaque
in IR, we asked all subjects to remove eyeglasses during ac-
quisition. According to the lighting and expression, there
are four categories: (a) FA expression under LM lighting
(FA

�
LM), (b) FB expression under LM lighting (FB

�
LM),

(c) FA expression under LF lighting (FA
�
LF) and (d) FB

expression under LF lighting (FB
�
LF). Figure 1 shows one

subject in one session under these four conditions.
To create a larger training set for our experiments, we

also used 81 IR and visible-light images of 81 distinct
subjects, acquired by Equinox Corporation [9].

3 Preprocessing
We located faces manually by clicking on the centers of
each eye. The features on a human face are much more
vague in IR than in visible imagery and thus the registration
in the following normalization step might not be as reliable
in IR as in the visible images. Notice that Socolinsky and
Selinger [2] [3] used a sensor capable of capturing simulta-
neous registered visible and IR, which is of particular sig-
nificance for their comparison of visible and IR. The fact
that they get eye location from visible imagery and use it in
IR may make their IR performance better than if they used
IR alone for eye location.

1Manufacturer names are given only to specify the experimental details
more precisely, and not to imply any endorsement of a particular manufac-
turer’s equipment.

(a)FA
�
LM (b) FB

�
LM

(a)FA
�
LM (b) FB

�
LM

Figure 1: Face images in visible and IR under different
lighting and facial expression conditions.

A PCA subspace is derived separately for visible and IR
images of the same 240 individuals. These individuals are
not in the gallery or probe sets. We followed the convention
in the CSU software [10] and used 130 x 150 resolution
versions of the original visible and IR images in creating
the face space. Recognition is performed by projecting a
probe image into the face space and finding the nearest
gallery image. The ”MahCosine” metric is used to compute
the distance between points in the face space [10].

4 Same-session Recognition
We used 82 distinct subjects and four images for each sub-
ject acquired within 1 minute with different illumination
and facial expressions. For each valid pair of gallery and
probe sets, we computed the rank 1 correct match percent-
age and the rank at which all the probes were correctly
matched. They are reported in Table 1. Each entry in the
leftmost column corresponds to a gallery set, and each en-
try in the top row corresponds to a probe set. The subspace
for Table 1 was derived by using 240 images of 240 distinct
subjects.

Table 1 shows that there is no consistent difference
between the performance of visible and IR. IR is better in
six instances, visible is better in four instances and they
are the same in two instances. The overall performance for
same session recognition is high for both IR and visible,
and so it is possible that some “ceiling effect” could make
it difficult to observe any true difference that might exist.

5 Time-lapse Recognition
Time-lapse recognition experiments use the images ac-
quired in ten acquisition sessions of Spring 2002. In the
ten acquisition sessions, there were 64, 68, 64, 57, 49, 56,



Table 1: The percentage of correctly matched probes at rank
1 and the smallest rank at which all probes are correctly
matched for same session recognition in Visible(bottom)
and IR(top)

FA
�
LF FA

�
LM FB

�
LF FB

�
LM

FA
�
LF 0.98 (2) 0.99 (3) 0.99 (2)

0.98 (10) 0.98 (10) 0.94 (4)
FA

�
LM 0.99 (2) 0.94 (28) 0.95 (19)

0.95 (6) 1.00 (1) 1.00 (1)
FB

�
LF 0.96 (4) 0.95 (39) 1.00 (1)

0.95 (6) 1.00 (1) 1.00 (1)
FB

�
LM 0.98 (2) 0.96 (19) 1.00 (1)

0.89 (17) 0.98 (3) 0.98 (3)

54, 54, 60, and 44 subjects. Figure 2 shows the visible and
IR images of one subject across 10 different weeks, which
suggests that there may be more apparent variability, on av-
erage, in the IR images of a person than in the visible im-
ages. In particular, the bridge and sides of the nose appear
somewhat different in different IR images. [11] confirmed
that there is variability in IR images due to startling, gum-
chewing and walking exercise, etc.

The scenario for this recognition is a typical enroll-once
identification setup. There are 16 experiments based on the
exhaustive combinations of gallery and probe sets given the
images of the first session under a specific lighting and ex-
pression condition as the gallery and the images of all the
later sessions under a specific lighting and expression con-
dition as the probe. That is, each gallery set has 64 images
from session 1; each probe set has 431 images from ses-
sions 2-10. The rank-1 correct match percentages are given
in Table 2. For each subject in one experiment, there is one
enrolled gallery image and up to nine probe images, each
acquired in a distinct later session. The same face space is
used as in the ”same-session” experiments.

Table 2: Rank 1 correct match percentage for time-lapse
recognition in visible (bottom) and IR (top). Row indicates
gallery and column indicates probe.

FA
�
LM FA

�
LF FB

�
LM FB

�
LF

FA
�
LM 0.83 (41) 0.84 (27) 0.77 (48) 0.75 (43)

0.91 (39) 0.93 (54) 0.73 (56) 0.71(56)
FA

�
LF 0.81 (38) 0.82 (46) 0.74 (49) 0.73 (43)

0.92 (31) 0.92 (28) 0.75 (32) 0.73 (44)
FB

�
LM 0.77 (45) 0.80 (49) 0.79 (39) 0.78 (51)

0.77 (33) 0.81 (44) 0.86 (48) 0.85 (47)
FB

�
LF 0.73 (58) 0.76 (58) 0.77 (36) 0.76 (41)

0.75 (41) 0.79 (40) 0.90 (27) 0.90 (47)

For IR, Table 2 illustrates a striking difference in perfor-
mance in contrast to same-session recognition results shown

(a) Week 1 (b) Week 2

(a) Week 3 (b) Week 4

(a) Week 5 (b) Week 6

(a) Week 7 (b) Week 8

(a) Week 9 (b) Week 10

Figure 2: Normalized FA
�
LM face images of one subject in

visible and IR across 10 weeks.

in Table 1: the rank 1 correct match rate drops by 15%
to 20%. The most obvious reason is that the elapsed time
caused significant changes among thermal patterns of the
same subject. In addition, it is possible that unreliable reg-
istration of the eye centers could have degraded the perfor-
mance. Table 2 also shows that the performance degrades
for visible imagery compared with that in same-session
recognition. Visible imagery outperforms IR in 12 of the
16 cases, with IR and visible the same in another two.

For one time-lapse recognition with FA
�
LF images

in the first session as the gallery set and FA
�
LF images

in the second to the tenth sessions as the probe set, we
illustrate the match and non-match distance distributions
in Figure 3 and Figure 4. The score (distance) ranges
from �

��� �
to

��� �
since we use the ”MahCosine” distance

metric in CSU software. The match score histogram is
the distribution of distances between the probe images



and their correct gallery matches. The non-match score
histogram is the distribution of distances between the probe
images and all their false gallery matches. Essentially,
the match score distribution represents the within-class
difference, while the non-match score distribution repre-
sents the between-class difference. Hence, for an ideal
face recognition, the match scores should be as small as
possible and the non-match scores should be much larger
than the match scores and they shouldn’t overlap. In this
experiment, there is significant overlapping for both IR
and visible-light, which accounts for the incorrect matches.
The match score distribution for visible is more at the
smaller distance area than that for IR, i.e., the within-class
difference for visible is smaller than that for IR. The
non-match score distributions for these two modalities
are about the same, i.e., the between class differences are
similar. Thus, visible-light imagery performs better than IR.
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Figure 3: Match and non-match score distributions for one
time-lapse recognition in IR

6 Same-session versus Time-lapse
This study used exactly one probe for each gallery im-
age. The gallery sets (FA

�
LF) are the same in same-session

recognition and time-lapse recognition. The probe set for
same-session recognition is made up of images (FA

�
LM)

acquired at about the same time (less than one minute dif-
ference) as the probe. The probe set for time-lapse recog-
nition is made up of images (FA

�
LM) acquired in different

weeks from when the gallery images were acquired.
We conducted 9 experiments of different time delays for

time-lapse recognition and for each there is a corresponding
same-session recognition experiment for comparison.

Figure 5 shows the results for visible and IR. For both
modalities, the same session recognition outperforms
time-lapse recognition significantly. Note that for same-
session recognition there is no clear advantage between
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Figure 4: Match and non-match score distributions for one
time-lapse recognition in visible-light

IR and visible. However, in time-lapse recognition visible
generally outperforms IR.

Figure 5: Rank-1 correct match rate for same-session recog-
nition and time-lapse recognition in IR and Visible

7 Sensitivity to Eye Center Location
We manually located eye centers in visible and IR images
for normalization. It is possible that error in eye center lo-
cation could affect the recognition performance differently
in visible and IR, especially considering that the IR imagery
is more vague than visible imagery and the original resolu-
tion for IR is 312 x 219 versus 1600x1200 for visible image.
This is potentially an important issue when comparing the
performance of IR and visible imagery.

We did a random replacement of the current manually-
marked eye centers by another point in a 3x3 (pixel) win-
dow, which is centered at the manually-marked position.
This is very close to the possible human error in reality. The
time-lapse recognition results by using images normalized



with the randomly perturbed eye centers are shown in Table
3.

Compared to Table 2, IR is very sensitive to eye center
locations. The correct recognition rates drop significantly
compared to the performance where the manually located
eye centers are used. For visible imagery in time-lapse
recognition, the performance decrease is at most slight.
This suggests that marking eye centers in IR might be
harder to do accurately than marking eye centers in visible,
and that this might have affected IR accuracy relative to
visible accuracy in our experiments.

Table 3: Rank 1 correct match percentage for time-lapse
recognition of combining IR and visible. Top: rank based
strategy; Bottom: score based strategy. Row indicates
gallery and column indicates probe, eye center is randomly
replaced by a point in a 3x3 window that is centered at the
manually-located eye center

FA
�
LM FA

�
LF FB

�
LM FB

�
LF

FA
�
LM 0.67 (52) 0.65 (44) 0.62 (58) 0.57 (59)

0.90 (46) 0.91 (54) 0.71 (55) 0.71 (54)
FA

�
LF 0.68 (40) 0.69 (56) 0.60 (55) 0.62 (61)

0.91 (50) 0.92 (27) 0.74 (33) 0.72 (44)
FB

�
LM 0.64 (61) 0.67 (60) 0.65 (62) 0.69 (57)

0.75 (56) 0.81 (45) 0.86 (49) 0.84 (50)
FB

�
LF 0.63 (57) 0.62 (57) 0.63 (62) 0.65 (55)

0.74 (51) 0.78 (40) 0.88 (33) 0.89 (47)

8 Combination of Visible and IR
Table 2 shows that visible imagery is better than IR in time-
lapsed recognition, but the sets of mismatched probes of
the two classifiers do not necessarily overlap. This suggests
that these two modalities potentially offer complementary
information about the probe to be identified, which could
improve the performance. Since these classifiers yield de-
cision rankings as results, we first consider fusion on the
decision level. Kittler et al. [12] conclude that the com-
bination rule developed under the most restrictive assump-
tions, the sum rule, outperformed other classifier combina-
tion schemes and so we have used the sum rule for combi-
nation in our experiments.

We first used an unweighted rank based strategy for com-
bination.This approach is to compute the sum of the rank
for every gallery image. The gallery image with the lowest
rank sum will be the first choice of the combination clas-
sifier. However, on average, for each probe there are 10-20
rank sum ties (64 gallery images). Since the visible imagery
is more reliable based on our experiments in the context of
time-lapse, we use the rank of the visible imagery to break
the tie. The top of each item in Table 4 shows the com-
bination results using this approach. Only in 2 out of 16

instances is the visible alone slightly better than the com-
bination. The combination classifier outperforms IR and
visible in all the other cases.

For each individual classifier (IR or visible), the rank at
which all probes are correctly identified is far before rank 64
(64 gallery images). Hence, the first several ranks are more
useful than the later ranks. We logarithmically transformed
the ranks before combination to put strong emphasis on the
first ranks and have the later ranks have a quickly decreas-
ing influence. The middle of each item in Table 4 shows
the results of this approach. The combiner outperforms vis-
ible and IR in all the sub-experiments and is better than the
combiner without rank transformation.

Second, we implemented a score based strategy. We
use the distance between the gallery and probe in the face
space as the score, which provides the combiner with some
additional information that is not available in the rank
based method. It is necessary to transform the distances to
make them comparable since we used two different face
spaces for IR and visible. We used linear transformation,
which maps a score � in a range of

������� ���
	���
����
����� to a
target range of

��������� � 
 � � � � . Then we compute the sum of
the transformed distances for each gallery and the one with
the smallest sum of distances will be the first match. The
bottom entry of each item in Table 4 shows the results. The
score based strategy outperforms the rank based strategy
and improves the performance significantly compared with
either of the individual classifiers (IR and visible). This
shows that it is desirable to have knowledge about the
distribution of the distances and the discrimination ability
based on the distance for each individual classifier (IR or
visible). This allows us to change the distribution of the
scores meaningfully by transforming the distances before
combination. This combination strategy is similar to that
used by Chang et al. [13] in a study of 2D and 3D face
recognition.

9 Comparison of PCA and FaceIt
FaceIt is a commercial face-recognition algorithm that per-
formed well in the 2002 Face Recognition Vendor Test[14].
We use FaceIt results to illustrate the importance of com-
bined IR-plus-visible face recognition.

Figure 6 shows the CMC curves for a time-lapse
recognition with FA

�
LF images in the first session as the

gallery set and FB
�
LM images in the second to the tenth

sessions as the probe set by FaceIt and PCA. Note that
the fusion method is score-based as discussed above. We
notice that FaceIt outperforms PCA in visible imagery and
IR individually. However, the fusion of IR and visible
can easily outperforms either modality alone by PCA or
FaceIt. We should take into account the training set PCA
used when making this comparison. Given an extremely
large unbiased training set which is not often practical



Table 4: Rank 1 correct match percentage for time-lapse
recognition of combining IR and visible. Top: simple rank
based strategy; Middle: rank based strategy with rank trans-
formation; Bottom: score based strategy. Row indicates
gallery and column indicates probe.

FA
�
LM FA

�
LF FB

�
LM FB

�
LF

FA
�
LM 0.91 (25) 0.95 (23) 0.83 (45) 0.81 (44)

0.93 (26) 0.96 (24) 0.85 (47) 0.85 (47)
0.95 (24) 0.97 (21) 0.90 (46) 0.90 (45)

FA
�
LF 0.91 (18) 0.93 (19) 0.85 (41) 0.83 (23)

0.92 (24) 0.94 (27) 0.87 (44) 0.84 (35)
0.95 (20) 0.97 (20) 0.91 (39) 0.90 (24)

FB
�
LM 0.87 (20) 0.92 (34) 0.85 (23) 0.86 (32)

0.88 (22) 0.92 (40) 0.87 (32) 0.88 (32)
0.91 (27) 0.94 (32) 0.92 (25) 0.92 (31)

FB
�
LF 0.85 (43) 0.87 (40) 0.88 (12) 0.90 (36)

0.87 (33) 0.88 (37) 0.90 (17) 0.91 (38)
0.87 (40) 0.91 (44) 0.93 (20) 0.95 (37)

or efficient, PCA might eventually outperform FaceIt in
visible-light imagery.
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Figure 6: CMC curves of time-lapse recognition using PCA
and FaceIt in visible-light and IR

10 Eigenvector Tuning
For one time-lapse recognition with FA

�
LF images in the

first session as the gallery set and FA
�
LF images in the sec-

ond to the tenth sessions as the probe set, we examined the
eigenvector selection results for IR and visible images.

For IR, we find that dropping any of the first 10 eigenvec-
tors will degrade the performance. A possible reason is that
in IR face images, there is no significant unrelevant variance
like the lighting in visible images and the first eigenvectors
can well describe the true variance between images. When
retaining 94% of eigenvectors by removing the last eigen-

vectors, the performance reaches maximum performance of
82.8%, compared with 81.2% when all eigenvectors are re-
tained. This shows that these last eigenvectors encode noise
and are inefficient.

For visible-light, dropping the first 2 eigenvectors make
the performance grow to a peak performance of 92.6%
from 91.4%. It is possible that some significant unrelevant
variance, like lighting, is encoded in these eigenvectors.
With these two eigenvectors dropped, We find that retain-
ing about 80% of the eigenvectors by removing the last
eigenvectors makes the performance increase to 94.4%,
which shows that these last eigenvectors are redundant and
undermine the performance.

11 Assessment of Time Dependency
The first experiment is designed to reveal any obvious ef-
fect of elapsed time between gallery and probe acquisi-
tion on performance. The experiment consists of nine sub-
experiments. The gallery set is FA

�
LF images of session 1.

Each of the probes was a set of FA
�
LF images taken within

a single session after session 1 (i.e. sub-experiment 1 used
session 2 images in its probes, sub-experiment 2 used ses-
sion 3 for its probes, and so forth). Figure 7 shows the
histogram of the nine rank-1 correct match rates for the
nine sub-experiments in IR and visible imagery. The fig-
ure shows differences in performance from week to week,
but there is no clearly discernible trend over time in the re-
sults. All the rank 1 correct match rates in visible imagery
are higher than in IR.
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Figure 7: Rank-1 correct match rate for 10 different delays
between gallery and probe acquisition in visible and IR

The second experiment was designed to examine the per-
formance of the face recognition system with a constant de-
lay of one week between gallery and probe acquisitions. It
consists of nine sub-experiments: the first used images from
session 1 as a gallery and session 2 as probe, the second



used session 2 as gallery and session 3 as probe and so on.
All images were FA

�
LF. The rank 1 correct match rates for

this batch of experiments appear in Figure 8. We note an
overall higher level of performance with one week of time
lapse than with larger amounts of time. The visible imagery
outperforms IR in 7 of the 8 sub-experiments.
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Figure 8: Rank-1 correct match rate for experiments with
gallery and probe separated by one week in visible and IR

Together with the time-lapse recognition experiment
in Section 7, these experiments show that delay between
acquisition of gallery and probe images causes recognition
performance to degrade. The one overall surprising result
from these experiments is that visible imagery outperforms
IR in the context of time-lapse.

11 Statistical Test on Conditions
In Table 2, the probe pairs that are of the same facial
expression (lighting condition) but different lighting
condition (facial expression), given a gallery of the same
facial expression (lighting condition), should reveal the
illumination (facial expression) impact. Essentially, we
make a comparison of the response of matched pairs
of subjects, using dichotomous scales, i.e. subjects are
grouped into only two categories, correct/incorrect match
at rank 1. Hence we choose McNemar’s test [15].

11.1 Illumination Impact
Given the null hypothesis being there is no difference in per-
formance based on whether the lighting condition for the
probe image acquisition is matched to the lighting condi-
tion for the gallery image acquisition, the corresponding

� � values are reported in Table 5. For IR, what we ob-
served is very likely if the null hypothesis were true and
the association between FERET and mugshot lighting con-
ditions for the probe images is NOT significant. However,
surprisingly, for visible imagery, there is no evidence to re-
ject the hypothesis either. One reason is that the variance,

which is dependent on elapsed-time, dominated over the
lighting variance. Another possible reason is that there is
not enough difference between FERET and mugshot light-
ing conditions to produce a noticeable effect. Referring to
the images in Figure 1, this explanation seems plausible.

Table 5: � -values of McNemar’s test for the impact of light-
ing change in visible (bottom) and IR (top)

Gallery Probe pair � -value
FA

�
LM FA

�
LM 0.55

FA
�
LF 0.18

FA
�
LF FA

�
LM 0.50

FA
�
LF 0.85

FB
�
LM FB

�
LM 0.50

FB
�
LF 0.32

FB
�
LF FB

�
LM 0.51

FB
�
LF 0.47

11.2 Facial Expression Impact
Given the null hypothesis being there is no difference in
performance based on whether the facial expression for the
probe image acquisition is matched to the facial expression
for the gallery image acquisition, the corresponding

� � values are reported in Table 6. For visible imagery,
all � � values are 0, which means that the null hypothesis
is unlikely to be true according to what we observed, i.e.
the performance is highly dependent on whether the facial
expression for the probe image acquisition is matched to
the facial expression for the gallery image acquisition. For
IR in the group which used neutral expression as gallery,
we have the same conclusion as the visible imagery. But
for IR with a smiling expression as gallery, we failed to
reject the hypothesis, which means the expression impact
may be significant in this scenario.

Table 6: � -values of McNemar’s test for the impact of ex-
pression change in visible (bottom) and IR (top)

Gallery Probe pair � -value
FA

�
LM FA

�
LM 0.01

FB
�
LM 0.00

FA
�
LF FA

�
LF 0.00

FB
�
LF 0.00

FB
�
LM FB

�
LM 0.23

FA
�
LM 0.00

FB
�
LF FB

�
LF 0.92

FA
�
LF 0.00

12 Conclusion and Discussion
In same session recognition, neither modality is clearly sig-
nificantly better than another. In time-lapse recognition,
the correct match rate at rank 1 decreased for both visible



and IR. In general, delay between acquisition of gallery and
probe images causes recognition system performance to de-
grade noticeably relative to same-session recognition. More
than one week’s delay yielded poorer performance than a
single week’s delay. However, there is no clear trend, based
on the data in this study, that relates the size of the delay to
the performance decrease. A longer-term study may reveal
a clearer relationship. In this regard, see the results of the
Face Recognition Vendor Test 2002 [14].

In time-lapse recognition experiments, we found that:
(1) PCA-based recognition using visible images performed
better than PCA-based recognition using IR images, (2)
FaceIt-based recognition using visible images outperformed
either PCA-based recognition on visible or PCA-based
recognition on IR, and (3) the combination of PCA-based
recognition on visible and PCA-based recognition on IR
outperformed FaceIt on visible images. This shows that,
even using a standard public-domain recognition engine,
multi-modal IR and visible recognition has the potential to
improve performance over the current commercially avail-
able state of the art.

Perhaps the most interesting conclusion suggested by our
experimental results is that visible imagery outperforms IR
imagery when the probe image is acquired at a substantial
time lapse from the gallery image. This is a distinct differ-
ence between our results and those of others [1] [2] [3], in
the context of gallery and probe images acquired at nearly
the same time. The issue of variability in IR imagery over
time certainly deserves additional study. This is especially
important because most experimental results reported in the
literature are closer to a same-session scenario than a time-
lapse scenario, yet a time-lapse scenario may be more rele-
vant to most imagined applications.

Our experimental results also show that the combination
of IR plus visible can outperform either IR or visible
alone. We find that a combination method that considers
the distance values performs better than one that only
considers ranks. The image data sets used in this research
will eventually be available to other researchers as part of
the Human ID database. See http://www.nd.edu/˜cvrl for
additional information.
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Abstract—This paper suggests a method to estimate the
local frequency in a digital noisy image. In order to reduce
the effect of noise and estimate local frequency accurately,
we use multi-scale estimation. In each scale, we measure the
quantity of noise, and along with coherence and we estimate
frequency through use of a Kalman filter whose propagation
weight is the ratio of coherence between each scales. To
demonstrate the performance of our algorithm, we use a
noisy simulated image and a fingerprint image.

Index Terms—frequency, multi-scale, Kalman filter, co-
herence, fingerprint

I. Introduction

Estimating the local frequency in a digital image is nec-
essary in the overall image enhancement procedure or for
use in feature extraction. Especially, the ridge pattern
frequency varies not only with indivisual users but also
locally due to the pressure which occurs in the capturing
process. Therefore in order to filter a ridge pattern or for
the distortion caused by pressure, we need to know the
local frequency of a given image.

There are several specific approaches used for estimating
the local frequency. One is based on spectrum analysis[1],
another is the wavelet approach[2] and finally use a Gabor
filter[3]. However those methods require a large amount
of computation time, so Maio et al. model ridge patterns,
sinusoidal signals and frequency estimation in spatial do-
main uses the partial derivatives of the individual ridge
patterns[4]. However, if there is some noise in the image,
the algorithm has difficulty estimating the frequency ac-
curately because of a trade-off relationship between the
accuracy of the estimated frequency and the reduction of
noise. If the algorithm smooths the estimated frequency
significantly to reduce the noise, it is difficult to compute
the local frequency accurately, while if the algorithm does
not smooth the estimated frequency enough to identify the
local frequency correctly, it suffers from the noise induced
distortion or errors. The uncertainty rule represents this
relationship well[5]. To reduce the effect of noise and also
estimate the directional information of an image correctly,
XiaoGuang et al. suggests a multi-scale orientation esti-
mate method based on PCA (Principal Component Analy-
sis)[6]. This paper combines Maio’s and XiaoGuang’s con-
cepts properly and suggests the local frequency estimation
method which is robust against the spurious noise of an

image.
The remaining sections of this paper are organized as fol-

lows. Section 2 describes the frequency estimation method
applied within a spatial domain. Section 3 describes a
multi-scale approach. The experimental results are shown
in Section 4. Finally, section 5 contains the conclusion
section.

II. Frequency Estimation within a Spatial
Domain

Maio et al. modeled a 1D siganl as a sinusoidal signal
presented as fα,v(x) = αsin(v ·x). The frequency v of sig-
nal fα,v(x) can be calculated through Eq.(1) and (2). If
nν belongs to a natural number,
Γg(fα,ν) may equal α · νg.

Γg(fα,ν) =
1
n

n π
2∫

0

∣∣∣∣
dgfα,v(x)

dxg

∣∣∣∣dx = α · νg, (nv) ∈ Z+ (1)

v =
Γg+1(fα,v)
Γg(fα,v)

, g =0, 1, ...,∞ (2)

When n approaches to ∞, the requirement of Eq.(1) can
be satisfied[4]. This 1D signal fα,v(x) can be expanded to
a 2D signal fρ,θ,α,v(x,y) = ρ + αsin(v(xsinθ + y cosθ)). In
2 dimensions, Eq.(2) becomes Eq.(3).

v =

√
(Γ2

x)2 + (Γ2
xy)2 + (Γ2

yx)2 + (Γ2
y)2

(Γ′1x )2 + (Γ′1y )2
(3)

Γ2
x =

2
π · n2

n·π
2∫

0

n·π
2∫

0

∣∣∣∣
∂2fρ,θ,α,v(x, y)

∂x2

∣∣∣∣ dxdy (4)

Γ2
xy =

2
π · n2

n·π
2∫

0

n·π
2∫

0

∣∣∣∣
∂ fρ,θ,α,v(x, y)

∂x∂y

∣∣∣∣ dxdy (5)

Γ
′1
x =

√√√√√ 8
π2n2

n·π
2∫

0

n·π
2∫

0

(
∂ fρ,θ,α,v(x, y)

∂x

)2

dxdy (6)



In the 2D domain, the 1st derivative and the 2nd deriva-
tive can be calculated through the use of a gradient oper-
ator and Hessian matrix[7]. To estimate frequency accu-
rately in a noisy image, n must be large, but if n is too
large, the local variety of the available frequency can dis-
appear. If we decrease the size of the window, we can
estimate the local frequency more precisely but accuracy
suffers from the noise of the image. We use the term large,
because no specific measure is available, so large is the
subjective term used in this paper. Maio et al. can not
suggest a reliable method to reduce the noise and measure
the local variety of the frequencies simultaneously, so in the
next section, we suggest multi-scale frequency estimation
method to adjust for the trade-off between noise reduction
and frequency localization.

III. Multiscale Frequency Estimation

To estimate local frequency in a noisy image, we need
to measure the noise and adaptively adjust the frequency
estimation method to the existing noise. There are some
theses proposed to measure noise quantities[8][9]. Among
the several noise measures, Coherence is a well-formatted
and good measure used in determining the ridge pattern of
an image, so we select the coherence as a measure of noise.
Coherence is defined as the ratio between the difference of
the maximum and minimum eigen-value and the summa-
tion of these values as presented in Eq.(7). The symbols
λmax and λmin are maximum and minimum eigen-value
repectively. To calculate coherence, we divide an image
into several blocks and calculate the covariance matrix of
the image gradient vector in each block. After complet-
ing the process, we can calculate the eigen-vectors and
the eigen-values of the matrix through use of the Singu-
lar Value Decomposition (SVD)[10]. Instead of using the
SVD, Asker et al. suggest a direct calculation method to
caculate the eigen-vectors and the eigen-values simply[11].
Coherence R can be expressed another way as shown in
Eq.(8).

R =
λmax − λmin

λmax + λmin
(7)

R =

√
(Gxx −Gyy)2 + 4G2

xy

Gxx + Gyy
(8)

where

Gxx =
∑

N

G2
x (9)

Gyy =
∑

N

G2
y (10)

Gxy =
∑

N

GxGy (11)

In Eq.(11) Gx and Gy are the x and y elements of the gra-
dient vector used in the Cartesian coordinate and N is the
window size. In a ridge pattern image, like a fingerprint,

(a)

(b)

(c)

Fig. 1. the distribution of gradient : (a) non-noise image, (b) gaus-
sian noise image (c) scar noise image

coherence can indicate how uniform the directional infor-
mation is [6]. If there is some white Gaussian noise in the
individual ridge patterns, the distribution of the gredient
vectors disperses, otherwise the distribution has uniform
direction as displayed in Fig.1. The size of the window in
which the gradient vectors are calculated, is 12×12 pixels.
Scars or scratches are different from white Gaussian noise
but the distribution of the gradient vectors also disperses
as shown in Fig.1(c). Since coherence is defined as the
normal difference between maximum eigen-vale and mini-
mum eigen-value, if the gradient vectors distribute widely,
coherence is reduced.

If the noise is white Gaussian, the PDF of R is deter-
mined as presented in Eq.(12)[6]. According to window
size of N, the PDF is shown in Fig.2.

p(R) = 4(N − 1)R
(1−R2)N−2

(1 + R2)N
(12)

If we presuppose that as R is decreasing, the probability
of the existance of noise increases. so we can use R as the
measure of noise quantity.

To estimate the local frequency, we use a multi-scale ap-
proach, using R as the propagation weight. If we convolve



Fig. 2. PDF of R(Coherence) for white Gaussian noise

the image with a low-pass filter and downsample it to focus
on low levels of resolution, we can reduce the noise but, we
can also distort the frequency information too. Therefore
instead of downsampling the image, we adjust the window-
size n for several layers as previously presented in Eq.(4),
Eq.(5), Eq.(6). When we calculate Γ2

x, in order to exclude
the noisy region we use Eq.(13) instead of Eq.(4). We
change Eq.(5) and Eq.(6) to Eq.(14) and Eq.(15) respec-
tively. In Eq.(13) R(x,y) is coherence in the x,y position
and the threshold th is defined by referring to Eq.(12).
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∑
n

∑
n
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∑
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∑
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(13)
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∑
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∑
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(

∂ f(x, y)
∂x

)2

(15)
According to the layer selected, increasing the window

size makes the algorithm reguire a larger amount of cal-
culations. When the window size is large, the windows
overlap each other to the extent that the estimated fre-
quency is little different from those of the neighbor blocks
and it can enlarge both the opportunity for errors as well
as redundancy. Since we estimate the frequency not in an
individual pixel but in an entire block, we have to overlap
windows to reduce the block effect. However, in order to
reduce redundancy we can adjust the overlapped region by
decreasing the amount of frequency estimation within each
layer as presented in Fig.3. In Fig.3 the dots(frequency
measure point) are the center of the frequency measure
window which is colored gray. As the layer goes up to
higher level, the number of dots is increasing and the size
of the window is decreasing. We measure the local fre-
quency around each dot in the frequency measure window

Fig. 3. Frequency Sample Point in each layer

of each layer and average the coherence which is already
calculated in the 16× 16 sized window. We can designate
the frequency measured in each layer the observation of
the layer. We can estimate the frequency in the current
layer with the observation of the current layer and the es-
timation of the previous layer by using a Kalman filter as
explained in Eq.(16)[6].

ŝ[n] = ŝ[γn] +
Rn

Rn + Rγn
(x[n]− ŝ[γn]) (16)

where x[n] and ŝ[n] is the observation and the frequency
estimation of the current layer repectively. The symbol
ŝ[γn] represents the frequency estimation in the previous
layer. The symbols Rn and Rγn are the coherence of the
current layer and the previous layer respectively.

IV. Experimental Results

We estimate the local frequency through 4 layers and
the sizes of the frequency measure windows in each layer
are 129× 129, 65× 65, 33× 33 and 17× 17. The number
of frequency measure points in each layer is a quarter of
the child layer’s of each corresponding layer. Coherence is
calculated once in the 16×16 sized window. First to show
how well our algorithm estimates the local frequency, we
excuted an experimental test with a fan-shaped ridge pat-
tern Fig.4. The frequency of Fig.4(a) is linearly increasing
according to the distance from the point of origin. Fig.4(b)
shows the frequency of Fig.4(a) as a grayscale value. To
prove that our method can estimate the local frequency
well, we filter the test image through a constant frequency
Gabor filter and an adaptive Gabor filter. Fig.4(c) repre-
sented the image filtered with a constant frequency Gabor
filter whose frequency is 0.13 and Fig.4(d) represented the
image filtered with an adaptive Gabor filter which varies
its frequency from 0.11 to 0.17, according to the estimated
frequency. Since our method estimates the local frequency
successfully, as shown in Fig.4(d), ridge patterns are welll-
extracted. Because of the limits of low and high filter fre-
quencies, there is some distortion as shown in Fig.4(d).

Fig.5 shows that our algorithm is more robust than
Maio’s in estimating the frequency of an image. In Fig.5(b)
which represents the grayscale value of unsmoothed fre-
quencies of Fig.5(a), we determine that Maio’s algorithm
is very sensitive to noise. To reduce the noise, we smoothed
the frequency with 7×7 blocks average filter(56×56 pixel)



(a) (b)

(c) (d)

Fig. 4. local frequency : (a) test image, (b) multi-scale frequency,
(c) constant gabor filtering, (d) adaptive gabor filtering

as presented in Fig.5(c). However, we can see the effect of
noise near the scar and if we increased the filter size, we
lost the local frequency information. Fig.5(d) represented
the frequency image estimated by our algorithm. Our al-
gorithm reduces the noise effectively and does not distort
the local frequency. Table.I summarizes the comparison
of our algorithm and Maio’s algorithm as the average fil-
ter size increases. Since we calcaulte the block frequency,
the unit of measure for filter size is the number of blocks
where one block occupies 8×8 pixels. First, we regard the
non-smoothing frequency of Fig.4(a) as a reference, which
has a correct frequency and we caculate error as shown
in Eq.(17). The Ref(x,y) is the reference and F (x,y) is
the smoothed frequency image or the multi-scale frequency
image. We predetermined that there is no problem in re-
garding the non-smoothing frequency of Fig.4(a) as the
reference frequency because Fig.4(a) has no noise. From
Table.I, we can see that simple frequency smoothing dose
not solve the trade-off problem between noise reduction
and local frequency accuracy, but our multi-scale method
can obtain the optimum solution and also it has almost
minimum error observed in both cases (noisy image and
non-noisy image).

Error =
∑ ∑

(F (x, y)− Ref(x, y))2 (17)

We use our algorithm to estimate the frequency of a
fingerprint image as shown in Fig.6. In Fig.6, the interior
region of the red circle is a higher frequency region than
other frequenciess of the fingerprint. We can see that our
algorithm indicates the high frequency region with higher
level of grayscale brightness than other regions and it can

(a) (b)

(c) (d)

Fig. 5. local frequency of scar image : (a) scar image, (b) non-
smoothing frequency, (c) 7× 7 smoothing frequency, (d) multi-scale
frequency

TABLE I

Frequency Square Error

Filter 4× 4 8× 8 12× 12 multiscale

F ig.4(a) 0.085 0.168 0.292 0.063
Fig.5(a) 6.06 4.08 3.21 0.792

estimate the local frequency of real image well too. We
filtered the fingerprint image with a simple Gabor filter and
an adaptive Gabor filter to extract ridge patterns. After
filtering the image with a simple Gabor filter, which has
constant frequency parameter of 0.13, the ridge patterns of
the interior red circle are broken as displayed in Fig.6(c),
but after adaptively using Gabor filter, the ridge patterns
are very similar to the patterns of the original image as
shown in Fig.6(d).

Unfortunately, we did not have an adequate number of
fingerprint images whose local frequency varies greatly, so
we could not complete the verification test by applying
different Gabor filters.

V. Conclusion

This paper proposed a local frequency estimation
method by using a multi-scale approach. To estimate the
local frequency, we used Maio’s algorithm because it re-
quired less computation than others and has easily inte-
grated with the multi-scale approach. To reduce the effect
of noise, first we measured the quantity of noise with the
coherence of the image and applied a multi-scale approach
to Maio’s algorithm, weighted with coherence. In the ex-



(a) (b)

(c) (d)

Fig. 6. local frequency of scar image : (a) fingerprint, (b) multi-scale
frequency, (c) gabor filtered imag, (d) adaptive gabor filtered image

perimental result, the multi-scale approach was proven to
be more accurate and robust than simply smoothing al-
gorithm in both a non-noise image and noisy image. We
used this algorithm to adjust the filter parameter in the
extraction of the ridge pattern of an individual fingerprint
image or to compensate for the distortion of a fingerprint
caused by pressure on the capture device. We will use this
algorithm to solve the latter problem by making the ridge
intervals the same through the entire warpping process.
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Abstract

One solution to improve the performance of Speaker Recogni-
tion (SR) systems could be the integration of different aspects
of the speech signal. Thus in this paper it is proposed to
integrate, or fuse, all these informations in a probabilistic
framework with a system based on Bayesian Networks (BNs)
where the structure is learned directly from the data. BNs
are a flexible and formal statistical framework that allows us
to represent the conditional independence relations among
different speech features that convey information about the
speaker identity. In this paper, prosodic variables (pitch and
energy), the linear prediction cepstral coefficients (LPCC)
from signal and LPCC from residual signal of linear prediction
analysis are used to represent each speaker.

This study is conducted on the NIST 2002 one speaker text-
independent data base. These experiments confirm the poten-
tialities of BN approach.

1. Introduction
Speech signal carries a lot of information besides the mes-
sage. Other information about the speaker is present such
as mood, emotive state and in particular his/her identity. SR
(Identification (SI) or Verification (SV)) systems should use
features which capture characteristics of the speaker in order
to differentiate them from others. In this search for individual
discriminant features some information could be lost. Many
authors discard prosodic information in speaker verification,
but it is known that they carry a lot of information about
the speaker identity. Therefore speaker information of other
sources must be used. The suprasegmental characteristics,
like intonation, accent or pitch are really important in a
normal communication, specially the pitch that appears like an
important factor in speaker recognition [1]. However the pitch
information in itself is not enough to discriminate between
two different persons. Therefore speaker information of other
sources must be used. For example, spectral information,
conveyed by cepstral coefficients, and knowledge, which is not
often taken in account, that comes from the source of excitation
in speech production.

The main idea, developed in this paper, is to retrieve
the conditional independencies directly from the data (linear
residual analysis from the source in speech production, the
spectral information from the vocal tract and prosody) in order
to build a BN, and by this mean integrate, in a probabilistic
way, all those informations.

This paper is organized as follows: Bayesian Networks are
first introduced in section 2, with some discussion about the in-
ference problem and algorithms. Section 3 reviews briefly some
ideas about structure and parameters learning in BNs. In section
4, the experiments, results and their probabilistic interpretation
are presented. Finally conclusions and perspectives are given in
section 5.

2. Bayesian Networks
A BN, or Bayesian Belief Network [2], represents a joint
probability distribution defined on a finite set of random
variables. It is a formal representation, based on probabil-
ity theory and graph theory, given by a Directed Acyclic
Graph (DAG) in which nodes represent random variables
and arcs represent conditional probabilistic dependencies
among those variables. An arc from Q to Y can also be inter-
preted as indicating that Q has a direct influence on Y, Figure 1.

In a DAG each edge points from one node, called parent, to
another, called child. In the same topology description, the node���

has a descendant node
���

if this one is its child or is con-
nected to it through its children. In a BN, a conditional probabil-
ity distribution is associated with each node

� �
that describes

the dependency between this node and its parents, each node
is conditionally independent from its non-descendants given its
parents. Those dependence relations induces a factorization in
the joint distribution function expressed as :

�����
	���
�
�
����������
�
�
��� 	

����� ��� ������� � �����
(1)

where
������� � �

is the set of
� �

’s parents.

2.1. Inference

There are two main research problems in probabilistic rea-
soning using Bayesian Networks: learning and inference [3].
Bayesian network inference involves computing the posterior
marginal probability distribution of some query nodes, and
computing the most probable explanation given the values of
some observed nodes once the structure is known.

A BN is a couple
� �!��"���#%$&�

formed by one structure,
the graph

�
, and a set of Conditional Probability Distributions

(
"���#

), one for each node with parents in the network. For
nodes without parents we have just to specify their prior
probability. Evidence, i.e. knowledge about the state of one
variable, would modify the states of others variables in the
network. Doing probability inference consists in computing



the probability of each state of a node when we know the
state taken by some other variables. There are three types of
evidence propagation, exact, approximated and symbolic. One
or another is used depending on the characteristics of the data
and the complexity of the structure. In order to make exact
inference it is necessary to talk about ”belief propagation” [4]
and to take into account the relation of independence obtained
directly from the graph. The exact methods present some
problems. Some of them are not applicable to all the types
of structures. The methods of general validity become very
inefficient with certain structures when the number of nodes
and its complexity grow. This is not surprising since it has
been demonstrated that the exact propagation task is NP-hard
[5]. For that reason, and from a practical point of view, the
exact propagation methods can be very restrictive and even
inefficient in situations in which the type of structure of the
network requires a large memory and a lot of computational
power. With the second method, approximated values are
obtained using simulation methods as Monte Carlo and Gibbs
sampling [6]. The last method of propagation works directly
with symbolic parameters [7].

In general, if we have a set of variables
� �� �
	������ ��
�
�
��������

and a set � , the evidence, with known val-
ues � � ��� 	 � � � ��
�
�
�� ��� �

, where �
	 �
, inference consists

in computing :

� �
� � � � � � � �
� � � � �� � � ��� � �
� � � � ��

(2)

The conditional dependence assumptions encoded by a BN
have the advantage of simplifying the conditional probabilities
computation. All this could be done in an equivalent tree struc-
ture when the original one is not a tree [8]. This structure is a
tree built of cliques that represent the local structures, and then
preserve the conditional probabilities. The first step in the junc-
tion tree construction consists in finding those cliques

" �
. Then

it is possible to compute their CPD. The CPDs of variables
� �

are computed by marginalizing the cliques. In detail this pro-
cess works has follows:

1. moralization and triangulation (because the parents are
correlated given its children) of

�
to obtain an undi-

rected graph
���

.

2. computation of cliques
"

of
� �

,

3. assign each
���

from
�

to one clique
" �

,

4. for each
" ��� "

define a potential � ��� " � � ������������ ���
� ��� �����
� � ���
.

After those steps, the belief propagation method has to be
applied to the new graph (collecting and distribution steps).
That is, it must be updated the belief in each node when some
variables have been observed.

3. Learning
The other main problem in probabilistic reasoning using
Bayesian Networks is learning. Learning Bayesian Network
from data [9] [10] consists in automatically constructing the net-
work, structure and parameters, from information in data using
some learning algorithms. The Statistical base of BN let the
development of learning methods. We use these methods in or-
der to obtain the conditional independences in the graph struc-
ture and the conditional probability distributions that quantify

�

�
Figure 1: Basic BN.

those dependences directly from databases. Therefore, depen-
dences, structure and conditional probability distributions can
be learned from data.

3.1. Structure

In the process of finding the best structure, even if the space of
variables is fully observable, some aspects must be considered.
Firstly concerning the structure space, should trees be a priority
or should more complex graphs be considered? The number
of possible structures depends on the number of variables  
in a super-exponential way. For example, with four variables
there are 543 possible DAGs. It is unrealistic to explore all of
them. For that reason, it has to be taken in consideration search
algorithms that gives the structures to be evaluated. There are
two different approaches to solve this problem, the first one,
like MCMC [11], searches in all the structure space and returns
either the best one, or the best in a Markov equivalent way.
The second approach starts with a specific connected graph and
then searches for independence relations in the data ! , and puts
in or takes away arcs.

The K2 algorithm [12], used in this work, belongs to the
second approach. It starts with a structure, the simplest one,
i.e. a graph without arcs. It needs some prior knowledge and
a relationship between the variables. Then, for each variable� �

we look for the set
������� � �

. The variables in this set are
restricted to those variables with smaller order numbers than� �

.

In order to achieve learning, a scoring function must be
specified for measuring the network’s quality. The criterion, or
quality measure to select

������� � �
is the last aspect to study in

the structure learning. Maximum likelihood could be an ad-
equate quality measure, but it privileges the fully connected
graph. This graph gets the highest likelihood because it has the
greatest number of parameters. Thus, to overcome this prob-
lem, a prior knowledge on the model can be used. By Bayes’
rule, the MAP model is the one that maximizes :

��� � � ! � � ��� ! � ��� ��� ���
��� ! � �

(3)

where
��� ���

penalizes complex model and
��� ! �

is a con-
stant. The marginal likelihood is :

��� ! � �����#"%$ ��� ! � �!�'& � ���(& � ���*)%& �
(4)

where ! is the database. (4) as the advantage that automat-
ically penalizes more complex structures. This score function
can be approximated [13] with a Laplace method, and finally
get the BIC (Bayesian Information Criterion) :



����� ��� ! � ����� ����� ��� ! � �!���& �	� ) 
 �����
� �
(5)

where M is the number of samples,
�&

is the ML estimate of
the parameters and

)
is the dimension of the model.

3.2. Parameters

Here, it is required to adjust the parameters of the BN in such
a way that the CPDs describe the data statistically. The param-
eters

&
and the model, � �(& �

, defined for these parameters are
given. Also, the prior distribution over the models

��� � �(& ���
and the space of parameters in these models

���(& � � �
can be

used. So, given some data ! , it is wanted to estimate
&
, such

that the posterior probability to be maximized is :

��� � � ! ��� ��� � �
��� ! � " $ ��� ! � & � � � ���(& � � �*)%& 


(6)

Thus the maximum likelihood estimate of
&

is computed by
minimizing the cost function over the probability density func-
tion. We can make an optimization that relies on the gradient of
this function, or use an iterative procedure called Expectation -
Maximization (EM) [14] or a variant, Generalized EM , using a
gradient method in the M step.

4. Experiments and Results
In this section, experiments and results using our BN Speaker
Verification System (BNSVS) are detailed.

4.1. Database

The data are taken from the second release of the Cellular
Switchboard Corpus (Switchboard Cellular - Part 2) of the Lin-
guistic Data Consortium (LDC) [15]. Each conversation is echo
cancelled before use. The database is divided into training data
(about 400 target speakers), and test data (about 3500 test seg-
ments). The training data for a target speaker consist in about
two minutes of speech from that speaker, excerpted from a sin-
gle conversation. Actual duration is, however, constrained to lie
within the range of 110 to 130 seconds. Each test segment is
extracted from a 1 minute excerpt of a single conversation and
is the concatenation of all speech from the subject speaker dur-
ing the excerpt. The duration of the test segment therefore vary,
depending on how much the segment speaker spoke. So, the
effective speech duration lies between 15 and 45 seconds. Both
test and target speakers are of the same sex.

4.2. Modeling

The training and test parameter vectors consist of a set of
four types of parameters. The first vector is a 24-dimensional
LP Cepstral Coefficients obtained as follow : 12-dimensional
LPCC, with sliding CMS (Cepstral Mean Substraction) and
augmented with their first derivatives, !�� � "�"

, for Signal
Linear Prediction Cepstral Coefficients. The second vector,
24-dimensional LP Cepstral Coefficients has been obtained
as before from the LP-residual signal ��� � "�"

[16][17], and
finally the frame pitch �	� and the frame energy � .

Those data had been used with K2 algorithm to find the
best structure for our four variables. We have worked with all
the possible orders and used the BIC score [5]. From this analy-
sis we have obtained the conditional independence relations for

�

���

������� � !"�#�$� �

Figure 2: Structure for the four variables (energy ( � ), pitch
( � � ), signal !�� � "�"

and residual �%� � "�"
) issued from the

K2 algorithm.

the multivariate Gaussian distribution that define the network
structure which is set to be speaker independent, Figure 2.

From basic probability theory the joint probability for the
four variables & � � � � � � � �%� � "�" � !�� � "�" �

can be writ-
ten as:

��� & ��� ��� � � ��� �	� � � � ��� ��� � "�" � �	� � � �
��� !�� � "�" � � � � � � ��� � "�"���


(7)

Now, taking into account the graph of Figure 2 and its re-
lations of conditional independence, this equation becomes a
product of local terms :

��� & � � ��� � � ��� �	� � � � ��� ��� � "�" � �	� ���� !�� � "�" � � � ��
 (8)

The relation between !�� � "�"
, ��� � "�"

and � � is
obtained from the term

��� ��� � "�" � � � � ��� !�� � "�" � � � � . It
can be interpreted as a relation of conditional independence
where ��� � "

and !�� � "
are independent given � � , noted

��� � "�"(' !�� � "�" � � � or ) � ��� � "�"�� !�� � "�" � � � � . Also,
from the second term in (8) it can be seen that ��� depends
directly of � .

The physical interpretation of the relations between the
variables gives the same relations found in the equations
obtained from the graph. For example, the voiced speech has
more energy that the unvoiced speech. It is evident that the
speech energy depends directly from the speech voicing. This
fact is written in the term

��� � � � � �
. The source influences the

spectral envelope due to the filtering effect of the vocal tract.
The pitch is correlated with the vibration of the vocal folds
and the vocal tract characteristics. Consequently, the source
and the spectral envelope depends on pitch as it is seen in��� ��� � "�" � � � � ��� !�� � "�" � � � � .

The relations obtained in equation (8) exhibit the causal
interaction between the variables. Now, using Bayes theorem
:

��� � � ��� �	� � � � � ��� � � ��� �	� � � �
, the equation (8) can be

rewritten as :

��� & ��� ��� � � � ��� � � � � � ��� ��� � "�" � � � ���� !�� � "�" � �	� ��
 (9)
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Figure 3: Equivalent structure for the four variables (energy
( � ), pitch( � � ), signal !�� � "�"

and residual ��� � "�"
) using

the equality
��� � � ��� �	� � � ��� ��� � � ��� � � � � �

.

This new formulation corresponds to the graph shown on
Figure 3. In this equation the causal relations represented are
not similar to that presented in (8), but the probability density
function is the same. Then the equation (9) also represents the
variables relation. This structure has the advantage that pitch is
the root node. Pitch is a feature whose domain is longer than
just one single phonetic segment. Then the independence rela-
tions found in the equation (9) represent the conditional inde-
pendence of !�� � "�"

, ��� � "�"
and � given �	� . Where �	� is

a prosodic variable that relate different linguistic elements, by
making boundaries and defining transitions in speech signal.

Once the structure has been learned, the final Universal
Background Model (UBM) BN’s parameters are learned. Since
there are not enough training data for each speaker, adaptation
methods are applied to compute every Target Speaker Model.
For this purpose, the system starts from an universal model
(UBM) which is then adapted to the client speaker by three iter-
ations of the GEM algorithm and in this way we overcome the
problem. Two gender-dependent UBM have been created using
part of the 2001 cellular development and evaluation datasets
(this database is similar to the database already described).

4.3. Results

Each test segment is evaluated against 11 hypothesized speak-
ers. The decision score is directly based on the log-likelihood
ratio between the target speaker and the UBM over all the
frames without any kind of normalization. Figures 6 and 5
display the DET (Detection Error Tradeoff) curves that measure
the performance obtained with our system and the standard
technique Gaussian Mixture Models (GMM), that have become
the dominant approach for modeling multivariate densities
in text-independent speaker recognition. A DET curve is a
mean of representing performances on detection tasks and is an
standard in speaker and language recognition evaluations. In a
DET curve, error rates are plotted on both axes (False Alarm
and Miss Detection). It shows when a system fails to detect a
target or declare such a detection when the target is not present.

First experiment uses the vector !�� � "�"
modelled by a

GMM with 64 mixtures. The results shown in the DET curve,
Figure 5, show a performance of 19.31 % at the Equal Error
Rate (EER). The same has been done with the ��� � "�"

vector
obtaining a score of 24.34 %. Now combining all the variables

�����������

���������� � �������

!#"$���%�&���%�

��'������� � ���
���

Figure 4: Structure used in the second experiments.
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Figure 5: DET curve for NIST 2002 evaluation data with
SLPCC, RLPCC and All using a GMM with 64 mixtures.

in a vector and using a GMM with 64 mixtures a 21.34 % score
is obtained.

The next set of experiments use two models. The first one
uses the structure in the Figure 2 and the set of parameters:
32 Gaussians for ��� � "�"

and !�� � "�"
plus 2 for the pitch

� � and energy � . CPDs were learned with GEM [18] [19].
This choice of gaussian numbers (parameters number) was
made taken into account the computation resources and time
requests to finish a task. K-means was used to determine the
initial setting for the Gaussian parameters. This system obtains
an EER of 24%, Figure 6. The results in the Figures 5 and 6
show that a GMM with a !�� � "�"

vector perform better than
our first system. Given that our score is similar to that obtained
with the ��� � "�"

vector the difference can come from the
independence relations obtained in the structure.

With the second structure shown in the Figure 4, a dis-
cretization of the continuous pitch ��� was made in order to bet-
ter modelize the voiced and unvoiced parts of speech. The pa-
rameters used for this model are : 2 values for the pitch (voiced
and unvoiced), 16 Gaussians for the �%� � "�"

and !�� � "�"
and 2 Gaussians for the energy � . This system, shown in Figure
6 obtains an EER of 21.18% for male and 22.37% for female.
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Figure 6: DET curve for NIST 2002 evaluation data using our
two Bayesian Network models: First Model as shown in Fig. 2
and Second Model as shown in Fig. 4.

5. Conclusions and Perspectives
In this paper, a system achieving Speaker Verification based on
BNs is presented. This system infers the Bayesian network
structure automatically from the data. Also, it uses the inde-
pendence relations obtained for integrating all the information
presented on the speech signal in a single probability distribu-
tion. It shows that BNs are a flexible mathematical tool that
can help to modelize information from different aspects of the
speech signal. The physical interpretation given to the equa-
tions describing the structure suggests that the learning algo-
rithms for BN are able to adequately infer the relations present
in data. The perspectives for this work are important because
of the flexibility of BNs. We expect further improvements from
different research algorithms in the network structure learning
and from the augmentation of parameters.
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ABSTRACT 
Nonacoustic sensors such as the general electromagnetic 
motion sensor (GEMS), the physiological microphone (P-mic), 
and the electroglottograph (EGG) offer multimodal approaches 
to speech processing and speaker and speech recognition. 
These sensors provide measurements of functions of the glottal 
excitation and, more generally, of the vocal tract articulator 
movements that are relatively immune to acoustic disturbances 
and can supplement the acoustic speech waveform.  This paper 
describes an approach to speech enhancement that exploits 
these nonacoustic sensors according to their capability in 
representing specific speech characteristics in different 
frequency bands. Frequency-domain sensor phase, as well as 
magnitude, is found to contribute to signal enhancement.  
Preliminary testing involves the time-synchronous multi-sensor 
DARPA Advanced Speech Encoding Pilot Speech Corpus 
collected in a variety of harsh acoustic noise environments. The 
enhancement approach is illustrated with examples that 
indicate its applicability as a pre-processor to low-rate 
vocoding and speaker authentication, and for enhanced 
listening from degraded speech. 
 

1. INTRODUCTION 

Linear filtering-based algorithms for additive noise 
reduction include spectral subtraction, Wiener filtering, 
and their adaptive renditions [NRC, 1989]. Nonlinear 
techniques have also arisen including wavelet-based 
noise reduction systems [Donaho and Johnson, 1994] and 
suppression filters based on auditory models [Hanson, 
1995]. Although promising, these methods suffer from a 
variety of limitations such as requiring estimates of the 
speech spectrum and speech activity detection from a 
noisy acoustic waveform, distortion of transient and  
modulation  signal  components, and the lack of a phase 
estimation methodology.  

 
 
 
 
In this paper, we present an alternative approach to noise 
suppression that capitalizes on recent developments in 
nonacoustic sensors that are relatively immune to 
acoustic background noise, and thus provide the potential 
for robust measurement of speech characteristics [Ng et 
al, 2000]. The effort focuses on the general 
electromagnetic motion sensor (GEMS) [Burnett et al, 
1999], but also investigates the physiological microphone 
(P-mic) [Scanlon, 1998], and the electroglottograph 
(EGG) [Rothenberg, 1992]. These sensors can directly 
measure functions of the speech glottal excitation and, to 
a lesser extent, attributes of vocal tract articulator 
movements.   
 
In Section 2 of this paper, we first formulate the 
enhancement problem of interest and review a specific 
noise reduction algorithm based on an adaptive Wiener 
filter [Quatieri and Dunn, 2002]. Section 3 describes the 
GEMS, P-mic and EGG nonacoustic sensors, as well as 
the DARPA Advanced Speech Encoding Pilot Speech 
Corpus recorded in a variety of harsh noise environments. 
In Section 4, we present an approach to speech activity 
detection based on different sensor modalities. Section 5 
introduces a general multimodal methodology for 
improving speech spectral magnitude and phase recovery 
in the context of our specific adaptive suppression 
framework. Section 6 provides a complete multimodal 
speech enhancement scheme that utilizes the GEMS, P-
mic, and acoustic sensors in different frequency bands. In 
this section, we also discuss the applicability of the 
proposed enhancement system to pre-processing for 
speech encoding and speaker authentication. Finally, in 
Section 7, we summarize and give future directions. 
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2. FRAMEWORK 

2.1 Baseline suppression filter 
Let [ ]y n  be a discrete-time noisy sequence  
 

[ ] [ ] [ ]y n x n b n= +   
 

where [ ]x n

[ ]

 is the desired sequence and  is 
uncorrelated background noise, both of which are 
assumed for the moment to be wide-sense stationary 
random processes with corresponding spectral density 
functions given by  and , respectively. One 
approach to recovering the desired signal is to find a 
linear filter h n  such that the sequence 

[ ]b n

( )xS ω

[ ]

( )bS ω

ˆ[ ] * [ ]x n y n

[ ])

h=
2ˆ( [ ]

n  minimizes the expected value of 

x n x n− . The solution to this optimization problem 
in the frequency domain is given by  
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which is referred to as the Wiener filter. The required 
spectral densities can be estimated by averaging over 
multiple frames that contain only the desired signal [ ]x n  
or background signal b n . Typically, however, the 
desired signal is nonstationary with short-duration, 
transient components with spectra difficult to measure, 
requiring  an average to be essentially instantaneous. 

[ ]

 
Consider then a signal [ ]y n

( , )L

 processed at frame 
interval samples with short-time Fourier transform 

where and
denote the short-time Fourier transforms of 
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 and , respectively. And suppose we have 
available an estimate of the Wiener filter on frame , 
denoted by . We assume that the background 

noise spectral density, , is known or estimated by 
averaging spectra over a given background noise region.  
Assuming that the desired signal 

1k −

)

[ ]x n

(kLω

 is nonstationary, 
one approach to obtain an estimate of its time-varying 
spectral density on the frame uses the Wiener filter 

 to enhance the current frame. This 
operation yields an enhanced spectral 
estimate  which is then 
used to update the Wiener filter for the next frame. 

thk
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An approach to slow down a rapidly-varying , 
while avoid the blurring of time-varying sounds, is to   
temporally smooth  using a time constant that 
changes with the degree of stationarity of the signal 
[Quatieri and Baxter, 1997]. Although this filter 
adaptation results in relatively more noise in non-
stationary regions, there is evidence that, perceptually, 
noise is masked by  rapid spectral changes and 
accentuated in  otherwise stationary regions [Quatieri, 
2002]. 

ˆ ( , )X kL ω

ˆ ( , )X kL ω

 
A measure of the degree of stationarity is obtained 
through a spectral derivative defined for each frame as 
the mean-squared difference between two consecutive 
short-time spectral magnitude measurements of [ ]y n . 
The smooth spectral derivative is then mapped to a time-
varying time constant . The use of spectral  change 
in the Wiener filter adaptation, as well as a number of 
refinements to the adaptivity, including  iterative re-
filtering and background-noise adaptation, helps avoid  
blurring of temporal fine structure [Quatieri and Baxter, 
1997], [Quatieri and Dunn, 2002]. We can further 
improve adaptivity by providing distinct Wiener filters, 
one during background and one during speech, thus 

( )kτ

 
 
 
 
SS

Detection

Suppression
peech

Detection

Suppression
peech

 
 
 
 
 
 
 
Figure 1:  Noise reduction algorithm based on spectral change 
 
alleviating the need to re-adapt across speech/background 
boundaries. The inclusion of background-noise 
adaptation and distinct, state-dependent Wiener filters 
requires that we perform speech activity detection to 
determine which frames in a signal contain speech and 
background noise and which frames contain background 
noise only. Finally, an enhanced speech waveform is 
obtained by overlap-add synthesis from the modified 
short-time sections. An analysis window of 12 ms and 
frame interval of 2 ms are used. The baseline noise-
suppression algorithm is illustrated in Figure 1.  
 
2.2 Limitations 
We have applied the above adaptive suppression 
algorithm to noise-corrupted speech under different 
background noise conditions, including fan, automobile, 
road, and cellular noise at a variety of signal-to-noise 



ratios (SNR) [Quatieri and Dunn, 2002]. In informal 
listening, the reconstructions are judged to be “crisp” 
corresponding to good temporal resolution of rapidly-
moving and short-duration speech events. The 
background noise is significantly suppressed and of high 
quality without musicality. Nevertheless, we have 
observed numerous limitations particularly in 
environments at very low SNR, including: 
 
Speech Activity Detection: The accuracy of speech activity 
detection decreases with decreasing SNR, especially with non-
stationary noise. Even when correct, only one detection decision 
is made per frame. Ideally, multiple decisions should be made 
across the speech band to determine if a frequency interval is 
dominated primarily by speech or noise energy.  

 
Magnitude estimation: Requirement of the speech spectrum 
makes it difficult to form an accurate Wiener filter, especially in 
low SNR frequency regions. Both the background noise and 
acoustic transducer can contribute to a band-dependent low-
SNR. 

 
Phase estimation: Although the Wiener filter represents a 
least-squared error (LSE) solution, we have found that this 
solution is not always perceptually “optimal”.  The LSE 
solution yields a zero-phase suppression filter so that the phase 
of the short-time noisy signal is left intact. In high noise 
conditions, phase noise is frequency-dependent and audible. 

 
In this paper, we address these limitations in the use of 
measurements from nonacoustic sensors.  
 
3.0 NONACOUSTIC SENSORS AND   
      MEASUREMENTS 
 
3.1 GEMS 
The general electromagnetic motion sensor (GEMS) 
measures tissue movement during voiced speech, i.e., 
speech involving vocal chord vibrations [Burnett et al, 
1999].  An antenna is typically strapped or taped on the 
throat at the laryngeral notch, but also can be attached at 
other facial locations. This sensor emits an 
electromagnetic signal that penetrates the skin and 
reflects off the speech production anatomy such as the 
tracheal wall, the vocal folds, or the vocal tract wall.  
Because signals collected from a GEMS device depend 
on the tissue movement in the speech production 
anatomy, it is relatively immune to degradation from 
external acoustic noise sources.   
 
During voiced speech, GEMS records quasi-periodic 
electromagnetic signals due to vibration of the speech 
production anatomy. When placed at the larynx, quasi-
periodic measurements are found during vowels, nasals, 
and voiced consonants including prior to and following 
the burst in voiced plosives, i.e., during voice bars. Single 
pulses have also been observed sporadically from the 

GEMS measurement at the burst in unvoiced plosive 
consonants. 
 
3.2 P-mic 
The physiological microphone (P-mic) sensor is 
composed of a gel-filled chamber and a piezoelectric 
sensor behind the chamber [Scanlon, 1998].  Vibrations 
that permeate the liquid-filled chamber are measured by 
the piezoelectric sensor that provides an output signal in 
response to applied forces that are generated by 
movement, converting vibrations traveling through the 
liquid-filled chamber into electrical signals.  The liquid 
filled chamber is designed to have poor coupling between 
ambient background noise and the fluid-filled pad thus 
attenuating vibrations of unwanted ambient background 
noise. 
 
Like the GEMS sensor, the P-mic can be strapped or 
taped on various facial locations.  The P-mic at the throat 
measures primarily vocal fold vibrations with quasi-
periodic measurements similar to that of GEMS. The P-
mic signal at the throat, however, contains some low-pass 
vocal tract formants with bandwidths wider than normal. 
Other facial locations can provide additional vocal tract 
characteristics. The P-mic located on the forehead, for 
example, gives significant vocal tract information but is 
far less noise-immune than the P-mic at the throat in 
severe environments.   
 
3.3 EGG 
The electroglottograph (EGG) [Rothenberg, 1992] sensor 
measures vocal fold vibrations by providing an electrical 
potential (of about one volt rms and two-to-three 
megahertz) across the throat at the level of the larynx. 
With a pair of gold-plated electrodes, the sensor measures 
the change of impedance over time.  When the vocal 
folds are closed, the impedance is decreased; when they 
are open, the impedance is increased.  Thus, the opening 
and closing of the vocal folds, present in voiced speech, 
are measured by the EGG.   
 
3.4 Corpus collection 
An extensive multi-sensor speech corpus was collected 
from ten male and ten female talkers. Scripted phonetic, 
word and sentence material along with conversational 
material were generated by each talker. These materials 
were generated in nine different acoustic noise 
environments. The corpus was collected in two sessions 
(on two different days).  Speakers were exposed to a 
variety of noise environments including both benign and 
severe cases. Six of the environments represented three 
acoustic environments with each presented at two 
intensity states. The presentation levels for these states 
differed by 40 dB SPL. Specific environments are quiet, 
office (56 dB), MCE (mobile command enclosure, 79 



dB),  M2 Bradley Fighting Vehicle (74 dB and 114 dB),  
MOUT (military operations in urban terrain, 73 dB and 
113 dB),  and a Blackhawk helicopter (70 dB and 110 
dB).  We call these environments (with L indicating low 
noise and H indicating  high noise) quiet, office, MCE, 
M2L, M2H, MOUTL, MOUTH, BHL and BHH, 
respectively. 
 
For each talker and environment, combination time-
synchronous data was collected from up to seven separate 
sensors. These sensors consisted of the previously 
introduced GEMS, P-mic and EGG. Data was also 
collected from two acoustic microphones, a high quality 
B&K calibration microphone and an environment 
specific “resident” microphone. The resident microphone 
was typically the first-order gradient noise-cancellation 
microphone used for normal communications in that 
specific environment. 
 
One GEMS and one EGG were located near the talker’s 
larynx. Careful attention was given to tuning the GEMS 
sensor and in optimizing its placement. The GEMS was 
considered the primary sensor during the corpus 
collection. A specific talker’s neck and shoulder 
geometry often required that tradeoffs be made in the 
placement of the secondary sensors in order to optimize 
the GEMS signal. Two P-mics were used, one located in 
the vicinity of the talker’s larynx and the other on the 
talker’s forehead. 
 
Due to the acoustic presentation levels of some of the 
noise environments, all talkers used the acoustic 
protection systems typical of each specific noise 
environment. This normally consisted of some type of 
communication headset that provided noise attenuation 
on the order of 20 dB. Human subject procedures were 
followed carefully and noise exposure was monitored. 
 
The complete corpus consists of up to eight channels of 
data from approximately twenty minutes of speech 
material in each of nine acoustic noise environments 
from each of the twenty talkers. All sensor  data was 
sampled at 48 kHz, though the nonacoustic data was 
downsampled to 16 kHz for space considerations. The 
full corpus takes approximately 70 GB of storage. 
 
4.0 SPEECH ACTIVITY DETECTION 
 
Speech activity detection is used to identify which 
segments of an acoustic waveform contain speech with 
background noise and which contain only background 
noise.  This detection is useful because it allows state-
dependent processing, as is performed in the adaptive 
suppression filter of Section 2.  As also noted in Section 
2, however, the accuracy of detectors based on the 

acoustic waveform decreases with decreasing SNR and, 
even when correct, only one detection decision is made 
per frame, thus not accounting for a frequency-dependent 
SNR.  
 
4.1 Multi-sensor detection 
Our approach to circumventing the speech detection 
problem caused by noise in acoustic waveforms is to use 
the waveforms from other sensors that are less sensitive 
to acoustic background noise.  The GEMS and EGG 
sensors, for example, are robust at detecting voiced 
speech, both during vowels and voicing associated with 
voiced consonants. Although these sensors are poor in 
measuring the noise component of unvoiced speech 
sounds, relative to their acoustic counterpart, they give 
more accurate speech activity detection resulting in 
increased segmental signal-to-noise ratio in harsh 
environments [Messing, 2003]. The P-mic sensor is less 
accurate at detecting voiced speech since it is not entirely 
immune to acoustic noise. Under certain noise conditions 
and placements, on the other hand, it can detect the noise 
component of unvoiced speech.  
 
It follows that one approach to improve detection, 
relative to that from the acoustic signal, is to perform 
voiced speech detection using  the GEMS or EGG sensor 
and then, given this voiced speech detection decision, use 
the P-mic sensor waveform to decide on the presence of 
unvoiced speech. This fusion has been found to improve 
speech activity detection of both voiced and unvoiced 
speech relative to using any one sensor alone [Messing, 
2003]. An example of this fusion-based detection is 
illustrated in Figure 2 where the GEMS and P-mic 
sensors are used.  
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Figure 2: Illustration of multi-detector fusion using the GEMS and P-mic 
sensors. In this case, the sensor signals are from the M2H environment. For 
test purposes, the acoustic signal being enhanced  is from the acoustic B&K 
mic and “truth” is assumed as the output of the corresponding noise-
cancelling resident mic. 



 
 
 
Although this style of detection can outperform acoustic-
based detection in noise, it does not address the limitation 
of a binary detection decision per frame. In the next 
section, we propose a detector that provides frequency-
dependent speech activity evaluation. 
 
4.2 Multi-class detection 
There are numerous speech events that may be 
characterized by the pattern of signal energy across 
specific frequency bands. For example, unvoiced 
fricative and plosive sounds are high in frequency, while 
nasals and the voice-bar components of voiced plosives 
are low in frequency. For these cases a single speech 
activity decision limits the performance of the adaptive 
suppression filter of Section 2.  Consequently, we refine 
our multi-sensor detector by exploiting the propensity  of 
the various sensors to detect speech events in different 
frequency bands.  The resulting scheme detects three 
speech classes: (1) Voiced = Speech present in low- and 
high-frequency bands; (2) Low-voiced (including nasals 
and voice bars) = Speech is present in low-frequency 
band only; and (3) Unvoiced = Speech is present in high-
frequency band only. A background state is declared 
when speech is not present in either band. The four-class 
detection scheme is illustrated in Table I. According to 
the  motivation given below, the low band is selected as 
[0, 500] Hz and the high band as [3, 5] kHz. 
  

 
      

Table I: 
Four 
speech-
class 
detection 
scheme.  

 
 
 
The multi-class decisions are based on a detection  
scheme much like the above fused GEMS and P-mic 
detectors. Rather than using the P-mic signal, which does 
not robustly provide high-frequency signal estimates in 
harsh conditions, we use the wideband signal from the 
resident-mic in the ASE Pilot Speech Corpus. For certain 
harsh conditions of interest, the SNR is large for 
frequencies within about a 3 kHz to 8 kHz range. This is 
advantageous because several consonants such as an /s/, 
/sh/, /ch/, and /th/ contain significant energy in this 
frequency region.  In practice, both voicing and 
unvoicing above 3 kHz were found to be detectable. On 
the other hand, for these same conditions, the resident-
mic has a poor SNR for low frequencies, particularly 
below about 500 Hz and thus is not reliable at detecting  
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Figure 3: Waveforms 
(from the M2H 
environment) and 
spectrograms of the (a) 
resident-mic signal and 
(b) GEMS signal for the 
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estimation is to make each noise term zero. We have 
performed these replacements over a range of SNRs and 
have made the following observations: 
 
Ideal magnitude: When replacing the noisy magnitude with its 
ideal form, phase noise persists aurally and this noise increases 
with decreasing SNR. A sub-optimal performance bound can be 
achieved by constructing a Wiener filter using the ideal speech 
magnitude. The resulting enhanced signal lies aurally between 
that using the ideal magnitude and noisy magnitude. 
 
Ideal Phase: When replacing the noisy phase with its ideal 
form, an increasing noise reduction occurs aurally with 
decreasing SNR. 
 
Although we have not yet made quantitative 
measurements or performed formal listening tests, our 
anecdotal results are consistent with those of Vary who 
found the perceptual importance of phase with respect to 
signal quality to increase with decreasing SNR, in 
particular for SNR < 3 dB [Vary, 1985]. We have also 
performed analogous experiments to the above with the 
magnitude estimated from the adaptive suppression filter 
of Section 2. Using our estimated magnitude in place of 
the noisy magnitude yields a reduction in noise residual 
but less than with the ideal magnitude, as expected. 
Likewise, we find that when replacing the noisy phase 
with its ideal form, an increasing noise reduction occurs 
aurally with decreasing SNR. 
 
5.2 Strategies for exploiting nonacoustic sensors 
 
The previous section indicates that we have not reached 
performance bounds with magnitude estimation and that 
we can gain considerably with phase estimation under 
harsh background noise conditions. In this section, we 
describe a general approach to capitalize on these 
observations using nonacoustic sensors.  
 
Magnitude estimation: We have seen that a drawback of 
Wiener filtering is the need to estimate time-varying 
speech spectra from the noisy acoustic waveform. An 
alternative strategy is to estimate short-time speech 
spectra for the Wiener filter from a nonacoustic-sensor 
signal and the background noise spectrum from the 
acoustic signal. Since the estimate of the speech spectrum 
depends on the particular nonacoustic sensor and its 
placement, and its fidelity can be band-dependent, our 
general strategy is to construct a speech spectral estimate  
from a fusion of components of nonacoustic and acoustic 
signals. Alternatively, in contrast to constructing the ideal 
Wiener filter, one can aim for the ideal speech spectrum 
by replacing bands of the acoustic signal with those of a 
nonacoustic signal where appropriate. Since nonacoustic 
signals, although relatively noise-immune, can 
themselves be degraded, we apply noise suppression to 

these signals prior to fusion. An example of this strategy 
is given in Figure 4 which compares the baseline 
suppression on a resident-mic acoustic signal with a 
fusion of the enhanced acoustic signal above 500 Hz with 
the enhanced P-mic signal below 500 Hz. In this example 
word “zed”, voicing during the voiced fricative /z/ and 
the voice bar for voiced plosive /d/ have been 
approximately restored by the low-band P-mic signal. 
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6.0 Composite System Example and Im
 
We are investigating a number of system
based on the speech activity detection and

phase estimation schemes of Sections 4 and 5. One 
particular configuration is shown in Figure 7. In this 
scheme, we use our multi-class detector, based on the 
GEMS and the wide-band resident mic. The suppression 
uses the P-mic signal for the low-band [0, 500] Hz and 
the resident-mic signal above 500 Hz. The GEMS and P-
mic are used for a synthetic phase over the range [500, 
1200] Hz. As seen in Figure 7, we have introduced a 
spectral sharpening module which narrows formant 
bandwidths and adds a pre-emphasis, accounting for 
formant widening by the P-mic due to energy loss 
through the skin and accounting for there being no 
acoustic radiation as in the acoustic waveform that 
emanates through free space from the lips.  
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Spectrograms 
illustrating use of 
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noise suppression: 
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An example using this configuration is illustrated in 
Figure 8 in two steps: (1) Combined Wiener filtering of 
the high-pass resident-mic and the low-pass P-mic 
signals, and (2) Inclusion of the phase construction of 
Figure 6.   
 
Observe that the introduction of the enhanced low-passed 
P-mic signal has provided significant voice-bar and nasal 
consonant components lost by the resident-mic. The 
introduction of the synthetic phase derived from the 
GEMS and P-mic has improved the visual clarity of the 
harmonic and formant structure in the mid-frequency 
range, relative to the noisy phase of the original acoustic 
signal. Informal listening to a variety of passages, under 
the M2H condition, indicates improved quality, and 
potentially improved intelligibility, for enhanced 
listening. In addition, we cite two other application areas:   
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Speaker authentication: The nonacoustic sensors appear 
to provide an accentuation of low-frequency events such 
Figure 6: Phase construction
by addition of the GEMS 
phase and a synthetic phase 
derived from the P-mic 
signal under a minimum-
phase assumption. The 
Hilbert transform/filtering 
module implements   
homomorphic filtering of the 
enhanced P-mic signal  
plications 

 configurations 
 magnitude and 

as voice bars and nasals. We have observed a strong 
speaker-dependence of the duration, strength, and 
spectral character of these events in nonacoustic signals, 
and thus our enhanced, fused signals may provide 



information for speaker authentication  [Campbell et al, 
2003] not represented with the baseline suppression. 
Speech encoding: Including the synthetic phase of 
Figure 6 appears as a small effect in some cases, 
especially in bands of high- to moderate SNR. In the 
encoding application, however, this effect multiplies. 
Figure 9 shows the result of MELP encoding [McCree et 
al, 1996] the signal of Figure 8, before and after 
including the synthetic phase. The introduction of phase 
has significantly improved harmonic structure of the 
signal not only in the [500, 1200] Hz range where the 
phase is replaced, but also through the entire speech 
band, and with informal listening this corresponds aurally 
to a perceived improved “clarity” and lessening of coding 
artifacts. 
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7.0 SUMMARY AND DISCUSSION 
 
In this paper, we presented an approach to noise  
suppression that capitalizes on recent developments in 
nonacoustic sensors that are relatively immune to 
acoustic background noise. The GEMS, P-mic, and EGG  
nonacoustic sensors were considered. These sensors can 

directly measure the speech glottal excitation but also 
directly measure speech attributes such as vocal tract 
articulators.  The sensors were exploited to improve a 
particular noise suppression system based on a Wiener 
filter that adapts to spectral changes in the speech and 
background noise signals. Different aspects of acoustic 
and nonacoustic signals were used according to their 
capability in representing specific speech characteristics. 
Frequency-domain sensor phase, as well as magnitude, 
was found to contribute to improved signal enhancement 
within different frequency bands.  Preliminary testing 
involved the time-synchronous multi-sensor DARPA 
ASE Pilot Speech Corpus collected in harsh acoustic 
noise environments. The enhancement approach was 
illustrated with examples and shown to have potential as 
a pre-processor to low-rate vocoding and speaker 
authentication, as well as for enhanced listening.  
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Next steps include perceptual testing of enhanced signals, 
both uncoded and MELP-encoded, using a formal 
diagnostic rhyme test (DRT), and further development of 
different configurations based on nonacoustic sensor 
placements. We are also in the process of  applying the 
enhancement algorithms of this paper as pre-processing 
for speaker authentication with the DARPA ASE Pilot 
Speech Corpus [Campbell et al, 2003]. 
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Abstract— Current state-of-the-art speaker verification algo-
rithms use Gaussian Mixture Models (GMM) to estimate the
probability density function of the acoustic feature vectors.
Previous studies have shown that phonemes have different
discriminant power for the speaker verification task. In order to
better exploit these differences, it seems reasonable to segment the
speech in distinct speech classes and carry out the speaker mod-
eling for each class separately. Because transcribing databases
is a tedious task, we prefer to use data-driven segmentation
methods. In our previous work, we have focused on the tuning
of the ALSIP data-driven segmentation method. The novelty of
the proposed method is the combination of the DTW distortion
measure with data-driven segmentation tools, and the use of a
Logistic Regression Function to determine the optimal fusion
weights of the speech segments. The performance of the proposed
system is evaluated on subsets build from NIST’2001 and 2002
Evaluation data. Our results show that applying score fusion
with the weights found by the Logistic Regression function
leads to a better results, as compared to a simple summation
of the segmental scores. Our method could also be applied
to automatically remove the less significant segments (usually
corresponding to “silence” segments).

I. INTRODUCTION

Current best performing text-independent speaker veri-
fication systems are based on Gaussian Mixture Models
(GMM) [1]. Speech is composed of different sounds and
speakers differ in their pronunciation of these sounds. GMM
could be interpreted as a “soft” representation of the various
acoustic classes that make up the speakers’ sounds. They do
not take into account the temporal ordering of the feature
vectors. The speaker verification approach described in this
work is based on speech recognition, grounded on data-driven
techniques that require neither phonetic nor orthographic
transcriptions of the speech data. The main advantages of
introducing a speech recognition stage in speaker verification
experiments are: to exploit the different speaker discriminant
power of speech sounds [2,3,4,5], and to benefit of some
higher-level informations resulting from the segmentation.

The majority of current speech processing systems use
phones (or related units) as an atomic representation of speech.
Using phonetic speech units lead to efficient representation
and implementation for a lot of speech processing systems.
The major problem that arises when phone based systems
are being developed is the possible mismatch with the data

being used and the lack of transcribed databases (because
transcribing speech data is an error-prone and expensive task).
The set of speech units can also be learned from examples,
like in data-driven approaches. In [4-6] we have proposed a
new architecture for speech processing based on units acquired
during a data-driven segmentation, that is not grounded on
transcribed databases. These units are denoted as Automatic
Language Independent Speech Processing (ALISP) units.

In [4], [5] we have already used the ALISP data-driven
speech segmentation method for speaker verification. The
number of classes, (8), was chosen in order to have enough
data for each class, when dealing with 2 min of enrollment
speech data used to build the speaker models. In those ex-
periments, we studied speaker modeling algorithms, such as
Multiple Layer Perceptrons (MLP) and GMM’s. Classifying
speech in only 8 speech classes, did not led to a good
coherence of the speech classes.

In [17], we have used a finer segmentation of the speech
data into 64 speech classes, and a Dynamic Time Warping
(DTW) distortion measure for the speaker verification step.
It is obvious that when using so many classes, the classical
speaker modeling methods have to be redefined. Speaker mod-
eling with GMM’s is still possible, but more difficult because
of the lack of client speaker data. MLP could not be applied,
because of lack of sufficient data for the client class. Therefore,
we have decided to use the well known Dynamic Time
Warping method to evaluate the distance between two speech
patterns. This method could be used independently on short
and long speech data. If the two speech patterns belong to the
same speech class, we could expect that the DTW distortion
measure can capture the speaker specific characteristics. DTW
distance measures have already been used for text-dependent
speaker recognition experiments [11], [7], [12], [13]. The
novelty of the proposed method is its combination with the
ALISP units. In our previous work, we have focused on the
tuning of the ALISP based segmentation. In [17], we have
analyzed the scores used for the speaker verification on a
global level, and all the speech classes were treated with the
same weight. In this paper, we use the Logistic Regression
[14], [15], [16] to exploit the different discriminant power of
the ALISP speech classes.

The outline of this paper is the following: In Sect. II
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Fig. 1. Unsupervised Automatic Language Independent Speech Processing (ALISP) unit acquisition, and their HMM modeling

presents in a more detailed way the proposed method. Sect. III
describes the database used and the experimental protocol. The
evaluation results are reported in Sect. IV. The conclusions and
perspectives are given in Sect. V.

II. DESCRIPTION OF THE PROPOSED SYSTEM

A. Data-Driven Speech Segmentation

The steps needed to acquire and model the set of data-
driven speech units, denoted here as Automatic Language
Independent Speech Processing (ALISP) units [6], are shortly
described in the following section. Instead of the widely used
phonetic labels, data-driven labels automatically determined
from the training corpus are used. The set of symbolic units
is automatically acquired through temporal decomposition,
vector quantization, segment labeling and Hidden Markov
Modeling, as shown in Figure 1. After a classical pre-
processing step leading to acoustic-feature vectors, temporal
decomposition [8] is used for the initial segmentation of the
speech data into quasi-stationary segments. At this point, the
speech is segmented in spectrally stable portions. For each
segment, its gravity center frame is determined. A vector
quantization algorithm is used to cluster the center of gravity
frames of the spectrally stable speech segments. The codebook
size defines the number of ALISP symbols. The initial labeling
of the entire speech segments is achieved using minimization
of the cumulated distances of all the vectors from the speech
segment to the nearest centroid of the codebook. The result
of this step is an initial segmentation and labeling. These
labels are used as the initial transcriptions of the ALISP
speech units. Hidden Markov Modeling is further applied for
a better coherence of the initial ALISP units. Since correct
transcriptions of the evaluation data are not available, we

cannot compare the correspondence of ALISP units and the
usual phonetic units. We studied this correspondence for some
speaker of the development set and we found that there is
some evidence of correlation of phonemes and ALISP units
(see Figure 2).

B. Principle of the Segmental Speaker Verification

The proposed speaker verification system is a combination
of Dynamic Time Warping (DTW) distortion measure with
data-driven speech segmentation based on ALISP tools. The
number of speech classes used is 64, and is comparable to a
pseudo-phonetic segmentation.

For the speaker verification step we use two dictionaries:
the Client-Dictionary, composed of the segments found in the
enrollment client speech data and the World-Dictionary, build
with segments found in the speech data representing the world
speakers. These dictionaries are defined during the training
(also known as enrollment) phase.

During the test phase, each test speech data, � is first
segmented with the � ALISP HMM models. If we denote by
� the number of total ALISP segments in the test segment
� . � is the concatenation of � segments ��, � � �� ����� .

In the next step of the testing phase, each of the test speech
segments �� is compared with a DTW distance measure,
to the Client-Dictionary and to the World-Dictionary. This
comparison is done on a per class level. For sake of simplicity,
we will omit the indexes indicating the ALISP classes. The
score �����, for each segment, is calculated as follows (see
also Figure 3):

����� �
����� ���� 	�


�
(1)



Fig. 2. Example of the ALSIP segmentation, of an excerpt of a test speech data, spoken by a male speaker.

Fig. 3. Illustration of the proposed segmental method based on searching in a client and world speech dictionaries.

where ����� ��� is the distance of �� to �� the most sim-
ilar segment from the corresponding class dependent Client-
Dictionary ; 	� and 
� are respectively denoting the mean
and variance of the most similar segments from each of the
�� world speakers dictionary.

Let � be the number of segments in the test speech data.
The global score of the claimed speaker is then calculated
as a simple summation of the segmental scores (defined by
Equation 1), and normalized by the total number of segments
� :
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C. Applying Logistic Regression for Segmental Score Fusion

The system described in the previous section uses the same
weight for all the segments. To exploit the different discrim-
inant power of the speech classes, the Logistic Regression is
applied. The Logistic Regression function ( [15], [14], [16])
is defined as follows:
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where 	�� and 	�� represent the mean of the client and
impostor classes, respectively, and 
�� represents their common
variance. �� is the weight given to the segment �� of the class �.
This assumes gaussianity of the score distributions with equal
variances. The global score �, can be rewritten as follows.

� �
�

�

��

���

������� (6)

This weights are estimated from a development set.

III. EXPERIMENTAL SETUP

The experiments described in this paper are carried out
using the NIST 2001 and 2002 Evaluation data [18]. In order
to evaluate the proposed method, 3 disjoint sets denoted here
as: World-ALISP-set, Development-set and Evaluation-set are
designated among the available data.

The World-ALISP-set (comprising data from 58 female and
57 male speakers), is a subset of the NIST’2001 data. It is used
for two purposes: to build the gender dependent ALISP rec-
ognizers and to represent the world speakers. The NIST’2002
data is split into two sets: the Development-set (80 female
and 60 male speakers), used to estimate with the Logistic
Regression function, the class dependent weighing values and
the Evaluation-set (111 female and 79 male speakers), used
to test the performance of the proposed system.

The speech parameterization for the temporal decompo-
sition is done with Linear Prediction Cepstral Coefficients
(LPCC), calculated on 16 ms windows, with a 8 ms shift
(this choice is due to implementation purposes). For the
speech recognition with the Hidden Markov Models and for
the DTW speaker verification step, we have used the Mel
Frequency Cepstral Coefficients (MFCC). They are generally
used for common speech and speaker verification purposes.
The window and shift values are kept the same as for the
LPCC parameterization.

In order to accelerate the search, we have restricted the
number of speech units in the client and world dictionaries.
The 15 longest segments per class and per world speakers are
chosen for the World dictionary, and for the Client dictionary.
During the testing phase (see Figure 3), each of the test speech
segments is compared with a DTW distance measure, to the
Client Dictionary and to the World Dictionary.

IV. FUSION RESULTS

Initially, the proposed system combines the information
provided by the DTW distance measure by a simple sum-
mation of the segmental score. The final score is obtained by
normalizing by the total number of segments in the test file.
This gives to each of the segments (belonging to one of the
64 ALIPS speech classes) the same weighting in the overall
scoring. This system, whose performance is given in Figure 5
uses all of the segments present to produce the final score.
However, as already mentioned in the Introduction, some
of the segments provide little or no discrimination between
speakers and the inclusion of these may lead to a degradation
in performance. Therefore it should be possible to improve the
system performance by omitting or reducing the contribution
of these segments. An example is the usual removal of frames
that are supposed to represent the “silences”, and that are
usually removed, and not used for the speaker verification
procedure.

If we use the Logistic Regression, as explained in Section II
to determine the optimal weights for the merging(fusion) of
the segmental scores, we achieve a better performance, than
the linear summation of the scores. The class and gender
dependent weights are estimated form the Development Set.
Figure 4 shows the weights, found by the Logistic Regres-
sion, for each segment. Because the speech segmentation is
gender dependent, the weights are also gender dependent. The
distribution of weights confirms that certain segments perform
significantly better than others. The results, when we use these
wights on the evaluation set are shown in Figure 5. These
results show that a significant improvement in performance
has been made by weighting the segment classes.

In Figure 5, all the segments are used. In order to have
a better representation of which are the worst and best per-
forming classes, we listened to some files. We found that the
segments with low weight generally correspond to “silences”
and those with high weights (HH for male and H4 for female)
correspond to vowels.

In order to reduce the calculation duration, we have applied
a threshold of � � ����� to the weights. The results of the
speaker verification performance, when not considering the
speech segments that belong to classes with a weight below
the threshold � , and using the other weights, are shown on
Figure 6, with the solid line. For comparison, the results
(dotted lines) including all the segments, with the weights
determined by the Logistic Regression are repeated once more.

Using a system which excludes the silence automatically
provides better results than the reference system using all of
the segments. It should be noted also that these results are
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Fig. 4. Weight for each ALISP unit

obtained without the usual normalization techniques (like Z
or T Normalization), commonly used for speaker verification
experiments. Further improvement of our system could be
foreseen if we use them with the proposed system. For
comparison, we can indicate that the equal-error rate for a
standard GMM system is about 8% (best single GMM results
from 2003 NIST Speaker Recognition Evaluation).
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Fig. 5. Speaker verification results for the linear fusion and the fusion using
the Logistic Regression approach.
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Fig. 6. Performance of the system using all segments and using only the
most discriminative segments.

V. CONCLUSION

In this paper a comparison between two segmental speaker
verification systems is presented. For the first one, the scores
are calculated for each ALISP segment, and an equal weight
is given to each classes. For the second system, we use the
Logistic Regression, to determine class specific weights for
each ALISP class. The results show that with the Logistic
Regression, we can determine the segments that are more
discriminant for the speaker verification task, and we can also



detect automatically the majority of the segments correspond-
ing to “silences”. Further improvements of our system could
be foreseen applying the commonly used speaker verification
normalization techniques. Future work will concentrate on
traying to fuse our system with a GMM based system.
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Abstract 
 

The performance and robustness of a person 
recognition system using acoustic information can be 
improved with the use of visual information.  In this paper 
we present an audio-visual (AV) speaker identification 
and verification system and analyze its performance. The 
proposed system utilizes a Hidden Markov Model (HMM) 
approach and Facial Animation Parameters (FAPs), 
supported by the MPEG-4 standard for representing 
visual features. A number of experiments have been 
performed under both clean, and noisy (utilizing additive 
Gaussian noise) audio conditions at different signal-to-
noise ratios (SNRs) ranging from 0 dB to 20 dB. The 
proposed system improves the performance of the audio-
only system at all SNRs tested and under clean audio 
conditions.  
 

1. Introduction 
 

Person recognition can be classified into two 
problems, person identification and person verification 
[1].  Person identification is the problem of determining 
the identity of a person (who the person is) from a closed 
set of candidates, based on the best match of the person’s 
biometric signals to those in a database.  Person 
verification is the problem of determining whether a 
person is whom s/he claims to be, also utilizing the 
person’s biometric signals.  A verification system should 
be able to reject claims from impostors, persons not 
registered with the system, and accept claims from the 
clients, persons registered with the system. There is an 
increasing need of reliable person verification systems to 
improve the security of systems or services used by only 
selected group of people. There are many different 
biometric signals, such as faces, voices, fingerprints, iris 
scans, and passwords, that can be used in a person 
recognition system [2, 3]. Each modality has its own 
advantages and disadvantages. Although single modality 
biometric systems can achieve high performance in some 
cases, they are usually not robust to noise and do not meet 
the needs of many potential person verification (or 
recognition) applications. It has been shown that using 

multiple biometric modalities instead of a singe modality 
improves the performance of a system [4, 5]. Different 
modalities are combined in order to eliminate problems 
characteristic for single modalities. For example, a 
person’s voice and face, as biometric signals, are easily 
collected and natural to the user. Person verification 
systems that rely only on audio data are sensitive to 
acoustic noise and therefore not acceptable for many high 
security applications. On the other hand, systems that rely 
only on visual data can also be very sensitive to visual 
noise (lightning changes, poor video quality, occlusion, 
etc.). Audio and visual data have been used in automatic 
speech recognition (ASR) applications in order to 
improve ASR performance [6, 7]. The fact that the 
information present in the visual signal can be used not 
only to improve speech recognition performance but also 
to characterize a persons’ identity justifies the use of 
audio-visual biometric systems for person recognition 
applications. 

An important factor in designing an audio-visual 
recognition system is the selection of the audio and visual 
features.  While the selection of audio features is a well-
studied and agreed upon issue, various visual features 
have been utilized. MPEG-4 is an audiovisual object-
based video representation standard supporting facial 
animation. MPEG-4’s facial animation is controlled by 
the Facial Definition Parameters (FDPs) and Facial 
Animation Parameters (FAPs), which describe the face 
shape, and movement, respectively [8]. The MPEG-4 
standard defines 68 FAPs, divided into 10 groups (group 
8 FAPS pertaining to the mouth area –an important visual 
speech articulator- are shown in Figure 1).  Transmission 
of all FAPs at 30 frames per second requires only around 
20 kbps (or just a few kbps, if MPEG-4 FAP interpolation 
is efficiently used [9]), which is much lower than 
standard video transmission rates. FAPs represent an 
important descriptor of visual articulatory information 
whish is, clearly standard-compliant, and also portable, 
i.e., different 3D facial models [10] can be animated 
successfully by the same stream of FAPs. They are 
therefore utilized in the proposed system.  



 
 

Figure 1. Facial animation parameters (FAPs) 
 

 

                     
                     a)                                             b) 

 

Figure 2. a) Original video frame; b) MPEG-4 model 
[10] 
 
 

In this paper we describe an audio-visual person 
recognition system that uses Hidden Markov Models 
(HMMs) to model the temporal behavior of audio and 
visual data. Word-level continuous HMMs are used to 
model the temporal statistics of audio and visual data. 
Each person in the database is modeled using a separate 
HMM. During the training procedure, the world model is 
first trained on the training data of all speakers. The world 
model is then used as the initial model for each speaker 
HMM, which is retrained using only the training part of 
the database corresponding to the particular speaker. 

To the best of our knowledge no results have been 
previously reported in the literature on AV identification 
and verification when FAPs are used as visual features.   
It is therefore the main objective of this paper to report on 
such results. 

In this paper, we first describe in Section 2 the visual 
features extraction and in Section 3 the audio-visual 
integration approach used. Next the person verification 
and identification experiments and training procedures 
are described in Section 4. Finally, conclusions are drawn 
and future work is proposed in Section 5. 
 

2. Visual feature extraction 
 

This work utilizes the CMU (Carnegie Melon 
University) audio-visual database [11].  The database 
contains ten subjects; seven of whom are male and three 
female. The vocabulary includes 78 words commonly 
used for scheduling applications. Each subject repeated 
each of the words ten times. For each of the word set 
repetitions, the database contains a speech waveform and 
a word-level transcription. The video (a sample frame is 
shown in Figure 2a) was sampled at a rate of 30 frames 
per second while audio was acquired at a rate of 16 kHz. 
All FAPs are expressed in terms of Facial Animation 

Description FAPU value 
IRIS Diameter (by definition it is 
equal to the distance between 
upper and lower eyelid) in 
neutral face 

IRISD = IRISD0 / 1024 

Eye Separation ES = ES0 / 1024 
Eye - Nose Separation ENS = ENS0 / 1024 
Mouth - Nose Separation MNS = MNS0 / 1024 
Mouth - Width Separation MW = MW0 / 1024 

 Angular Unit AU = 10-5 rad 
 

Figure 3. Facial Animation Parameter Units (FAPU)  
 

 

                   
(a) 

                   
(b) 

 

Figure 4. The mean lip shape (middle column), and 
the lip shapes obtained by the variation of the first(a) 
and second (b) eigenvector weights by +2 standard 
deviations (left column) and –2 standard deviations 
(right column) 
 
 
Parameter Units (FAPU), as shown in Figure 3. These 
units are normalized by important facial feature distances 
in order to give an accurate and consistent representation. 
Ten FAPs from group 8 which describe the outer lip 
contours were used in our work, and they are represented 
with the use of two FAPUs, mouth-width separation 
(MW) and mouth-nose separation (MNS). Each of these 
two distances is normalized to 1024.  

The FAP sequences were extracted from the 
available visual data for all ten subjects and for all 100 
word sequences. Through visual evaluation of the FAP 
extraction results we observed that the extracted 
parameters produced a natural movement of the MPEG-4 
decoder (Figure 2b) that synchronized well with the 
audio.  

In order to decrease the dimensionality of the visual 
feature vector, Principal Component Analysis (PCA) was 
performed on the 10-dimensional FAP vectors (fn). The 
PCA training set consists of N FAP vectors, which are 
obtained from the training part of the visual data. The 
10x10 covariance matrix C can be computed as 
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where       denotes the mean FAP vector. nf



After the covariance matrix was obtained and its 
eigenvalues determined, the FAPs, fn, were projected onto 
the eigenspace defined by the first K eigenvectors, 
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Figure 5. Audio-visual system for ASR 
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where E=[e1 e2…eK] is the matrix of K eigenvectors, 
which correspond to the K largest eigenvalues, and on

f the 
Kx1 vector of corresponding projection weights. The first 
six, three, and one eigenvectors represent respectively 
99%, 95%, and 82% of the total statistical variance.  By 
varying the projection weights by ±2 standard deviations, 
we concluded that the first and second eigenvectors 
mostly describe the movement of the lower and upper lip, 
respectively (Figure 4), while the third eigenvector mostly 
describes mouth shape asymmetries. When choosing the 
dimensionality of the visual feature vector it should be 
kept in mind the trade-off between the number of HMM 
parameters that have to be estimated and the amount of 
the person recognition information contained in the visual 
features. Based on the statistical variance distribution and 
the above-mentioned trade-off we decided to use three-
dimensional (K=3) projection weights as visual features. 
These features were used in all audio-visual person 
verification and identification experiments we conducted. 

 

3. Audio-visual integration (feature fusion)  
 

 In the system we developed the audio and visual 
streams are combined as shown in Figure 5. The Mel-
Frequency Cepstral Coefficients (MFCC), signal energy 
and first and second derivatives, widely used in speech 
processing, were used as audio features. The three-
dimensional projections weights (Eq. 3) and their first and 
second derivatives were used as visual features. The size 
of the audio features was 39. The size of the visual 
features was 9. Since audio features (MFCCs) were 
extracted at a rate of 90Hz, while visual features (FAPs) 
at a rate of 30Hz, the visual features were interpolated in 
order to obtain synchronized data. 

In this approach the audio-visual feature observation 
vector (ot) is formed by appending the visual observations 
vector (ot

v) to the audio observations vector (ot
a), that is 
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The newly obtained joint features vectors were used to 
train an HMM model, with continuous state emission 
probabilities [12] given by 
 

∑
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In Eq. 4 subscript j denotes a state of a word model, M 
denotes the number of mixtures, cjm denotes the weight of 
the m’th mixture component, and N is a multivariate 
Gaussian with mean vector µjm and diagonal covariance 
matrix Σjm. The sum of mixture weights cjm is equal to 1. 
 

4. Training and experimental results 
 

The baseline HMM system was developed using the 
HTK toolkit version 3.1 [13]. In this work a text-
dependent audio-visual person verification and 
identification system is considered. The experiments used 
the portion of the CMU database in which speakers utter 
the digit sequence “234567”. The HMMs used to model 
each speaker had left-right topology, with 10 states. The 
part of the CMU audio-visual database used in the 
experiments consists of each speaker uttering the digit 
sequence 10 times. The data is divided into training, 
evaluation, and testing parts. The first six utterances of 
each speaker were used for training, one utterance was 
used for evaluation, and the remaining three for testing. 
The same training and testing procedures were used for 
both audio-only and audio-visual experiments. To test the 
algorithm over a wide range of SNRs (0, 10, 20 dB), 
white Gaussian noise was added to the audio signals. All 
results were obtained using HMMs trained in matched 
conditions, by corrupting the training data with the same 
level of noise, as used for corrupting the testing data. This 
approach was used in order to accurately measure the 
influence of the visual data on system performance.  

Word-level continuous HMMs were trained for each 
speaker in the database. During the training procedure, 
the world model (MW) is first trained on the training data 
of all speakers. The world model is used as the initial 
model for each speaker HMM (MS).  Each speaker HMM 
is then retrained using only the training part of the 
database corresponding to the particular speaker.  

In the person identification experiments the objective 
was to determine the speaker )ˆ(s  who’s HMM matches 
the best the unknown person’s data (ot), that is 

 
  )|(Prmaxargˆ tosSs Ms  ∈= ,                    (5) 

 

where S denotes set of all speakers in the database, and 
Ms an HMM for speaker s.  

 In the person verification experiments the objective 
was to accept the client claims and reject impostor claims. 
The similarity measure (DHMM) is defined as the 
likelihood ratio between the speaker set and the world set, 
that is  

 
)|(Prlog)|(Prlog tt oo WsHMM MMD   −= .   (6) 



 
If the similarity measure is larger than the a priori defined 
verification threshold the claim is accepted, and otherwise 
it is rejected. The evaluation part of the data was used to 

Table 1. Person identification results 
 

Person Identification Error [%] 
SNR [dB] Audio only Audio-visual 

clean 5.13 5.13 
20 19.51 7.69 
10 38.03 10.26 
0 53.10 12.82 

 

 
Table 2. Person verification results 

 
SNR [dB] Audio only [%] Audio-visual [%] 
 FA FR EER FA FR EER 

clean 2.85 25.64 2.56 0 12.82 1.71 
20 2.85 41.03 3.99 2.85 20.51 2.28 
10 0 53.85 4.99 0 23.08 2.71 
0 5.7 61.54 8.26 2.85 28.21 3.13 

 

 
calculate the verification thresholds to be used in 
determining whether a person is accepted or rejected. The 
thresholds determined from the evaluation set were used 
for testing. 

Two commonly used error measures for a 
verification system are False Acceptance (FA) –an 
impostor is accepted - and False Rejection (FR) –a client 
is rejected.  They are defined by 
 

 %100%100 ×=×=
C
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I
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where IA  denotes the number of accepted impostors, I  
the number of impostor claims, CR the number of rejected 
clients, and C the number of client claims. There is a 
trade-off between FA and FR, which is controlled by the 
a priori chosen verification threshold. Verification system 
performance can also be measured using Equal Error Rate 
(EER). It is determined after the verification experiments 
are performed, by choosing the threshold for which FA 
and FR are equal.  

 The verification threshold is chosen on the 
evaluation set to meet certain FA and FR requirements. In 
our experiments we set the threshold to obtain the 
minimum FA rate. FA and FR rates for that threshold are 
shown in Table 2. The threshold for which FA and FR 
were equal is also calculated after all the verification 
experiments were performed in order to determine EER. 
The EER results are also shown in the Table2. 

The results of the person identification experiments 
obtained for different levels of acoustic noise for both 
audio-only and audio-visual approaches are shown in 
Table 1. The audio-visual identification system 

outperforms the audio-only system for all SNRs tested 
and achieves the same performance as the audio-only 
system under clean audio conditions. 

The results of the person verification experiments are 
shown in Table 2. As can be clearly seen, the 
performance of the audio-only system degrades 
significantly in the presence of noise. The proposed 
audio-visual system performs considerably better than the 
audio-only system for all SNRs and for the clean speech.  
It is important to point out that the considerable 
performance improvement was achieved, although only 
nine-dimensional visual features were used.  
 

5. Conclusions 
 

We have described an audio-visual person 
verification and identification system that significantly 
improves performance over an audio-only system. Our 
system uses FAPs, supported by the MPEG-4 standard for 
the visual representation as visual features. We plan to 
extract additional FAPs and determine how much 
information useful for person recognition is contained in 
them. We also plan to perform text-independent 
experiments and experiments on larger AV database. 
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Abstract
This paper proposes a multimodal, biometric person au-
thentication method using speech and ear images to attempt
to improve the performance in mobile environments. It is
well known that the performance of person authentication
using only speech is deteriorated by acoustic noises and fea-
ture changes with time. Since the ear shape of each person
does not change over time, integrating its image with speech
information increases robustness of person authentication.
Experiments are conducted using audio-visual database col-
lected from 38 male speakers at five sessions over a half
year period. Speech data are contaminated with white noise
at various SNR conditions. Experimental results show that
the authentication performance is improved by combining
the ear image with speech in every SNR condition.

1. Introduction

The necessity of person authentication is spreading in the
recent network society. Biometric authentication, which
identifies an individual person using physiological and/or
behavioral characteristics, such as face, fingerprints, hand
geometry, handwriting, iris, retinal, vein, and speech, is one
of the most attractive and effective methods. These methods
are more reliable and capable than knowledge-based (e.g.,
password) or token-based (e.g., a key) techniques, since bio-
metric features are hardly stolen or forgotten.

Although “speech” is one of the most useful and effec-
tive features for person authentication in mobile environ-
ments, its performance deteriorates due to additive noise
and session-to-session variability of voice quality. There-
fore, the combination with other biometric features to im-
prove the performance has attracted a great deal of attention.
Along this line, various audio-visual biometric authentica-
tion methods have been proposed[1, 2, 3, 4, 5]. Although
most of them use “face” information in combination with
speech, the face features also change due to make-up, mus-
tache, beard, hair styles and so on, and derives degrada-
tion of the performance. Therefore, it is worth investigating
other biometric features with high permanence.

From this point of view, this paper proposes an authen-
tication method using “ear” shape information in combina-
tion with speech. It is well known that the ear shape hardly
changes over time[6, 7]. Although several authentication
methods using ear images have already been proposed[7, 8,
9], there is no research on multimodal authentication using
both speech and ear images. Since ear images could be cap-
tured using a small camera installed in a mobile phone, ear
information is expected to be easily used in mobile environ-
ments than other biometrics, such as fingerprint, iris, and
retinal, that need special equipment.

Our authentication method and audio-visual database are
described in Section 2. Section 3 reports experimental re-
sults and Section 4 concludes this paper.

2. System structure and experiments

Figure 1 shows our multimodal person authentication sys-
tem using speech and ear images. Audio and visual data
are respectively converted into feature vectors. Each set of
features is matched with both a claimed person model and
a speaker independent (SI) model. Then, audio and visual
scores are integrated with appropriate weighting and a deci-
sion is made whether he/she is a true speaker or an impostor.
If the score is larger than a threshold value, the speaker is
accepted as a claimed speaker.

2.1. Integrated score

A posterior probability is used as the authentication score.
The posterior probability of being a claimed speaker S c af-
ter observing a biometric feature set x, is denoted by p(S c|x).
Since x is composed of speech (audio) features xs and ear
(visual) features xe, p(Sc|x) can be transformed as follows:

p(Sc|x) = p(Sc
s |xs) · p(Sc

e |xe) (1)

where Sc
s and Sc

e represent the claimed speaker’s speech and
ear models, respectively. Bayes’ Rule derives the following
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Fig. 1. Multimodal person authentication system using speech and ear images.

equation:

p(Sc|x) =
p(xs|Sc

s)p(Sc
s)

p(xs)
· p(xe|Sc

e)p(Sc
e)

p(xe)
(2)

where p(xs|Sc
s) and p(xe|Sc

e) are likelihood values with
claimed speaker’s speech and ear models, respectively. The
probabilities in the denominator are approximated by us-
ing likelihood values with general speaker’s speech model
p(xs|Sg

s ) and ear model p(xe|Sg
e ):

p(Sc|x) ≈ p(xs|Sc
s)p(Sc

s)
p(xs|Sg

s )p(Sg
s )

· p(xe|Sc
e)p(Sc

e)
p(xe|Sg

e )p(Sg
e )

(3)

∝ p(xs|Sc
s)

p(xs|Sg
s )

· p(xe|Sc
e)

p(xe|Sg
e )

(4)

Equation (4) means that the posterior probability for the
claimed speaker’s model is calculated by the product of like-
lihood values normalized using speaker independent (SI)
models. By defining authentication scores for speech (ps)
and ear (pe) as

pm = log p(xm|Sc
m) − log p(xm|Sg

m) (m = s, e) (5)

an integrated score pse which balances the effectiveness of
speech and ear features can be modeled by the following
equation.

pse = λsps + λepe (λs + λe = 1) (6)

where λs and λe are audio and visual weights, respectively.

2.2. Audio-visual database

2.2.1. Recording conditions

Audio-visual data were recorded at five sessions with inter-
vals of approximately one month. The data were collected
from 38 male speakers, and each speaker uttered 50 strings
of four connected digits in Japanese at each session. Speech
data were sampled at 16kHz with 16bit resolution. One
right ear image for each speaker taken by a digital camera
with 720×540 pixel resolution was collected at each ses-
sion. Figure 2 shows the arrangement of a speaker and a
camera when recording. An image of the whole ear, with
no hair obscuring it, was captured by the camera positioned
perpendicular to the ear. The camera was located approx-
imately 20cm away from each speaker’s ear. A flash was
used to keep constant illumination.

2.2.2. Training and testing data

A set of data recorded at sessions 1∼3 was used for train-
ing and that recorded at sessions 4 and 5 was used for test-
ing. The database was separated into two groups in terms
of speakers as shown in Figure 3. This figure shows the
case that the speaker #01 was used as the claimed speaker.
The SI model was trained using the utterances by all the
speakers in the speaker group B which did not include the
claimed speaker. When one of the speakers in the speaker
group B was used as the claimed speaker, the utterances by
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Fig. 3. Training and testing data for the authentication ex-
periment when the speaker #01 is the claimed speaker.

the speaker group A were used for the SI model training.
In this way, the SI model was always trained using the data
of a speaker group not including the claimed speaker. All
the speakers in both speaker groups A and B, except for the
claimed speaker himself, were used as imposters.

White noise was added to the audio data for training
at 30dB SNR level to increase the robustness against noisy
speech, and testing data were contaminated with white noise
at 5, 10, 15, 20, and 30dB SNR conditions.

As image data, we first extracted gray-scaled ear images
with 80×80 pixel resolution. An example of the extracted
ear image is shown in Figure 4. The ear location and rota-
tion in the image were manually adjusted. In order to in-
crease robustness of visual models, the following variations
were given to training data:

(1) Shifting the ear location in vertical and horizontal di-
rections within ±6 pixels at a 2 pixel interval. Conse-
quently, 49 variations were made for each ear image.

(2) Rotating the ear images within±30 degrees at one de-

Fig. 4. An example of the extracted ear image.

gree interval. Accordingly, 61 variations were made
for each ear image.

The both operations made approximately 9,000 (= 3 ses-
sions × 49 × 61) ear images for training each speaker’s
model. For testing data, we applied only the rotating opera-
tion (2).

Both training and testing data were filtered to empha-
size the ear feature. The following three conditions were
experimentally compared to find the best filtering method:

(a) No filtering (Figure 5(a)).

(b) Laplacian filtering (Figure 5(b)).

(c) Laplacian-Gaussian filtering (Figure 5(c)).

Finally, all ear images were circularly sampled and dig-
itized for reducing hair effects and avoiding the window
shape effects caused by rotation of the images.

2.3. Audio and visual features

Audio features were 25-dimensional vectors consisting of
12 MFCCs, 12∆MFCCs, and ∆ log energy. The frame shift
was 10ms and the analysis window length was 25ms. For
ear images, “eigen-ear” space was built by using Principal
Components Analysis (PCA) in the same way as the eigen-
face approach used in face recognition[10]. The PCA was
applied to the ear images recorded at the first session using
19 speakers in one of the two speaker groups that did not
include the claimed speaker. The original ear images with
no shifting or rotating were used for the analysis. Figure 6
shows examples of the first eight eigen-ear images obtained
by the PCA using the Laplacian-Gaussian filtered images.
All the ear images were converted into 18-dimensional vi-
sual feature vectors using the first 18 eigen-ears.

2.4. Speech and ear models

The audio features were modeled by digit-unit HMMs. Each
digit HMM has a standard left-to-right topology with n× 3
states, where n is the number of phonemes in the digit. The



(a) no filtering (b) Laplacian filtering (c) Laplacian-Gaussian
              filtering

Fig. 5. Examples of the filtered ear images.
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Fig. 6. Examples of the first 8 eigen-ear images.

authentication score for the speech features represented in
Equation (4) is calculated as follows:

p(xs|Sc
s)

p(xs|Sg
s )

=
Σwp(xs|Sc

s , w)p(w)
Σwp(xs|Sg

s , w)p(w)

≈ maxw p(xs|Sc
s, w)

maxw p(xs|Sg
s , w)

(7)

where w is a string of four connected digits.

The visual features were modeled using GMMs. In each
testing experiment, 61-feature vectors converted from the
rotated images were input to the GMMs. Log likelihood
values calculated for the claimed speaker and the SI models
were used to obtain the authentication score for each ear
image according to the Equation (5).

3. Experimental results

3.1. Results of the authentication using ears

An experiment using only ear images was first conducted
for investigating the effects of shifting and filtering the ear
images. Table 1 shows equal error rates (EER) for the per-
son authentication at various conditions of filtering and im-
age processing applied to the training data. In the exper-
iment, optimum numbers of mixtures: eight mixtures for
speaker GMMs and one mixture for SI GMM, were experi-
mentally chosen.

The results show that both filtering methods are effec-
tive for improving the authentication performance. The
Laplacian-Gaussian filtering yields better results than the
Laplacian filtering. The shifting operation for training data
also improves the performance irrespective of filtering meth-
ods. This probably means that there are some mismatches
of ear location between training and testing data due to the
manual image extraction process.



Table 1. Equal error rate (%) in person authentication using
ear images with various kinds of filtering and processing in
the training stage.

only shifting &
rotating rotating

no filtering 14.5 14.0
Laplacian filtering 13.6 13.3
Laplacian-Gaussian filtering 13.2 11.9

The best result, 11.9% EER, is observed at the condi-
tion using the Laplacian-Gaussian filtering and shifting as
well as rotating operations. This condition is used in the
following visual authentication experiments.

3.2. Results of the multimodal authentication

Multimodal authentication results in various SNR condi-
tions obtained by using optimum audio weights (λs) are
shown in Figure 7. The optimum weights (λs) were de-
termined experimentally to minimize the error rate at each
condition. The optimum values are also shown in the fig-
ure. Results using only speech (λs = 1.0) and only ear
(λs = 0.0) are also shown for the purpose of compari-
son. The number of mixtures in audio HMMs was opti-
mized based on the experimental results at the 30dB SNR
condition; the number of mixtures was set to four for both
speaker and SI HMMs.

Although the authentication performance using only
speech is highly degraded by the noise effect, it is clearly
shown that multimodal authentication is robust. The pro-
posed method is most effective when the SNR is 15dB; the
error rate is reduced by 53.0% from the audio only method
and 43.9% from the visual only method. The best perfor-
mance of 0.3% EER is observed at the 30dB SNR condi-
tion.

Figure 8 shows EER as a function of the audio weight
(λs). Improvement using the ear images is observed over a
wide range of λs. It is also shown that the optimum λs val-
ues exist in the range of 0.6 ∼ 0.8 at all the noise conditions
with the exception of the 5dB SNR condition. This means
that the proposed multimodal method is not sensitive to the
change of weights and the weight can be easily optimized.

3.3. Comparing ears with faces as biometrics

We previously conducted person authentication experiments
using speech and face features[5] in the similar way as that
described in this paper. Although the speech and face
database has the same number of speakers and recording
sessions as the speech and ear database, 38 male speakers

λ

Fig. 7. Person authentication results in various SNR condi-
tions.

λ

Fig. 8. Equal error rate as a function of the audio weight λ s.

and 5 sessions, actual speakers are different between the two
databases.

The previous work showed that the EER using only the
face information was 7.0%, which was better than the EER
using the ear information, 11.9%.

One of the reasons is that ear images are more change-
able than face images by a tilt of the camera, since the ear
surface is more irregular than the face surface. However,
since the ear itself is not as changeable as the face, the au-
thentication using ear biometrics has a possibility to become
a practical method, if the above observation problem can be
solved.



4. Conclusions

This paper has proposed a multimodal authentication method
using the combination of speech and ear images with the
aim of increasing noise robustness in mobile environments.
The proposed method has been confirmed to be more robust
than the speech only method in various SNR conditions.

Future works include 1) improving the authentication
performance using the ear information by increasing the ro-
bustness against ear image variation caused by a tilt of a
camera, 2) reducing the effects of hair and sideburns, 3) de-
veloping an automatic method for ear area detection, and
4) investigating the robustness of ear features against their
changes over time.
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jklmn kop qormstsuovn ksm twtxyks zuw{ mvsuln |ws
tmsnwoky upmovuqlkvuwo } ~w�m�ms � v�m� �k�m nw{ m psk��
zkl�n } jws uonvkolm � uv �n k �ms� l�kyymoruor tswzym{ vw
pmnuro |klm smlwro uvuwo vml�ou�xmn ��ul� lko pmky � uv�
v�m m�mlvn w| kruor � |kluky m�tsmnnuwon kop tswzym{ n
nxl� kn l�koruor �� twnm � yur�vuor kop n�kpw� } juo�
rmstsuovn kynw sm�xusm v�m lwwtmskvuwo w| nxz� mlvn } ��m
mks � ��ul� un �ukzym kn k zuw{ mvsul ���� � �kn lmsvkuo kp�
�kovkrmn w�ms wv�ms zuw{ mvsuln } jws m�k{tym � mks un
sul� uo |mkvxsmn � uv un k nvkzym nvsxlvxsm ��ul� pwmn owv
l�korm � uv� v�m krm �� vw ��� } �v pwmno �v l�korm uvn
n�ktm � uv� |kluky m�tsmnnuwon } jxsv�ms{wsm � v�m mks un
yksrms lw{tksmp vw qormstsuovn kop lko zm mknuy� lkt�
vxsmp ���� }

�o smlmov �mksn � nw{ m kttswkl�mn �k�m z mmo pm�my�

wt mp |ws mks smlwrouvuwo } �xsrm kop �xsrms ��� tsw�
twnmp ko kp� klmol� rskt� � ��ul� un zxuyv |sw{ v�m
�wswowu pukrsk{ w| v�m mks �n mprm nmr{ movn � vw pm�
nlsuz m v�m mks } �ks smlwrouvuwo un pwom z� nxzrskt�
{ kvl� uor } ~xsym� mv ky } ���� ktt yump |wslm qmyp vskon�
|ws{ vw mks u{ krmn kop �myyn kop l�koomyn ksm n�w�o
vw zm uo�ksukov vw k�om vskon|ws{ kvuwon } � ulvws mv ky }
���� x nmp �suolutky �w{twomov  oky�nun vw mks u{ krmn }
  yy w| v�mnm tktmsn �k�m xnmp �� uovmonuv� u{ krmn kop �
v�msm|wsm � v�m t ms|ws{ kolm w| v�mnm n�nvm{ n un rsmkvy�
k�mlvmp z� u{ kruor lwopuvuwon } ~w�m�ms mksn lko zm
u{ krmp uo ��� |sw{ k punvkolm kop �m lko pm�mywt k
swzxnv mks zuw{ mvsul }

�o v� un tktms � �m uovswpxlm k om� ywlky nxs|klm pm�
nlsutvws |ws �� mks smtsmnmovkvuwo } ¡m lkylxykvm v�m
yw lky nxs|klm pmnlsutvwsn woy� |ws v�m |mkvxsm twuovn
��ul� ksm pmqomp kn v�m yw lky { uou{x{ kop {k�u{x{
w| n�ktm uopm�mn lkylx ykvmp |sw{ tsuolutky lxs�kvxsmn
��� } ¢xs kttswkl� nvksvn |sw{ m�vsklvuor |mkvxsm twuovn
|sw{ skorm u{ krmn � v�mo pmqom v�m yw lky nxs|klm tkvl�
kn v�m |mkvxsm twuov kop uvn omur�zwsn � om�v lkylxykvm
yw lky nxs|klm tswtmsvumn ��ul� ksm �� �unvwrsk{ � nxs�
|klm v�t m kop v�m lmovswup } ��m �� �unvwrsk{ lwo�
nunvn w| n�ktm uopm�mn kop korymn z mv�mmo v�m ows{ ky
w| sm|msmolm twuov kop v�kv w| uvn omur�zwsn } �� lw{ �
tksuor yw lky nxs|klm tkvl�mn � �m qop v�m twvmovuky lws�
smntwopuor yw lky nxs|klm tkvl�mn } juokyy�� �m mnvu{ kvm
v�m vskon|ws{ kvuwo zknmp wo v�m lwssmntwopuor nxs|klm
tkvl�mn kop lkylxykvm v�m {kvl� �xkyuv� zmv�mmo v�m
��twv�mnu£mp {wpmy kop vmnv u{ krm }

��m smnv w| v�m tktms un wsrkou£mp kn |wyyw� n } ¡m uo�
vswpxlm v�m smykvmp �ws� kop {wvu�kvuwo uo ¤mlvuwo � }
�o ¤mlvuwo � � wxs kttswkl� vw smtsmnmov v�m |smm�|ws{
nxs|klmn kop { kvl�uor v�m nxs|klm tkvl�mn un tsmnmovmp }
¤mlvuwo ¥ ru�mn v�m m�tmsu{ mov smnx yvn vw pm{wonvskvm
v�m m�mlvu�momnn w| wxs kttswkl� } �wolyxnuwo un tsw�
�upmp uo ¤mlvuwo � }
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2.1 Related work in 3D object recognition

�o �� wz� mlv smlwrouvuwo � v�m �m� tswzym{ n ksm �w�
vw smtsmnmov |smm�|ws{ nxs|klmn m�mlvu�my� kop �w� vw
{kvl� v�m nxs|klmn xnuor v�m nmymlvmp smtsmnmovkvuwo }
�o v�m mksy� �mksn w| �� lw{txvms �unuwo � v�m smt�
smnmovkvuwo nl�m{mn uolyxpmp ¡ usm�jsk{ m � �wonvsxl�
vu�m ¤wyup �mw{ mvs� ��¤� � � ��vmopmp �kxnnuko �{ krm
��� �� � �momskyu£mp ��yuopmsn � tykoks |klmn ��� kop ¤x�
tms�xkpsul ���� ��� }   yy w| v�mnm ksm owv nxuvkzym |ws smt�
smnmovuor |smm�|sw{ nxs|klmn } ��m mks lko zm v�wxr�v
w| kn k surup |smm�|ws{ wz� mlv }

¤vmuo kop 	 mpuwou ��
� x nmp v�w pu�msmov v�t mn w|
tsu{ uvu�mn � ��� lxs�mn kop ntykn�mn � |ws smtsmnmovkvuwo
kop { kvl�uor } ��� lxs�mn ksm mprmn lwssmntwopuor vw
v�m pmtv� kop wsumovkvuwo punlwovuoxuvumn } jws n{wwv�
ksmkn � ntykn� un pmqomp kn nxs|klm ows{ kyn kywor lwo�
vwxsn w| pu�msmov skpuu } �wv� w| v�m{ lko zm molwpmp z�
k nmv w| �� nxtms nmr{movn � ��ul� ksm pmnlsuzmp z� v�m
lxs�kvxsm kop vwsnuwo korymn w| k nxtms nmr{ mov } ��m
�� nxtms nmr{movn ksm uopm�mp uovw k �kn� vkzym |ws
|knv smvsum�ky kop { kvl�uor } ��msm|wsm � kyy v�m {wpmy
uo|ws{ kvuwo un smlwspmp uo v�m �kn� vkzym } ~�twv�m�
nun un rmomskvmp z� lknvuor �wvmn vw v�m �kn� vkzym kop
zkp ��twv�mnmn ksm sm{w�mp z� mnvu{ kvuor sur up vskon�
|ws{kvuwo } ��xk kop �ks�un �
� x nmp twuov nurokvxsm �
��ul� lko pmnlsuz m v�m nvsxlvxsky omur�zws�wwp w| k
twuov � vw smtsmnmov �� |smm�|ws{ wz� mlvn } �wuov nurok�
vxsm un wom�pu{ monuwoky nuromp punvkolm tswq ym � uv� sm�
nt mlv vw v�m swvkvuwo korym pmqomp z� v�m korym zmv�mmo
v�m ows{ ky �mlvws kop v�m sm|msmolm �mlvws } 
 mlwrou�
vuwo un tms|ws{ mp z� {kvl�uor v�m nurokvxsmn w| twuovn
wo v�m nlmom nxs|klmn vw v�wnm w| twuovn wo v�m {wpmy
nxs|klmn } ��m { k�u{x{ kop { uou{x{ �kyxmn w| v�m
nurokvxsmn ksm xnmp kn uopm�mn vw k �� vkzym |ws |knv
smvsum�ky kop { kvl�uor }

�w�onwo kop ~mzmsv ��¥� tsmnmovmp v�m ntuo u{ krm
�¤�� ��ul� un smkyy� k �� �unvwrsk{ } � u�mo ko wsumovmp
twuov wo v�m nxs|klm � uvn n�ktm un pmnlsuz mp z� v�w tk�
sk{mvmsn } ¢om un v�m punvkolm vw v�m vkormov tykom w|
v�m wsumovmp twuov |sw{ uvn omur�zwsn � v�m wv�ms un v�m
punvkolm vw v�m ows{ ky �mlvws w| v�m wsumovmp twuov }
��msm ksm v�smm nvmtn � ntuo u{ krm rmomskvuwo � lwssm�
ntwopmolm twuovn qopuor kop �msuq lkvuwo } j usnv � ntuo
u{ krmn ksm lkylxykvmp kv m�ms� �msvm� w| v�m {wpmy nxs�
|klmn } ��mo v�m lwssmntwopuor twuov tkus un |wxop z�
lw{txvuor v�m lwssmykvuwo lwm� lumov w| v�w nt uo u{ krmn
lmovmsmp kv v�wnm v�w twuovn } �m�v v�m lwssmntwopuor
tkusn ksm q yvmsmp z� xnuor rmw{ mvsul lwonvskuovn } j u�
okyy�� k sur up vskon|ws{kvuwo un lw{txvmp kop k {wpu�
qmp �vmskvu�m �ywnmnv �wuov ����� kyrwsuv�{ un xnmp |ws
�msuqlkvuwo } �o wspms vw ntmmp xt v�m {kvl�uor tsw�

lmnn � tsuolutky lw{twomov koky�nun ���  � un xnmp vw
lw{tsmnn ntuo u{ krmn } ¤ky�kpws mv ky } ��� tswtwnmp v�m
nt�msulky ntuo u{ krm �¤¤�� ��ul� { ktn v�m nt uo u{ krm
vw twuovn wovw k xouv nt�msm } �wssmntwopuor twuovn lko
zm |wxop z� lw{txvuor v�m korym z mv�mmo v�w ¤¤� } �k�
{ ko� mv ky } ���� uovswpxlmp v�m nxs|klm nurokvxsm ��ul�
un kynw k �� �unvwrsk{ } ¢om tksk{ mvms un v�m punvkolm
zmv�mmo v�m lmovms twuov kop m�ms� nxs|klm twuov } ��m
wv�ms wom un v�m korym zmv�mmo v�m ows{ ky w| v�m lmovms
twuov kop m�ms� nxs|klm twuov } ¤urokvxsm { kvl� uor lko
zm pwom z� vm{tykvm { kvl�uor } ��kor kop ~mzmsv ����
uovswpxlmp �ks{woul n�ktm u{ krmn �~¤�� ��ul� ksm ��
smtsmnmovkvuwo w| �� nxs|klm tkvl�mn } ~ ¤� ksm xou�xm
kop v�m� lko tsmnms�m v�m n�ktm kop lwovuox uv� w| v�m
xopmsy�uor nxs|klmn } ¤xs|klm {kvl�uor lko zm nu{tyu�
qmp vw { kvl�uor �ks{woul n�ktm u{ krmn }

2.2 Motivation

¤w{m w| kzw�m kttswkl�mn rmomskvmp nxs|klm nurok�
vxsmn |ws �ms� twuov wo v�m nxs|klm � ��ul� un lw{tx�
vkvuwokyy� m�tmonu�m } 	 wsmw�ms � v�m nxs|klm nurokvxsmn
ksm nu{ uyks u| v�m v�w twuovn ksm lywnm vw mkl� wv�ms uo
v�m �� ntklm } ��msm|wsm � uv �n owv omlmnnks� vw lkylx�
ykvm nxs|klm nurokvxsm kv m�ms� �msvm� wo v�m nxs|klm }
�o wxs kttswkl� � �m woy� lkylxykvm nxs|klm nurokvxsmn
kv |mkvxsm twuovn ��ul� ksm pmqomp kn v�m yw lky { uo�
u{x{ kop {k�u{x{ w| n�ktm uopm�mn } �mlkxnm v�m
u{ krmp nxs|klm un woy� k nk{tyuor w| v�m klvxky nxs�
|klm � uv �n ky{ wnv u{twnnuz ym |ws k twuov uo ko u{ krm kv k
lmsvkuo �um�twuov vw kttmks uo kowv�ms u{ krm kv k pu|�
|msmov �um�twuov �m�mo v�m nk{m �um�twuov� } �v �n { wsm
smknwokzym vw qop lwssmntwopuor nxs|klmn } ��msm|wsm �
�m xnm yw lky nxs|klm tkvl�mn kn wxs smtsmnmovkvuwo }

	 wvu�kvmp z� ��
� ��¥� � wxs kttswkl� �kn v�w nvmtn �
w��yuom tsmtswlmnnuor kop wo�yuom smlwrouvuwo } �xsuor
v�m qsnv nvmt � �m m�vsklv |mkvxsm twuovn � lkylxykvm nw{ m
|mkvxsmn |ws m�ms� yw lky nxs|klm tkvl� kop nk�m v�m{
uovw v�m {wpmy pkvkzknm } �xsuor v�m woyuom smlwro u�
vuwo � �m qop twvmovuky lwssmntwopuor nxs|klm tkvl�mn
z� lw{tksuor v�m vmnv yw lky nxs|klm tkvl�mn � uv� {wpmy
yw lky nxs|klm tkvl�mn } �o wxs kttswkl� � �m xnm n�ktm
uopm�mn � ows{ ky korymn kn wxs zknul |mkvxsmn vw smtsm�
nmov yw lky nxs|klm tswt msvumn � nuolm n�ktm uopm�mn kop
korymn z mv�mmo nxs|klm ows{ kyn ksm uo�ksukov vw sur up
vskon|ws{ kvuwo }

jxsv�ms{wsm � ��mo �m lkylx ykvm v�m surup vskon|ws�
{ kvuwo � �m xnm v�m lmovswup w| v�m yw lky nxs|klm tkvl�
uo nvmkp w| xnuor v�m �� lwwspuokvmn w| v�m |mkvxsm twuov }
��m lmovswup un ymnn nmonuvu�m vw v�m owunm nuolm uv un v�m
k�mskrm w| �� lwwspuokvmn w| v�m yw lky nxs|klm tkvl� }
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Figure 1. System diagram.� c ��:�ei:9 � 9� �8f9:�
¢xs kttswkl� �kn v�w t�knmn � w��yuom tsmtswlmnnuor

kop wo�yuom smlwrouvuwo } ��m zyw l� pukrsk{ un uyyxn�
vskvmp uo jurxsm �}

3.1 Feature points extraction

�o wxs kttswkl� � |mkvxsm twuovn ksm pmqomp kn yw lky
{ uou{x{ kop {k�u{x{ w| n�ktm uopm�mn � ��ul� lko
zm lkylxykvmp |sw{ tsuolutky lxs�kvxsmn ��� } �o wspms
vw mnvu{ kvm lxs�kvxsmn � �m qv k zu�xkpskvul nxs|klm ���
vw k yw lky � uopw� kop xnm v�m ymknv n�xksm {mv�wp vw
mnvu{ kvm v�m tksk{ mvmsn w| v�m �xkpskvul nxs|klm � kop
v�mo xnm pu�msmovuky rmw{mvs� vw lkylxykvm v�m nxs|klm
ows{ ky � �kxnnuko kop {mko lxs�kvxsmn kop tsuolutky
lxs�kvxsmn ��� ���� } �knmp wo pu�msmovuky rmw{ mvs�� nxs�
|klm ows{ ky �� � �kxnnuko lxs�kvxsm � � { mko lxs�kvxsm� � tsuolutky lxs�kvxsmn �	 
� ksm ru�mo z� ��� � ��� � �¥ �
kop ��� smnt mlvu�my�}
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¤�ktm uopm� �� � kv k twuov ! un pmqomp z� �
� ��msm�	 kop �� ksm { k�u{x{ kop { uou{x{ tsuolutky lxs�
�kvxsmn smnt mlvu�my�}
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¡ uv�uo k � % � � uopw� � v�m lmovms twuov un { ks�mp
kn k |mkvxsm twuov u| uvn n�ktm uopm� un �ur�ms ws yw�ms
v�ko v�wnm w| uvn omur�zwsn }

��m |mkvxsm twuovn m�vsklvuwo smnxyvn ksm n�w�o uo
jurxsm � ��msm v�m |mkvxsm twuovn ksm {ks�mp z� smp
tyxn nuro } �o wspms vw nmm v�m |mkvxsm twuovn � yw lkvuwo �
�m mo yksrm v�m v�w u{ krmn } jsw{ v�m jurxsm � � �m lko
lymksy� nmm v�kv nw{m |mkvxsm twuovn lwssmntwopuor vw
v�m nk{ m t��nulky ksmk kttmks uo zwv� u{ krmn }

3.2 Local surface patches

¡m pmqom k & yw lky nxs|klm tkvl�& kn v�m smruwo lwo�
nunvuor w| k |mkvxsm twuov � kop uvn omur�zwsn � }   yw�
lky nxs|klm tkvl� un n�w�o uo jurxsm � } ��m omur�zwsn
n�wxyp nkvun|� v�mnm v�w lwopuvuwon �
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��msm �2 kop �4 ksm v�m nxs|klm ows{ ky �mlvwsn kv
twuov - kop ' } ��m v�w tksk{ mvmsn /	 kop 6 ksm
u{twsvkov nuolm v�m� pmvms{ uom �w� v�m ywlky nxs|klm
tkvl� un smnunvkov vw lyxvvms kop wllyxnuwo } �w�onwo ��¥�
punlxnnmp v�m l�wulmn |ws v�m v�w tksk{ mvmsn } jws m�ms�
yw lky nxs|klm tkvl� � �m lw{txvm v�m n�ktm uopm�mn kop
ows{ ky korymn zmv�mmo twuov � kop uvn omur�zwsn } ��mo
�m lko |ws{ k �� �unvwrsk{ } ¢om k� un w| v�un � unvwrsk{
un v�m n�ktm uopm� ��ul� un uo v�m skorm �� ��� � v�m wv�ms
un v�m pwv tswpxlv w| nxs|klm ows{ ky �mlvwsn kv � kop
� ��ul� un uo v�m skorm �� ���� } �o wspms vw smpxlm v�m
m�mlv w| v�m owunm � �m xnm z uyuomks uovmstwykvuwo ��mo
�m lkylxykvm v�m �� �unvwrsk{ ��¥� }

¡m kynw lw{txvm v�m lmovswup w| yw lky nxs|klm
tkvl�mn } jws v�m |mkvxsm twuov � �m lko rmv v�m nxs�
|klm v�t m zknmp wo v�m �kxnnuko kop {mko lxs�kvxsmn
��� �¥� } ��msm ksm � nxs|klm v�t mn pmvms{ uomp z� v�m
nuron w| �kxnnuko kop {mko lxs�kvxsmn ru�mo uo �kzym
�} �wvm v�kv k |mkvxsm twuov kop v�m lmovswup w| k tkvl�
{ k� owv lwuolupm }

�o nx{{ks�� m�ms� yw lky nxs|klm tkvl� un pmnlsuz mp
z� k �� �unvwrsk{ � nxs|klm v�t m kop v�m lmovswup } ��m
yw lky nxs|klm tkvl� molwpmn v�m rmw{ mvsul uo|ws{ kvuwo
w| k yw lky nxs|klm }

3.3 Off-line model building

�wonupmsuor v�m xolmsvkuov� w| yw lkvuwo w| k |mkvxsm
twuov � �m smt mkv v�m kzw�m tsw lmnn vw lkylxykvm pm�



Figure 2. Feature points location in two range images of the s ame ear shown as gray scale images.
The darker points are away from the camera and the lighter one s are closer.

Table 1. Surface type Tp based on the signs
of Mean curvature(H) and Gaussian curva-
ture(K).
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nlsutvws w| yw lky nxs|klm tkvl�mn |ws omur�zwsn w| |mk�
vxsm twuov � kop nk�m v�mnm pmnlsutvuwon uovw v�m {wpmy
pkvkzknm } jws mkl� {wpmy wz� mlv � �m smt mkv v�m nk{ m
tsw lmnn vw zxuyp v�m {wpmy pkvkzknm }

3.4 Recognition

� u�mo k vmnv skorm u{ krm � �m smt mkv v�m kzw�m nvmtn
kop rmv yw lky nxs|klm tkvl�mn } �wonupmsuor v�m uokl�
lxskl� w| |mkvxsm twuovn � yw lkvuwo � �m kynw m�vsklv yw�
lky nxs|klm tkvl�mn |sw{ omur�zwsn w| |mkvxsm twuovn }
��mo �m lw{tksm v�m{ � uv� kyy w| v�m yw lky nxs|klm
tkvl�mn nk�mp uo v�m {wpmy pkvkzknm } ��un lw{tks�
unwo un zknmp wo v�m nxs|klm v�tm kop �unvwrsk{ pun�
nu{ uyksuv�} ¤uolm �unvwrsk{ lko zm v�wxr�v w| kn ko kt�
tsw� u{ kvuwo w| tswzkzuyuv� punvsuzxvmp |xolvuwo � �m xnm
nvkvunvulky { mv�wp vw knnmnn v�m punnu{ uyksuv� zmv�mmo
v�w tswzkzuyuv� punvsuzxvuwon } ��m � � � �)� ��� ���� un
k{wor v�m {wnv tsw{ uomov pu�msrmolm xnmp uo nvkvun�
vuln vw knnmnn v�m punnu{ uyksuv� z mv�mmo v�w tswzkzuyuv�

Figure 3. Illustration of Local Surface Patch.

pmonuv� |xolvuwon } ¡m xnm uv vw { mknxsm v�m punnu{ uyks�
uv� z mv�mmo v�w wznms�mp �unvwrsk{ n � kop � � ��ul�
un pmqomp z� ��� ���� }

� � �� � � � � � 
�	  � �  ��
	  � �  ���

jsw{ ��� � �m �ow� v�m punnu{ uyksuv� un z mv�mmo � kop
� } �| v�m v�w �unvwrsk{ n ksm m�klvy� nk{ m � v�m punnu{ u�
yksuv� � uyy z m £msw } �| v�m v�w �unvwrsk{ n pwo �v w�msykt
� uv� mkl� wv�ms � uv � uyy kl� um�m v�m { k�u{x{ �kyxm � }

jws m�ms� yw lky nxs|klm tkv� |sw{ v�m vmnv mks � �m
l�wwnm v�m yw lky nxs|klm tkvl� |sw{ v�m pkvkzknm � uv�
{ uou{x{ punnu{ uyksuv� kop nk{ m nxs|klm v�t m kn v�m
twnnuzym lwssmntwopuor tkvl� } 
 nuor v�m kzw�m nvmtn �
�m rmv v�m ox{zms w| twnnuzym lwssmntwopuor yw lky nxs�



|klm tkvl�mn |ws mkl� {wpmy } jws v�m vwt � {wpmyn
��ul� rmv v�smm �ur�mnv ox{zmsn � �m q yvms v�m twnnuzym
lwssmntwopuor tkusn zknmp wo v�m rmw{ mvsul lwonvskuovn
ru�mo zmyw� }

�� � 
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�� , 5 /� � �� �
¡ �msm ��� 
�� kop �� � 
�� ksm �xlyupmko punvkolm zm�
v�mmo lmovswupn w| v�w nxs|klm tkvl�mn } jws v�w lwssm�
ntwopmolmn � 	 � (�	 �� 	 0 kop � � � (�� �� � 0 ��msm� {mkon vmnv nxs|klm tkvl� kop � {mkon {wpmy nxs|klm
tkvl� � v�m� n�wxyp nkvun|� ��� u| v�m� ksm lwonunvmov lws�
smntwopuor tkusn } ��xn � �m xnm rmw{ mvsul lwonvskuovn
vw tksvuvuwo v�m twvmovuky lwssmntwopuor tkusn uovw pu|�
|msmov rswxtn } ��m yksrmnv rswxt �wxyp zm {wsm yu�my�
vw zm v�m vsxm lwssmntwopuor tkus }

� u�mo k yunv w| lwssmntwopuor tkusn � �(� 	 � � � � � � � � �4 0 � v�m rswxtuor tsw lmpxsm |ws m�ms� tkus
uo v�m yunv un kn |wyyw� n � �ouvukyu£m mkl� tkus w| k rswxt }
jws m�ms� rswxt � kpp wv�ms tkusn vw uv u| v�m� nkvun|� ��� }

mt mkv v�m nk{ m tswlmpxsm |ws m�ms� rswxt } ¤mymlv v�m
rswxt ��ul� �kn v�m yksrmnv nu£m }

3.5 Verification

 |vms q yvmsuor v�m lwssmntwopuor tkusn � �m rmv v�m
yksrmnv rswxt ��ul� un kv ymknv v�smm twvmovuky { kvl�mp
tkusn w| yw lky nxs|klm tkvl�mn } �� xnuor �xkvmsouwo smt�
smnmovkvuwo ���� � �m lkylxykvm v�m swvkvuwo { kvsu� kop
vskonykvuwo �mlvws }  tty�uor v�un vskon|ws{ kvuwo vw v�m
{wpmy wz� mlv � �m rmv k vskon|ws{ mp pkvk nmv } jws m��
ms� twuov uo v�un pkvknmv � �m nmksl� v�m lywnmnv twuov
uo v�m vmnv u{ krm } �| v�m �xlyupmko punvkolm zmv�mmo
v�m{ un ymnn v�ko /	 � v�m� ksm lwonupmsmp kn lwssmntwop�
uor twuovn } ��xn � �m lko rmv v�m {kvl� �xkyuv�� � �
pmqomp zmyw� }
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�o wspms vw ntmmp xt v�m omksmnv twuov nmksl� tsw lmnn �
�m xnm ��p vsmm }
� c 
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4.1 Data and parameters

¡m xnm smky skorm pkvk kl�xusmp xnuor k skorm qopms }
��msm ksm vmo mksn uo wxs pkvkzknm kop v�m� ksm �� � � ��
�� � �� � �¥ � �� � �
 � � � � �� � �� ��msm v�m ox{zms smt�
smnmovn 	 wpmy �� } ��m {wpmy mksn ksm n�w�o uo jurxsm
� � kop v�m vmnv mksn ksm n�w�o uo jurxsm 
 } jws jurxsmn
� kop 
 � �m woy� xnm £ lwwspuokvmn vw n�w� v�m mksn }
��m �� nxs|klmn w| v�m {wpmy mksn ksm n�w�o uo jurxsm
¥ }

Figure 4. 3D surfaces of model ears E0-E9
(from left to right and top to bottom).
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Figure 5. Model ear range images E0-E9.
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Figure 6. Test ear range images T0-T9 corresponding to E0-E9 .
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Figure 7. Recognition rate vs. the average
number of local surface patches in test im-
ages.

��m tksk{ mvmsn w| wxs kttswkl� ksm /	 � � ���� �
6 � " �� � /� � � �¥�� kop /	 � ¥ ���� } ��m zuo nu£m
w| v�m v�w pu{monuwon w| �� �unvwrsk{ un � }�
 } ��m
k�mskrm nu£m w| yw lky nxs|klm tkvl� un ¥� tu�myn }

4.2 Results

��m smlwrouvuwo smnxyvn wo smky pkvk ksm n�w�o uo �k�
zym � } �o �kzym � � v�m ox{zms uo v�m tksmov�mnun { mkon
v�m ox{zms w| yw lky nxs|klm tkvl�mn } jsw{ v�un vkz ym �
�m lko lymksy� nmm v�kv {wnv w| v�m � ur�mnv ox{zms w|
lwssmntwopuor tkusn rw vw v�m sur�v mks {wpmyn } ��
mnvu{ kvuor v�m surup vskon|ws{ kvuwo � �m lkylxykvm v�m
{kvl� �xkyuv� yunvmp uo �kzym � } ¡m l�wwnm v�m {wpmy
� uv� v�m {k�u{x{ {kvl� �xkyuv� kn v�m smlwrou£mp mks }
�v �n lymksy� nmmo v�kv �m kl�um�m ���� smlwrouvuwo skvm
|ws wxs pkvknmv }

  n { movuwomp uo ¤mlvuwo � }¥ vw kyyw� |ws xolmsvkuov�
uo yw lkvuwo w| |mkvxsm twuovn � �m m�vsklv yw lky nxs|klm

tkvl�mn ��¤�� |sw{ omur�zwsn w| |mkvxsm twuovn } ��wwn�
uor pu�msmov omur�zws�wwp nu£m � �m smt mkv v�m m�tmsu�
{ movn kop rmv v�m smykvuwon�ut z mv�mmo smlwrouvuwo skvm
kop v�m k�mskrm ox{zms w| �¤� uo vmnv u{ krmn } ��m sm�
nx yv un n�w�o uo jurxsm � } jsw{ jurxsm � � �m lko nmm
zmvvms smlwrouvuwo smnx yvn ksm wzvkuomp � uv� k yksrms
ox{zms w| �¤�n }

¡m n�w� v�m �unxkyu£kvuwo w| wxs smlwrouvuwo smnxyvn
uo jurxsm � } �o wspms vw m�kyxkvm wxs smnxyvn � �m pun�
tyk� v�m {wpmy mks kop vmnv mks uo v�m nk{m u{ krm �
v�m vskon|ws{ mp {wpmy kop vmnv mks uo v�m nk{m u{ krm }
¡ uv� wxs tswrsk{ n � �m lko �um� v�m{ kv pu�msmov �um��
twuovn } �o jurxsm � � �m woy� punt yk� v�m{ kv k lmsvkuo
�um�twuov } jws v�m mks �� � v�m {wpmy mks kop vmnv mks
ksm n�w�o uo jurxsm � �k� � v�m vskon|ws{mp {wpmy mks
kop vmnv mks ksm n�w�o uo jurxsm � �z � } ¡m lymksy� nmm
v�kv v�m vskon|ws{ mp {wpmy mks un �myy kyuromp � uv� v�m
vmnv mks } jws v�m mks � �� v�m {wpmy mks kop vmnv mks ksm
n�w�o uo jurxsm � �l� � v�m vskon|ws{ mp {wpmy mks kop
vmnv mks ksm n�w�o uo jurxsm � �p � } ¡m lko nmm v�kv ��
un k zmvvms qv vw v�m vmnv mks �� v�ko � � vw � �} ¤u{ uyks
smnx yvn ksm n�w�o uo jurxsm � �m� kop �| � |ws v�m mks �� �
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Abstract 
 
 We examine the performance of multimodal biometric 
authentication systems using state-of-the-art Commercial 
Off-the-Shelf (COTS) fingerprint and face biometrics on a 
population approaching 1000 individuals.  Prior studies 
of multimodal biometrics have been limited to relatively 
low accuracy non-COTS systems and populations 
approximately 10% of this size.  Our work is the first to 
demonstrate that multimodal fingerprint and face 
biometric systems can achieve significant accuracy gains 
over either biometric alone, even when using already 
highly accurate COTS systems on a relatively large-scale 
population.  In addition to examining well-known 
multimodal methods, we introduce novel methods of 
fusion and normalization that improve accuracy still 
further through population analysis. 
 
 
1. Introduction 
 

It has recently been reported [1] to the U.S. Congress 
that approximately two percent of the population does not 
have a legible fingerprint and therefore cannot be enrolled 
into a fingerprint biometrics system.  The report 
recommends a system employing dual biometrics in a 
layered approach.  Use of multiple biometric indicators 
for identifying individuals, so-called multimodal 
biometrics, has been shown to increase accuracy [2, 3, 4], 
and would decrease vulnerability to spoofing while 
increasing population coverage. 

The key to multimodal biometrics is the fusion (i.e., 
combination) of the various biometric mode data at the 
feature extraction, match score, or decision level [4].  
Feature level fusion combines feature vectors at the 
representation level to provide higher dimensional data 
points when producing the match score.  Match score 
level fusion combines the individual scores from multiple 
matchers.  Decision level fusion combines accept or reject 
decisions of individual systems. 

 
 Our methodology for testing multimodal biometric 

systems focuses on the match score level [2].  This 
approach has the advantage of utilizing as much 
information as possible from each single-mode biometric, 
while at the same time enabling the integration of 
proprietary COTS systems. 

Published studies examining fusion techniques have 
been limited to small populations (~100 individuals), 
while employing low performance non-commercial 
biometric systems. In this paper we investigate the 
performance gains achievable by COTS-based 
multimodal biometric systems using a relatively large 
(~1000 individuals) population.  Section two and three 
describe the traditional and novel normalization and 
fusion methods that we employed for match score 
combination.  New methods for adaptive normalization 
and fusion using user-level weighting based on the wolf-
lamb [5] concept are introduced and compared.  In section 
four we provide a performance analysis of these 
multimodal methods and investigate performance 
variability attributable to population differences. 
 
2. Normalization 
 

A normalization step is generally necessary before the 
raw scores originating from different matchers can be 
combined in the fusion stage. For example, if one matcher 
yields scores in the range [100, 1000] and another 
matcher in the range [0, 1], fusing the scores without any 
normalization effectively eliminates the contribution of 
the second matcher.  We present three well-known 
normalization methods, and a 4th novel method, which we 
call adaptive normalization that uses the genuine and 
impostor distributions. 

We denote a raw matcher score as s  from the set of 
all scores for that matcher, and the corresponding 
normalized score as .  Different sets are used for 
different matchers.  The abbreviations (such as MM) next 
to the normalization method names are used throughout 
the remainder of this paper. 
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Min-Max (MM).  This method maps the raw scores to 
the [0, 1] range.  max(S) and min(S) specify the end 
points of the score range (vendors generally provide these 
values): 
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Z-score (ZS).  This method transforms the scores to a 
distribution with mean of 0 and standard deviation of 1. 

 and  denote the mean and standard 
deviation operators: 
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Tanh (TH).  This method is among the so-called robust 
statistical techniques [6].  It maps the scores to the (0, 1) 
range:   
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Adaptive (AD). The errors of individual biometric 
matchers stem from the overlap of the genuine and 
impostor distributions as shown in Fig. 1.  This region is 
characterized with its center  and its width .  To 
decrease the effect of this overlap on the fusion algorithm, 
we propose to use an adaptive normalization procedure 
that aims to increase the separation of the genuine and 
impostor distributions, as indicated by the block arrows in 
Fig. 1., while still mapping scores to [0,1].  

c w

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Overlap of genuine and impostor 
distributions. 
 

This adaptive normalization is formulated as  
 

                           )( MMAD nfn =
 

where denotes the mapping function which is used 
on the MM normalized scores. We have considered the 
following three functions for . These functions use 
two parameters of the overlapped region, c  and , 
which can be provided by the vendors or estimated by the 
integrator from data sets appropriate for the specific 
application.  In this work, we act as the integrator.  

()f
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Two-Quadrics (QQ).  This function is composed of 2 
quadratic segments that change concavity at c  (Fig. 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Mapping function for QQ. 
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For comparison, note that the identity function, 

, is shown by the dashed line. MMAD nn =
 
Logistic (LG).  Here,  takes the form of a logistic 
function. The general shape of the curve is similar to that 
shown for function QQ in Fig. 2. It is formulated as  
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where the constants A  and are calculated as B
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∆

=A   and  
c
AB ln=                

                          
Here,  is equal to the constant , which is 

selected to be a small value (0.01 in this study). Note the 
inflection point of the logistic function occurs at , the 
center of the overlapped region.  
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Quadric-Line-Quadric (QLQ).  The overlapped zone, 
, is left unchanged while the other regions are mapped 

with two quadratic function segments (Fig. 3): 
w

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Mapping function for QLQ. 
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3. Fusion 
 

We experimented with the five different fusion 
methods summarized below. The first three are well-
known fusion methods; the last two are novel and they 
utilize the performance of individual matchers in 
weighting their contributions. As we progress from the 
first three methods to the fifth, the amount of data 
necessary to apply the fusion method increases.  

Our notation is as follows:  represents the 
normalized score for the matcher m  ( m , 
where 

m
in

M ..., ,2 ,1=
M  is the number of different matchers) and for the 

user  ( i , where i I ..., ,2 ,1= I  is the number of 
individuals in the database). The fused score is denoted as 

.  if
 
Simple Sum (SS).  Scores for an individual are summed: 
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Min Score (MIS).  Choose the minimum of an 
individual’s scores: 
                                          innnminf M
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MMn

ADn
Max Score (MAS). Choose the maximum of an 
individual’s scores: 

(0,1)                                           innnmaxf M
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Matcher Weighting (MW).  Matcher weighting-based 
fusion makes use of the Equal Error Rate (EER).  Denote 
the EER of matcher m as ,  and the 
weight  associated with a matcher m is calculated as  

me Mm  ..., ,2 ,1=
mw
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Note that 0 ,  and the weights 

are inversely proportional to the corresponding errors; the 
weights for more accurate matchers are higher than those 
of less accurate matchers (Although the EER value alone 
may not be a good estimator for the accuracy of a 
matcher, we chose to use it for spanning the amount of 
data  available to the integrator mentioned above).  The 
MW fused score is calculated as  
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User Weighting (UW).  The User Weighting fusion 
method applies weights to individual matchers differently 
for every user (individual). Previously, Ross and Jain [7] 
proposed a similar scheme, but they exhaustively search a 
coarse sampling of the weight space, where weights are 
multiples of 0.1. Their method can be prohibitively 
expensive if the number of fused matchers, M , is high, 
since the weight space is ; further, coarse sampling 
may hinder the calculation of an optimal weight set.  In 
our method, the UW fused score is calculated as  

Mℜ
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where  represents the weight of matcher  for user 
.  

m
iw m

i
The calculation of these user-dependent weights make 

use of the wolf-lamb concept introduced by Doddington, 
et al. [5] for unimodal speech biometrics. They label the 
users who can be imitated easily as lambs; wolves on the 

  



other hand are those who can successfully imitate some 
others. Lambs and wolves decrease the performance of 
biometric systems since they lead to false accepts.  

We extend these notions to multimodal biometrics by 
developing a metric of lambness for every user and 
matcher, (i,m), pair. This lambness metric is then used to 
calculate weights for fusion. Thus, if user i  is a lamb 
(can be imitated easily by some wolves) in the space of 
matcher , the weight associated with this matcher is 
decreased. The main aim is to decrease the lambness of 
user  in the space of combined matchers.  

m

i
We assume that for every ( , ) pair, the mean and 

standard deviation of the associated genuine and impostor 
distributions are known (or can be calculated, as is done 
in this study). Denote the means of these distributions as 

and , respectively, and denote the standard 

deviations as  and , respectively. 
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We use the d-prime metric [8] as a measure of the 
separation of these two distributions in formulating the 
lambness metric as: 
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If  is small, user i  is a lamb for some wolves; if 

 is large,  is not a lamb. We structure the user 
weights to be proportional to this lambness metric as 
follows 
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Fig. 4 shows the location of potential wolves for a 

specific (i,m) pair with a block arrow, along with the 
associated genuine and impostor distributions. This user 
dependent weighting scheme addresses the issue of 
matcher-user relationship: namely, a user can be lamb for 
a specific matcher, but also can be a wolf for some other 
matcher. We find the user weights by measuring the 
respective threat of wolves living in different matcher 
spaces for every user.   

 
4. Experimental Results 
 
4.1. Databases 
 

Our experiments were conducted on a population of 
consistently paired fingerprint and facial images from two 
groups of 972 individuals, using our previously 

developed test methodology and framework [2].  Since 
the paired fingerprint and facial images come from 
different individuals, we are assuming that they are 
statistically independent – a widely accepted practice.  
The images were taken from two separate groups of 972 
individuals, with the first group contributing a pair of 
facial images and the second a pair of fingerprint images.  
This creates a database of 972 virtual individuals.  Each 
pair consists of a primary and a secondary image, with all 
primary images assigned to the target set, and all 
secondary images assigned to the query set. 

  Match scores were generated from four COTS 
biometric systems – three fingerprint and one face.  For 
each biometric system, all query set images were matched 
against all target set images, yielding 972 genuine scores 
(correct matches) and 943,812 imposter scores.   

 
 
 
 
 
 
 
 
 
 

 
 
Fig. 4. Distributions for a (user, matcher) pair: 
the arrow indicates location of wolves for lamb i  
 
4.2. Approach 

 
Among the three adaptive normalization methods (QQ, 

QLQ and LG), the QLQ method gave the best results in 
our experiments, so it is selected as the representative 
method.   

We carried out all possible permutations of 
(normalization, fusion) techniques on our database of 972 
users. Table 1 shows the EER values for these 
permutations. Note that EER values for the 3 individual 
fingerprint matchers and the face matcher are found to be 
3.96%, 3.72%, 2.16% and 3.76%, respectively. The best 
EER values in individual columns are indicated with bold 
typeface; the best EER values in individual rows are 
indicated with a star (*) symbol. 

 
Table 1. EER values for permutations (%). 

Fusion Technique Normalization 
Technique SS MIS MAS MW UW 

MM 0.99 5.43 0.86 1.16 *0.63
ZS *1.71 5.28 1.79 1.72 1.86 
TH 1.73 4.65 1.82 *1.50 1.62 

QLQ 0.94 5.43 *0.63 1.16 *0.63

m
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4.3. Normalization  
 

Figures 5-9 show the effect of each normalization 
method on system performance for different (but fixed) 
fusion methods. The ROCs (Receiver Operating 
Characteristics) for the individual fingerprint matchers 
and the face matcher are also shown for better 
comparison.  

For UW fusion (Fig. 9), the scatter plot of user weights 
(Fig. 10) form a distinctive band-like behavior for each 
fingerprint matcher V1, V2, V3, and the face matcher.  
The mean user weights for the individual biometric 
matchers, calculated from (2), are 0.14, 0.64, 0.17 and 
0.05, respectively, which implies that on average, 
fingerprint matcher V2 is the safest for the lambs; 
whereas the space of the face matcher is filled with 
wolves (i.e., those waiting to be falsely accepted as one of 
the lambs). Note that individual matcher performance, 
shown in the previous ROC curves, is not reflected 
directly in the set of user weights and their means. 
Namely, V2 has a higher mean user weight than V3, 
despite V3’s generally better ROC. 

 

 
Fig. 5. ROC curves for SS, normalization varied. 
 
 

 
Fig. 6. ROC curves for MIS, normalization varied. 

 
For MW fusion (Fig. 8), the matcher weights, 

calculated according to (1), are: 0.2, 0.22, 0.37 and 0.21, 
for the fingerprint matchers and the face matcher, 
respectively.  From Figures 5-9 and Table 1, we see that 
QLQ and MM normalization methods lead to best 
performance, except for MIS fusion. Between these two 
normalization methods, QLQ is better than MM for fusion 
methods MAS and UW; and about the same as MM for 
the others.   
 

 
Fig. 7. ROC curves for MAS, normalization 
varied. 

 
Fig. 8. ROC curves for MW, normalization varied. 
 

 
Fig. 9. ROC curves for UW, normalization varied. 

 

  



 
Fig. 10. Pictorial representation of user weights, 
for QLQ normalization. 
 

       
Fig. 11. ROC curves for MM, fusion varied. 
 
4.4. Fusion 
 

Figures 11-14 show the effect of each fusion method 
on system performance for different (but fixed) 
normalization methods. The ROCs for the individual 
fingerprint matchers and the face matcher are also shown 
for better comparison.  

From Figures 11-14 and Table 1, we see that fusion 
methods SS, MAS and MW generally perform better than 
the other two (MIS and UW). But for the FAR range of 
[0.01%, 10%], UW fusion is better than the others. One 
reason that below 0.01% FAR the performance of UW 
fusion drops may be the estimation errors become 
dominant, since we have only one sample available for 
replacing the individual genuine distributions. 

Note that parameter update (for normalization and/or 
fusion methods) can be employed for addressing the time 
varying characteristics of the target population. For 
example, the matcher weights can be updated every time a 
new set of EER figures are estimated; the user weights 
can be updated if the fusion system detects changes in the 
vulnerability of specific users, due to fluctuations in their 
lambness, etc. 

 
Fig. 12. ROC curves for ZS, fusion varied. 

 

 
Fig. 13. ROC curves for TH, fusion varied. 
 

 
Fig. 14. ROC curves for QLQ, fusion varied. 
 
4.5. Fusing Subsets of Matchers 
 

ROC curves were generated for fusing subsets of the 
total matcher set.  Here, we fixed the normalization 
method to QLQ and the fusion method to SS.  

In Fig. 15 we see that fusing just the three fingerprint 
matchers (V1V2V3, with EER of 1.94%) is not as good 
as fusing all the available four matchers (V1, V2, V3 and 
Face) using QLQ/SS (see Figs. 5 and 14).  This implies 
that even though the face matcher is not as good as any of 
the individual fingerprint matchers, it still provides 
complementary information for fusion. 

  



Fusing individual fingerprint matchers separately with 
the face matcher (V1-Face, V2-Face, V3-Face; with EERs 
of 1.68%, 1.46% and 2.02%, respectively) we see that 
V2-Face performs better than V3-Face fusion. Since V3 
is the better fingerprint matcher for our dataset, this result 
may seem counterintuitive. In fact this shows that the face 
matcher is best complemented with the V2 matcher, i.e., 
they make independent mistakes; whereas face matcher 
and V3 matcher make relatively more correlated mistakes. 

    

 
Fig. 15. Fusing subsets of matcher set. 
 
4.6. Performance Variability 
 

We are interested in determining how the performance 
of the fused system changes when using (i) an 
increasingly larger database,  (ii) different equal-size 
databases, and (iii) many randomly assigned virtual 
subject databases. 
 
Scalability.  We created five new user databases from 
subsets of our original 972 user database: (i) the first 20% 
of all the users (194 users), (ii) the first 40% of all the 
users (389 users), (iii) the first 60% of all the users (583 
users), (iv) the first 80% of all the users (778 users) and 
(v) 100% of all the users (972 users).  Fig. 16 shows the 
associated ROC curves for an MM/SS based multimodal 
system using these datasets.  The EERs corresponding to 
these five sets are 0.42%, 0.75%, 0.67%, 0.8%, and 
0.99%, respectively.  

  We observe that the performance initially drops, but 
then quickly converges.  For this relatively large, but 
limited, dataset we are unable to draw any general 
conclusions.  It is widely believed that performance 
decreases as the database size increases. A possible 
explanation for this belief is that as the state space 
becomes more populated, differentiation within it, or 
some clustered areas, becomes more difficult. Another 
viewpoint is that performance trends cannot be 
extrapolated to larger populations. Thus a representative 

database of the intended size may be necessary to predict 
performance.  

 
Fig. 16. Scalability: ROC curves for overlapping 
portions of the whole database. 
 
Generalizability.  We created two new user databases 
of 486 users each from disjoint subsets of the original 
database of 972 users.  Fig. 17 shows the associated ROC 
curves for an MM/SS based multimodal system using 
these disjoint datasets. The EERs corresponding to these 
datasets are 0.68% and 1.45%, respectively.  We see that 
the portion of the ROC curves above 0.4% FAR, show a 
considerable performance difference. Although we can 
draw no general trends, this implies that its necessary to 
use a representative database when determining expected 
performance, but there are presently no clear 
measurements/methods to determine if a database is 
representative. Similar results have been reported for 
performance variation of unimodal systems in [9].  

 
Virtual Subjects. As explained previously, it is 
common practice to create virtual subjects in multimodal 
experiments.  In our previous experiments, we 
consistently assigned a “physical finger” to a “physical 
face” to create a virtual subject. In this section, we 
randomly created 1000 virtual user sets (i.e., we randomly 
assigned the 972 face samples to the 972 fingerprint 
samples, 1000 times).  In Fig. 18, we plot the ROC’s for 
all of these 1000 cases, with the one used previously in 
this paper highlighted in red.     

The minimum, mean, maximum and standard 
deviation of the EER set (with 1000 members) is found to 
be 0.82%, 1.1%, 1.5% and 0.11, respectively. The EER 
for the one case used previously in this paper is 0.99%. 
The close clustering of these curves, and the low standard 
deviation, supports the independence assumption between 
face and fingerprint biometrics and would seem to 
validate the use of virtual subjects. Furthermore the 
“thickness” of this cluster of curves supports other 
observations that performance estimates vary by nearly 
+/- 1%. 

  



 

 
Fig. 17. Generalizability: ROC curves for disjoint 
portions of the whole database. 
 

 
Fig. 18. Effects of virtual subject creation. 

 
 

5. Conclusions 
 
We examined the performance of multimodal 

biometric authentication systems using state-of-the-art 
Commercial Off-the-Shelf (COTS) fingerprint and face 
biometrics on a population approaching 1000 individuals, 
10 times larger than previous studies. We introduced 
novel normalization and fusion methods along with well-
known methods to accomplish match score level 
multimodal biometrics. Our work shows that COTS-based 
multimodal fingerprint and face biometric systems can 
achieve better performance than unimodal COTS systems.  
However, the performance gains are smaller than those 
reported by prior studies of non-COTS based multimodal 
systems (a ~2.3% gain here as compared to a ~12.9% gain 
reported in [2], at 0.1% FAR).  This was expected, given 
that higher-accuracy COTS systems leave less room for 
improvement.  Our analysis of fusion and normalization 
methods suggests that for authentication applications, 
which normally deal with  open populations (e.g., 

airports) whose specific information is not known in 
advance, Min-Max normalization and Simple-Sum fusion 
generally out perform unimodal biometrics. For 
applications which deal with closed populations (e.g., a 
laboratory), where repeated samples and their statistics 
can be accumulated, our novel QLQ adaptive 
normalization and UW fusion methods tend to out 
perform Min-Max normalization and Simple-Sum fusion. 

Our analysis of multimodal face-fingerprint pair 
systems shows that better performance is obtained by 
combining complementary systems rather than the best 
individual systems.  And our investigations of 
performance variability across different datasets have 
provided evidence that the use of virtual subjects is valid, 
and offer initial estimates of variability for COTS-based 
multimodal systems .  
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ABSTRACT 

 
This paper presents a new method of personal 
authentication using face and palmprint images. The 
facial and palmprint images can be acquired by using 
touchless sensors and integrated to achieve higher 
confidence in personal authentication. This has been 
confirmed from the qualitative and quantitative results 
shown in this paper. The proposed method of fusion uses 
a feed-forward neural network to integrate individual 
matching scores and generate a combined decision score. 
The significance of the proposed method is more than 
improving performance of bimodal system. Our method 
uses claimed identity of users as a feature for fusion. Thus 
the required weights and bias on individual biometric 
matching scores are automatically computed to achieve 
the best possible performance. The method proposed in 
this paper can be extended for any multimodal 
authentication system to achieve higher performance. 

 

1. INTRODUCTION 
 
The technology for trusted e-security is critical to many 
business and administrative process. There has been a 
newfound urgency after September 11 attacks to develop 
cutting-edge security technologies. However, the 
performance of currently available technology is yet to 
mature for its broad deployment in real environments. The 
biometrics-based characteristics i.e., face, palmprint, iris, 
hand geometry, etc., are distinctive, cannot be forgotten or 
lost, and requires physical presence of the person to be 
authenticated [1]. Thus biometrics-based personal 
authentication systems are more reliable, convenient, and 
efficient than the traditional identification methods. The 
financial risks in personal authentication are high; the 
double dipping* in social welfare schemes are estimated 
around $40 billion and 40-80% of IT help desk calls are 
attributed to forgotten passwords [2]. Secure access 

                                                 
* where an individual unlawfully benefits under multiple 
identity.   

control helps to minimize the security/terrorist threats at 
airports, airplanes, and security installations and is more 
relevant in the current world scenario.  
 

The multimodal biometrics system allows 
integration of two or more biometric in order to cope up 
with the stringent performance requirements imposed for 
high security access.  Such systems offer high reliability 
due to the presence of multiple piece of evidence and are 
vital for fraudulent technologies as it is more difficult to 
simultaneously forge multiple biometric characteristics 
than to forge a single biometric characteristic. One of the 
recent research problems in the design of multimodal 
biometrics system concerns with information fusion, i.e. 
how the individual modalities should be combined to 
minimize errors and achieve high accuracy. 
 
1.1. Prior Work 
 
Multimodal biometric systems have recently attracted the 
attention of researchers and some work has already 
reported in the literature [3]-[11]. Hong and Jain [3] 
combined fingerprint and face to achieve major 
improvement while Ben-Yacoub et al. [4] demonstrated 
this by integrating face with voice. Chatzis et al. [5] have 
used fuzzy clustering algorithm for the decision level 
fusion in personal authentication. Recently, bimodal 
biometric systems using face and iris [6], palmprint and 
hand-geometry [8], have shown promising results. 
Osladciw et al. [9] have presented a framework for 
multimodal biometric system that is adaptively tuneable to 
the security needs of user. Verlinde et al. [10] achieve 
decision level fusion by using parametric and non-
parametric classifiers. Kittler et al. [11] have shown that 
the sum rule is most resilient for the estimation of errors in 
biometric fusion. 
 
1.2. Proposed System 
 
This paper investigates a bimodal biometric system using 
face and palmprint. Face has highest user acceptance and 
its acquisition is most convenient to users [12]. People 
have lot of concerns about hygiene, especially due to 



recent spread of SARS†, while using biometric sensors e.g. 
fingerprint sensors. However the face and palmprint 
images can be conveniently acquired from the touchless 
sensors such as digital camera. One of the important 
features that is only available in personal authentication, 
but not in recognition, is the claimed user identity. The 
claimed user identity is unique for every user and can be 
used to restrict the decision space, i.e. range of matching 
scores, in user authentication. The claimed user identity 
can be suitably coded and then used as a feature to 
classify the genuine and impostor matching scores and is 
investigated in this paper The main contributions of this 
paper are twofold; (i) investigate a new bimodal biometric 
authentication system by integrating face and palmprint 
features, and (ii) propose a new decision level fusion 
strategy that uses claimed identity as a feature to classifier.  

Face

Claimed Identity

Matching
Score

1
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Matching
Score

2
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Neural
Network

Genuine/
Imposter
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Palmprint

Figure 1: Personal Authentication using Face and 
Palmprint. 
 

2. METHODOLOGY 
 
The block diagram of the proposed bimodal biometric 
authentication method is shown in Figure 1. The acquired 
grey-level images from the palmprint and face are 
presented to the system. In addition, each of the users also 
presents its claimed identity. The matching scores from 
each of the two biometric are presented to a neural network 
classifier. As shown in Figure 1, the claimed user identity 
is also used as a feature to neural network classifier. The 
weights and bias of individual biometrics are automatically 
computed during the training of neural network. The 
trained neural network generates the combined decision 

                                                 
† Severs Acute Respiratory Syndrome (SARS) is highly 
infectious disease prone to human touch.  

scores for the claimed user identity and assigns them in 
one of two classes i.e. genuine or impostor.     
 

3. FACE MATCHING 
 

Several face recognition algorithms have been proposed in 
the literature [13]. Among these, the appearance based 
face algorithms are most popular and have been installed 
in real-environments [14]. The appearance based face 
authentication approach used in this work employed 
eigenfaces [15]. Each of the M × N grey-level face images 
from every subject are represented by a vector of 1 × MN 
dimension using row ordering. The normalized set of such 
training vectors is subjected to principal component 
analysis (PCA). The PCA generates a set of orthonormal 
vectors, also known as eigenfaces, which can optimally 
represent the grey-level information in the training dataset. 
The projection of subjects training face image on 
eigenfaces is used to compute the characteristic features. 
The matching score for every test face image is generated 
by computing the similarity score between the feature 
vectors from the claimed identity (xc) and computed 
characteristic feature vector (xq). 
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4. PALMPRINT MATCHING 

 
Palmprint contains several complex features, e.g. minutiae, 
principal lines, wrinkles and texture, which have been 
suggested for personal identification. The palmprint 
matching approach used in this work is same as detailed in 
[8]. Four directional spatial masks are used to capture line 
features from each of the palmprint images. The combined 
directional map is generated from voting of the resultant 
four images. The standard deviation of pixels, from each of 
the 24 × 24 pixel overlapping block with 25% overlap, in the 
combined image is used to form characteristic feature 
vector. The palmprint matching scores are generated by 
computing the similarity measure palmη , similar to (1), 

between the feature vectors from acquired image and those 
stored during the training phase. 
 

5. DECISION LEVEL FUSION USING NEURAL 
NETWORKS  

 
Decis ion level fusion that can consolidate the decision 
scores from multiple evidences has shown [3]-[8], [16]-[17] 
to offer radical increase in performance. The genuine and 
impostor matching scores from the face and palmprint are 
used to  train a   feed-forward    neural network (FFN).   Our  



Figure 2: Convergence of training error from the Palmprint 
and Face matching scores.  

Figure 3: Distribution of genuine and imposter scores from 
the two biometric. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
strategy is to use the claimed identity of every user as a 
feature to FFN. Execution speed of multi-layer feed-forward 
neural network is among the fastest of all models currently 
in use. Therefore this network may be the only practical 
choice for online personal authentication. A (FFN) with Pl 

neurons in the lth (l = 1, … , Q) layer is based on the 
following architecture [18]: 
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where the sum of weighted inputs for thj ) ..., ,1( lPj =  

neuron in the thl  layer is represented by .l
jϕ  The weights 

from the  thi  neuron at th)1( −l  layer to the thj neuron 

in the thl  layer are denoted by ll
jiw ,1−  and l

jy is the 

output for thj neuron in the thl  layer.  The values –1 and 
1, corresponding to ‘impostor’ and ‘genuine’ responses, 
were given to the three layers FFN during training as the 
correct output responses for expected classification during 
the training. The hyperbolic tangent sigmoid activation 
function was empirically selected for first two layers, while 
a linear activation function was chosen for third layer.                                                     
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The back-propagation training algorithm is used for 
minimizing training function Te defined by: 
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actual output value at the thj  output layer neuron for pair 
k  and the target output value. The connection weights 

ll
jiw ,1−  are updated after presentation of every feature 

vector using a constant learning rate. The weights are 
updated using Levenberg-Marquardt algorithm [19] for 
faster convergence rate.  
 

6. EXPERIMENTS AND RESULTS 
 
The proposed method was investigated on available face 
database [20] from 40 subjects with 10 images per subject. 
The hand images from 40 subjects, with 10 images per 
subject, were acquired by using a digital camera. Each of 
the subjects for palmprint and face were randomly paired‡ 
to obtain a bimodal set for every subject. The 300 × 300 
region of interest, i.e. palmprint, were automatically 
segmented and features vectors of size 1 × 144 were 
extracted as detailed in [8].  Each of the 92 × 112 pixel face 
image was used to obtain 1 × 40 characteristic feature 
vector from the 40 eigenfaces. The matching scores for 
face and palmprint were computed by similarity measure 
(1). In this work, the first four images samples, from face 
and palmprint, were used for training and rest six were for 
testing. Thus genuine and impostor matching scores from 
the training samples were used to train 18/5/1 neural 
network as shown in Figure 1. The learning rate was fixed 
at 0.01 and the convergence of training error is shown in 
Figure 2. There is no guarantee that the achieved training 
error is global and therefore the FFN was trained 10 times 
with the same parameters and  the result  with  the  smallest 

                                                 
‡ The mutual independence of biometric modalities [21] 
allows us to augment two biometric indicators that are 
collected individually. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
of training errors of all the results are reported.  The trained 
neural network was used to test 240 (40×6) genuine and 
9360 (40×39×6) impostor matching scores from the test 
data.  

The distribution of decision scores from trained 
neural network, from the test data, is shown in Figure 3. It 
can be seen that the two matching scores are quite distinct 
and separable by any two class linear discriminant 
function. The receiver operating characteristics for (i) face, 
(ii) palmprint, and (iii) using fusion of face and palmprint is 
shown in Figure 4. All these cases shown in Figure 4 
employ the claimed identity as a feature to FFN. The 
variation of False Accept Rate (FAR) and False Reject Rate 
(FRR) with decision threshold for combined decision is 
shown in Figure 5. The cumulative distribution for 
combined impostor and genuine decision scores is shown 
in Figure 6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The FAR and FRR scores for three distinct cases 
using total§ minimum error (TME) is shown in Table 1. It is 
worth to mention that the total minimum error for the 
fusion was 2.80% when the claimed user identity was not 
utilized and 1.54% when claimed user identity was 
employed to train/test the FFN. In order to ascertain the 
improvement (or degradation) in the separation of genuine 
and impostor decision scores for the fusion, the 
performance index using three objective functions [22], 
were considered. 
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where ig µµ ,  are the mean and ig σσ ,  are the standard 

deviation of genuine and impostor distributions 
respectively. The scores for above performance indices 
were computed from the test data (Figure 6 scaled to 
positive axes) and are displayed in Table 2. The bracketed 
entries in this table show the respective scores when the 
claimed identity of user is not utilized. These entries can be 
used to interpret the performance increase when the 
claimed user identity is used as a feature. Table 2 also 
shows the equal error rate (EER) for each of the 
corresponding cases. 
 

Table 1: Performance scores for total minimum error.

                                                 
§ Sum of FAR and FRR for the combined decision.  

FAR FRR Decision 
Threshold 

Face 3.04 10 -0.71 
Palmprint 3.75 3.15 -0.99 
Fusion at Decision 0.70 0.83 -0.66 

Figure 5: Variation of FAR and FRR scores with 
decision threshold for combined decision. 

Figure 4: Comparative performance fore user 
authentication using Palmprint and Face. 

Figure 6: Comparative performance fore user 
authentication using Palmprint and Face. 



Table 3: A summary of related work on multimodal user authentication. 

Table 2: Performance indices from the experiments .
 

 
 
 
 
 
 
 
 

7. CONCLUSIONS 
 
The grey-level images of palmprint and face can be 
simultaneously acquired and used to achieve the 
performance that may not be possible by single biometric 
alone. The performance improvement shown in Figure 4 
confirms the usefulness of the proposed bimodal system. 
Furthermore, this can also be quantitatively ascertained 
from the results shown in Table 2. All the three 
performance indicators, i.e. ,, 21 JJ and 3J  have shown 
improvement when both the biometrics are utilized.  
However, the scores from index 3J are substantially higher 

than those from 1J  or 2J . This is due to the fact that 3J  
also accounts for the standard deviation of decision 
scores. Therefore 3J  can be used as a reliable measure to 
evaluate the performance in biometrics. The performance 
scores in first two rows of Table 2 also suggest that the 
claimed user identity has significant effect in improving 
performance even for unimodal authentication, i.e. face 
and palmprint.  This  improvement is  attributed  to  the fact  
 
  
 

 
 
 
 
 
 
 
 
 
 

 
that the FFN classifier uses the claimed user identity to 
reduce the decision space, i.e. range of valid matching 
scores, for the corresponding user. The inclusion of 
claimed user identity can be used improve the performance 
in unimodal authentication systems without any extra cost 
and is therefore recommended. 
 

The significance of the proposed method is  more 
than improving performance for a bimodal system. Our 
method has utilized the claimed identity of subjects as a 
feature for fusion. The employed neural network thus 
automatically computes the weights and bias for the 
individual biometric matching scores to achieve the best 
possible performance. The performance scores shown in 
Table 2 suggest that this is indeed the case. In order to 
achieve more reliable estimate on the performance it is 
desirable to evaluate this method on significantly large 
database and we are currently working on this. A 
qualitative summary of related work on multimodal user 
authentication   is   presented  in  Table 3.   The   proposed 
method of fusion can be extended to any multimodal 
system to achieve higher  performance.   Additionally,   the 
 
 

 1J  2J  3J  EER 

Face 
3.85 

(1.05) 
2.11 

(0.002) 
4.42 

(2.34) 
8.33 % 

(8.69 %) 

Palmprint 
4.38 

(1.03) 
2.61 

(0.001) 
8.61 

(3.71) 
3.65 % 

(4.32 %) 

Fusion at Decision 
4.84 

( 4.78) 
3.04 

(2.988) 
35.57 

(23.78) 
0.84 % 

(2.09 %) 

    Authors Biometric Modalities Fusion Strategy 
Performance 

Criteria 
Touchless 
Sensors 

Hong and Jain [3] Face, Fingerprint 
Hierarchal decision using 
combined imposter 
distribution 

FRR, ROC         No 

Ben-Yacoub et al. [4] Voice, Face SVM, Bayes FAR, FRR         Yes 
Chatzis et al. [5]  Voice, Face FVQ, RBF FAR, FRR         Yes 

Wang et al. [6] Face, Iris  User-specific RBF, 
Weighted Sum Rule TME         Yes 

Kumar et al. [8] Palmprint, Hand Geometry Max Rule TME, ROC         Yes 

Jain and Ross [7] Face, Fingerprint, Hand 
Geometry 

User-specific threshold, 
Weighted Sum Rule ROC         No 

Kittler et al. [11] Face, Face Profile, Voice Sum, Max, Median,  
Product Rule EER         Yes 

Kumar and Zhang Face, Palmprint       FFN based fusion with user     
      claimed identity  

  1J , 2J , 3J          Yes 



performance improvement in multimodal system can be 
also be ascertained by two class separation functions (5), 
rather than just ROC or total minimum error as used in prior 
work [3]-[8]. 
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ABSTRACT

In general, most systems for face and speaker identification
are tested on high quality data collected in well-lit and quiet
environments. In this study, we investigate the application
of existing face and speaker identification techniques to the
task of user authentication on a handheld device. In this
context, the audio/visual capture hardware is of lower qual-
ity than equipment typically used in laboratory experiments.
Additionally, variable background conditions which can de-
grade the audio/visual signal may be present. These fac-
tors can be expected to harm the performance of the system.
Under these circumstances, using a combination of biomet-
ric modalities can improve the robustness and accuracy of
the person identification task. In this paper, we present our
approach for combining both face and speaker identifica-
tion technologies on a handheld device, and experimentally
demonstrate a fused multi-modal system which achieves a
90% reduction in equal error rate over the better of the two
independent systems.

1. INTRODUCTION

This paper investigates the integration of two biometric tech-
niques, face and speaker identification, into handheld de-
vices. This research is spurred by the recent increased popu-
larity of commercially-available handheld computers which
have allowed computation to become more mobile and per-
vasive. Formerly specialized devices, such as cellular tele-
phones, now offer a range of capabilities beyond simple
voice transmission, such as the ability to take, transmit and
display digital images. As these devices become more ubiq-
uitous and their range of applications increases, the need
for security also increases. To prevent impostor users from
gaining access to sensitive information, stored either locally
on a device or on the device’s network, security measures
must be incorporated into these devices. Face and speaker
verification are two techniques that can be used in place of,
or in conjunction with, pre-existing security measures such
as personal identification numbers or passwords.

Handheld devices offer two distinct challenges for stan-
dard face and voice identification approaches. First, their
mobility ensures that the environmental conditions the de-
vices will experience will be highly variable. Specifically,
the audio captured by these devices could contain highly
variable background noises producing potentially low signal-
to-noise ratios. Similarly, the images captured by the de-
vices can contain highly variable lighting and background
conditions. Second, the quality of the video and audio cap-
ture devices is also a factor. Typical consumer products are
constrained to use audio/visual components that are both
small and inexpensive, resulting in a lower quality audio
and video than is typically used in laboratory experiments.

To examine these issues we have developed a prototype
system for incorporating two biometric techniques, speaker
identification and face identification, into a mobile device.
Results of an early evaluation of this system were previ-
ously reported in [1]. In our previous study, we evaluated
a combined face and speaker identification system within
a user verification “login” scenario on an iPAQ handheld
computer. The combined system was able to achieve a 50%
reduction in the verification equal error rate (EER) over a
system using only our speaker identification technology. This
large improvement in performance was attained despite the
fact that speaker identification system achieved an EER that
was 75% smaller than that of the face identification system.
This result was surprising because it showed that large im-
provements could be obtained through the combination of
different biometric systems, even when one of the systems
was vastly superior in accuracy to the other. In the work
conducted in this paper, we improve upon our previous re-
sults by replacing our older, simpler face identification sys-
tem with a newer state-of-the-art system.

The rest of the paper is organized as follows. We first
present an overview of our two biometric techniques and the
fusion technique for combining them. Next, we discuss the
mobile-device paradigm in which we are conducting our ex-
periments and the methods of data collection employed. We
follow this with experimental results showing the perfor-
mance of the two biometric techniques on the data we have



collected, both individually and in combination. Finally, we
summarize and discuss the results and present plans for fu-
ture directions of our work.

2. PERSON IDENTIFICATION

2.1. Speaker Identification

Speech has long been recognized as a reasonable biometric
for person identification. However, speech is a variable sig-
nal whose main purpose is not to specify a person’s identity
but rather to encode a linguistic message. In systems where
the linguistic content of the speech is unknown (e.g. for
surveillance tasks), text-independent speaker identification
systems are generally used. However, in security applica-
tions where the user is cooperative in the attempt to prove
his/her identity, the linguistic content of the speech mes-
sage is typically known and can be tightly constrained. In
this case, a text-dependent system can be used. When the
linguistic content of the message is known, text-dependent
speaker recognition systems generally perform better than
text-independent systems because they can tightly model
the characteristics of the specific phonetic-content contained
in the speech signal.

A common technique used in speech-based person iden-
tification is to prompt the user with a randomly generated
challenge phrase. During authentication, automatic speech
recognition can be used to verify that the spoken utterance
matches the prompted utterance. For this type of scenario,
it is both reasonable and beneficial to use the automatic
speech recognition (ASR) output to leverage the phonetic
constraints that give text-dependent systems their advan-
tage. In [2], two techniques were described that use the ASR
output during the analysis of the phonetic content from the
test utterance.

In our speaker adaptive ASR approach, the system uses
speaker-dependent speech recognizers to model each speaker.
During training, phonetically transcribed enrollment utter-
ances are used to train context-dependent phonetic mod-
els for each speaker. During testing, a speaker-independent
ASR component generates a phonetic transcription from the
test utterance. This transcription is then used by the sys-
tem to score each segment of speech against each speaker-
dependent phonetic model. Modeling speakers at the pho-
netic level can be problematic because enrollment data sets
are typically too small to build robust speaker-dependent
models for every context-dependent phonetic model. To
compensate for this difficulty, we use an adaptive scoring
approach in which the speaker-dependent (SD) score is in-
terpolated with a speaker-independent (SI) score.

Mathematically, if the word recognition hypothesis as-
signs each feature vector � from the utterance

�
to phonetic

unit � , then the score for speaker ��� , ��� �
	 ���
� , is given by�	 ��	������������� ��� ��� � �"!$#%� � 	 & �(')���*��+,� �.- � ��� �/�0�1!323� � 	 & �/��"!$2�� � 	 & �4� 5
where

& � is the model for phonetic unit � and
� ��� � is an

interpolation factor given by� ��� �76 8 �9� �8 ��� � +;:=<
In this equation, 8 ��� � is the number of training examples of
phonetic unit � observed for speaker � � , and : is a global
tuning parameter that is set empirically using a separate
development set. The log ratio in the equation generates
positive scores when the input speech is a good match to
a particular speaker’s models and negative scores when the
speech is a poor match.

This scoring strategy results in models that capture de-
tailed phonetic-level characteristics for a speaker when suf-
ficient training data is available, but relies more on speaker
independent models for phonetic units with sparse training
data. Thus, for cases with limited training data, the speaker
independent model provides a more neutral score. In the
limiting case, if no speakers have training data for any of
the phones observed in a particular test utterance, then they
will all receive the same neutral score of zero, which is an
intuitively consistent result.

2.2. Face Identification

The face identification framework used in our work is simi-
lar to the one described in [3], but with some differences in
detection and classification methods.

2.2.1. Face Detection

A two-step process is used for face detection. First, a fast
hierarchical classifier similar to the one described in [4] is
applied to the captured image, to roughly localize the face
in the image. The region around the face is then cropped out
from the larger image, histogram equalized, and scaled to a
fixed size.

Next, a component-based face detector [3] is applied
to the extracted region to precisely localize the face and to
detect facial components. This method first independently
applies component detection classifiers to the face image.
Each of these support vector machine (SVM) classifiers is
trained to detect a particular component, such as a nose,
mouth, or left eyebrow. In all, 14 face components are used,
and each component classifier is evaluated over a range of
positions in the vicinity of the expected location of the de-
sired component. A geometrical configuration classifier is



Fig. 1. A sample image and its face detection result with the
face component regions superimposed.

then applied to the combined output of each of the 14 com-
ponent classifiers from each candidate position. The candi-
date positions that yields the highest output of the second-
level classifier are taken to be the detected component posi-
tions.

Ten out of the 14 components are used for face recog-
nition. The remaining four are not used because they ei-
ther overlap heavily with other components, or display few
structures of use in distinguishing people from one another.
The gray values of the ten selected components are normal-
ized in size and combined into a single feature vector. The
feature vector serves as input to the face recognizer. Fig-
ure 1 illustrates an enrollment image, as well as its selected
face region with the positions of the facial components as
detected by our system.

2.2.2. Face Recognition

For recognition, a one-vs-all SVM scheme is used, where
one classifier is trained to distinguish each person in the
database from all the others [5]. In the SVM training pro-
cess, for each person’s classifier, the feature vectors corre-
sponding to that person’s training images are used as posi-
tive examples, and the feature vectors corresponding to all
the others’ images are used as negative examples. The SVM
training process finds the optimal hyperplane in the feature
space that separates the positive and negative data points.
Since the training data may not be separable, a mapping
function corresponding to a second-order polynomial SVM
kernel function [5] is applied to the data before training.

The runtime recognition process consists of computing
the SVM classifier output score for each person’s SVM clas-
sifier [5]. The scores are zero-centered – that is, a score of
zero means the data point lies directly on the decision hy-
perplane, and positive and negative scores mean the data
point lies on the positive and negative example side of the
decision hyperplane, respectively. The absolute value of
the SVM output is a multiple of the distance from the de-
cision hyperplane, and could be normalized to produce the
distance. Thus, a highly positive score represents a large
degree of certainty that the data point belongs to the per-
son the SVM was trained for, and a highly negative score
represents the opposite. The output scores from all SVM
classifiers make up the 8 -best list that we treat as our face
recognition result.

For our face identification task, we collected and tested
frontal face image data only. Most state of the art face iden-
tification systems attempt to account for rotations in and
out of the image plane, and/or occlusions – which would
be present in a typical surveillance task. However, for the
handheld face identification problem, the user will be coop-
erating with the identification process; and in general, the
user certainly will be looking at the screen of the hand-
held device as he or she is using it. Thus, accounting for
heavily rotated or occluded faces is not important in this
project. Generally, rotations or occlusions in face images
make the problem of identification more challenging; thus,
our problem is easier in this respect. Nonetheless, the vari-
able lighting and background conditions and inexpensive
camera present an orthogonal challenge, to ensure the non-
triviality of our problem.

2.3. Multi-Modal Fusion

Past work on fusing face and speaker classifiers has gener-
ally used very simple combination strategies. Poh and Ko-
rczak used a logical AND rule on the results of their inde-
pendent face and speaker systems [6]. This rule is most
useful when the goal is to limit false acceptances, since
both classifiers must accept the user in order to produce



an acceptance by the fused-classifier. Brunelli and Falav-
igna [7] and Kittler et al [8] use basic probabilistic com-
bination operators on the outputs from their independent
recognizers. Bigün et al utilize a Bayesian statistics ap-
proach which compensates for biases and interdependen-
cies between different classifiers [9]. An alternative to these
statistical fusion approaches is the use of discriminatively
trained methods such as decision trees or linear discrimi-
nant functions [10].

In our work, a linear weighted summation is employed
for the classifier fusion where the weights for each classi-
fier are trained discriminatively on a held-out development
set using minimum classification error (MCE) training. The
MCE training optimizes the equal error rate of false accep-
tances and false rejections under the user verification sce-
nario. Because the final decision only requires the combi-
nation of two independent classifiers, only one additional
parameter (the ratio of the weights of the classifiers) needs
to be learned. A simple brute force sampling of the param-
eter space is used for this MCE training. More complicated
techniques (such as gradient descent training) could be used
in situations where more than two scores must be fused.

3. EXPERIMENTS

3.1. The Handheld Device

For our experiments we utilized a collection of iPAQ hand-
held computers. Speech data were collected utilizing the
built-in microphone of the iPAQ. Two different models of
iPAQs were used, with two different models of off-the-shelf,
inexpensive electret condenser microphones. Face data were
collected using a 640x480 CCD camera located on a custom-
built expansion sleeve for the iPAQ. The iPAQ handheld
computer, combined with the custom sleeve, is the hand-
held device platform used for pervasive computing research
in the MIT Oxygen Project [11]. An image of the iPAQ with
the expansion sleeve is shown in Figure 2. Because of the
current computation and memory limitations of the iPAQ
handhelds, the images and audio are captured by the hand-
held device, but then transmitted over a wireless network
to servers which perform the operations of face detection,
face identification, speech recognition, and speaker identi-
fication. In future work we hope to improve the computa-
tional efficiency and memory footprints of our systems so
they can be deployed directly on small handheld devices.

3.2. The Login Scenario

Our experiments were conducted using a login scenario that
combined face and speaker identification techniques to per-
form the multi-biometric user verification process. When
“logging on” to the handheld device, users snapped a frontal
view of their face, spoke their name, and then recited a

Fig. 2. The iPAQ handheld computer used in this study.

prompted lock combination phrase consisting of three ran-
domly selected two digit numbers (e.g. “25-86-42”). The
system recognized the spoken name to obtain the “claimed
identity”. It then performed face verification on the face
image and speaker verification on the prompted lock com-
bination phrase. Users were “accepted” or “rejected” based
on the combined scores of the two biometric techniques.

3.3. Data Collection

For our set of “enrolled” users, we collected face and voice
data from 35 different people. Each person performed eight
short enrollment sessions, four to collect image data and
four to collect voice data. For each voice session, each user
recited 16 prompted lock-combination phrases. Each im-
age collection session consisted of the user taking 25 frontal
face images in a variety of rooms in our lab with differ-
ent lighting conditions. No specific constraints were placed
on the distribution of the locations and lighting conditions;
users were allowed to self-select the locales and lighting
conditions of their images. To illustrate the quality of the
images, Figure 3 shows two sample images captured during



Fig. 3. Two sample images collected on the iPAQ.

the data collection.
During image collection, a fast face detector [12] was

applied to each captured image to verify that the image in-
deed contained a valid face. This face detector occasionally
rejected images when it failed to locate the face in the im-
age with sufficiently high confidence. When this occurred
the user was instructed to capture a new image. Due to a
conservative face detection confidence threshold, no false
positives (i.e., images with incorrectly detected faces) were
observed from this face detector during the data collection.
It is important to note that the face detector used during our
data collection was not the same one used in the experi-
ments in this paper.

Each voice and image session was typically collected
on a different day, with the time span between sessions of-
ten spanning several days and occasionally a week or more.
Each enrollment session typically lasted less than 5 min-
utes with the total enrollment time taking approximately 30
minutes on average. In total this yielded 100 images and
64 speech samples per enrolled user for training. An ad-
ditional set of four enrollment sessions of audio data (i.e.,
64 additional utterances) from 17 of the training speakers

was available for development evaluations and multi-modal
weight fusion training.

For our evaluation, we collected 16 sample login ses-
sions from 25 of the 35 enrolled users. This yielded 400
unique utterance/face evaluation pairs from enrolled users.
We also collected 10 impostor login sessions from 20 peo-
ple not in the set of enrolled users for an additional 200
utterance/face evaluation pairs from unenrolled people.

We used the evaluation data to perform our user veri-
fication experiments. Each utterance/face pair from in-set
speakers was used as a positive example of that user. This
yielded a total of 400 positive examples for our evaluation.
Each utterance/face pair from each in-set user could also be
used as an impostor for the other 34 users in the enrolled set.
This yielded 13600 impostor examples from in-set speakers.
Each utterance/face pair collected from out-of-set impostors
was also used to generate an impostor example for each of
the 35 users in the enrolled set. This yielded 7000 impostor
examples from users not in the enrollment set. In general,
it is expected that impostors that have never been observed
by the system will generate more classification errors than
enrolled users who try to impersonate other enrolled users.
This is because the models are trained to discriminate be-
tween users observed in the training data and thus may not
generalize well to unseen users.

3.4. Training

The face and speaker systems were trained on the enroll-
ment data for the 35 enrolled users. To train the fusion
weights, one of the four face enrollment sessions was held
out and a development face ID system was trained on the
remaining three face sessions. Face identification scores
from this held-out set were pairwise combined with speaker
identification scores generated for utterances from the exist-
ing speaker identification development set. The true in-set
examples and in-set impostor examples were provided to
the MCE weight training algorithm previously described to
generate the multi-modal fusion weights.

3.5. Face Detection Issues

For the experiments presented in this paper, the face detec-
tion algorithm used during the evaluation is not the same
as the face detection algorithm used during the data collec-
tion. The detection algorithm used during the evaluation
was specifically tuned to accept facial images that are well
suited to the component-based classification method used
for face identification. Because this classification method
works best with frontal images of faces that are not tilted or
contorted, the face detection algorithm was initially tuned
such that tilted or contorted faces were rejected. The face
detection algorithm used during our data collection was less
conservative in its accept/reject decision of a hypothesized



Table 1. User verification results expressed as equal error
rates (%), when forcing the face detector to output a de-
tected face, on three systems (face only, speaker only, and
multi-modal fusion) under two impostor conditions (known
in-set impostors vs. unknown out-of-set impostors).

System In-set Impostors Out-of-set Impostors
Face 3.21% 4.87%

Speaker 0.75% 1.66%

Fused 0.24% 0.66%

face in an image. As a result, a sizable number of images
in the training and evaluation data sets were rejected by the
new face detection algorithm.

Because of the reduced number of images for our evalu-
ation, we could not make a direct comparison with our pre-
vious test results. To allow us to make this comparison, we
elected to run two experiments, one where the conservative
face-detection decisions were used and a second experiment
where the face detection algorithm was forced to output a
detected face even if the image’s detection score fell below
the standard acceptance threshold. These two experiments
allow us to examine the trade-off between the added gain
in accuracy enabled by stricter control in the input facial
images, and the potential added inconvenience of requiring
users to provide an untilted, uncontorted frontal image.

3.6. Experimental Results

3.6.1. Forced Face Detection Results

Table 1 shows our user verification results for three systems
(face ID only, speaker ID only, and our full multi-modal sys-
tem) under two different impostor conditions (using only
known in-set impostors vs. using only unknown out-of-
set impostors). This experiment uses a detection threshold
which forces the face detector to output a face hypothesis for
all of the images, even when the detection confidence score
is low. Figure 4 shows the results for the out-of-set impostor
evaluation on a detection error trade-off (DET) curve.

Several observations should be made from these results.
First, the speaker ID system has an equal error rate (EER)
which is three times smaller than that of the face ID system
when evaluated with unknown out-of-set impostors. These
face ID results are better than our previously reported results
in which the face ID system produced an EER which was
four times larger than the speaker ID EER.

Next, the combined system has a 60% reduction in EER
from 1.66% in the speech only system to 0.66% in the com-
bined system. This is a slightly better improvement than
the 50% reduction we had observed in our previous study.
This demonstrates that sizable improvements can be ob-
tained when multiple independent biometric techniques are
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Fig. 4. DET curves for face and speech systems run inde-
pendently and in combination when tested using impostors
unknown to the system and when using a face detector that
is forced to output a detected face for each input image.

combined even when one biometric technique performs sub-
stantially better than others.

Finally, it is interesting to note that the combined sys-
tem achieves an EER of only 0.24% on the in-set impostor
experiment. In other words, the EER when using the un-
known impostors is 2.75 times greater than the EER of the
in-set impostor experiment. This shows the importance of
evaluating the system using people that are not part of the
training data.

3.6.2. Conservative Face Detection Results

When applying the conservative face detection threshold
to the evaluation utterances, 12% of the images were re-
jected. To evaluate the system under these conditions, the
face ID system was first re-trained using the same threshold

Table 2. User verification results expressed as equal er-
ror rates (%), when using the conservative face detection
threshold on three systems (face only, speaker only, and
multi-modal fusion) under two impostor conditions (known
in-set impostors vs. unknown out-of-set impostors).

System In-set Impostors Out-of-set Impostors
Face 1.66% 2.57%

Speaker 0.77% 1.63%

Fused 0.00% 0.15%
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Fig. 5. DET curves for face and speech systems run in-
dependently and in combination when tested using impos-
tors unknown to the system and when using the conservative
face detection threshold.

for detection. The system’s verification results were then
re-computed using the 88% of the data that passed the more
conservative face detection threshold.

Table 2 shows the equal error rates under these new
constraints. The face ID system shows a nearly 50% im-
provement in EER performance over the forced detection
result when the images with poor face detection scores were
discarded. When used in conjunction with the speaker ID
component, the combined system achieved an EER of only
0.15% when testing with out-of-set impostors. This a size-
able 90% reduction in EER from the speech only system!
This combined system also achieved perfect separation be-
tween true users and in-set impostors resulting in a 0.0%
EER on the in-set impostor experiment. This demonstrates
that highly accurate biometric authentification can be ob-
tained if the user is willing accept additional constraints on
the verification process that may increase the inconvenience
of the system. Unfortunately, because so few errors are ob-
served, due to the limited size of our evaluation set, it is not
possible to make any firm claims about the absolute level of
the error rate of the system. We plan to increase the size of
our evaluation set in future experiments.

3.6.3. Comparison with YOHO Corpus

To examine the degradation that might be experienced when
our speaker identification technique is utilized in a mobile
environment, we compared the performance of closed-set

speaker recognition on the mobile handheld data set against
the performance of our system on the tightly constrained
YOHO corpus, which uses the same lock combination phrase
approach that we employed [13]. It is important to note
that the YOHO corpus was collected using a single close-
talking telephone handset in a quiet office, and thus does
not suffer from the degradations that are present in our mo-
bile devices due to the low quality far-field microphone and
the variable background conditions. In [2], it was shown
that our system’s speaker recognition error rate was 0.31%
over YOHO’s closed-set of 138 speakers. Using our 400 ut-
terance in-set speaker evaluation set, our system’s speaker
recognition error rate was 0.25% over our closed set of 35
enrolled speakers (i.e., only one misrecognition in 400 tri-
als). Thus we have achieved roughly the same error rate as
on YOHO, but only with a much smaller set of speakers.

4. SUMMARY AND FUTURE WORK

In summary, our initial study in biometric fusion for user
verification has demonstrated the benefits of combining face
and speaker identification even when one of the biometric
techniques has superior performance to the other. A 90%
reduction in user verification equal error rate was observed
when our speaker identification system was fused with a
face identification system. This result was achieved with a
system that forces the user to provide a frontal image that
can be automatically detected with a high-level of confi-
dence. By adjusting the confidence-level of the face detec-
tor, the system can reduce the inconvenience of re-capturing
images when the face detector fails, but at the expense of re-
duced user verification accuracy.

Though this study demonstrated the feasibility of our
approach, our current evaluation set is quite small. In fu-
ture work we plan to expand the size of evaluation set and
examine the specific types of errors the system makes. We
also plan to investigate the performance of the system un-
der the conditions where impostors are specifically selected
based on resemblances of their voice or facial properties
(i.e., same gender or ethnicity) to particular enrolled users.
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Abstract— In this paper, several approaches that can be used
to improve biometric authentication applications are proposed.
The idea is inspired by the ensemble approach, i.e., the use of
several classifiers to solve a problem. Compared to using only
one classifier, the ensemble of classifiers has the advantage of
reducing the overall variance of the system. Instead of using
multiple classifiers, we propose here to examine other possible
means of variance reduction (VR), namely through the use of
multiple synthetic samples, different extractors (features) and
biometric modalities. The scores are combined using the average
operator, Multi-Layer Perceptrons and Support Vector Machines.
It is found empirically that VR via modalities is the best
technique, followed by VR via extractors, VR via classifiers and
VR via synthetic samples. This decreasing order of effectiveness
is due to the corresponding degree of independence of the
combined objects. The theoretical and empirical findings show
that experts combined via VR techniquesalwaysperform better
than the average of their participating experts. Furthermore, in
practice, mostcombined experts perform better than any of their
participating experts.

I. I NTRODUCTION

Biometric authentication (BA) is the problem of verifying an
identity claim using a person’s behavioural and physiological char-
acteristics. BA is becoming an important alternative to traditional
authentication methods such as keys (“something one has”, i.e.,
by possession) or PIN numbers (“something one knows”, i.e., by
knowledge) because it is essentially “who one is”, i.e., by biometric
information. Therefore, it is not susceptible to misplacement or
forgetfulness. Examples of biometric modalities are fingerprints,
faces, voice, hand-geometry and retina scans [1].

To date, biometric-based security systems (devices, algorithms,
architectures) still have room for improvement, particularly in their
accuracy, tolerance to various noisy environments and scalability as
the number of individuals increases. The focus of this study is to
improve system accuracy by directly minimising the effects of noise
via various variance reduction techniques. Biometric data is often
noisy because of deformable templates, corruption by environmental
noise, variability over time and occlusion by the user’s accessories.
The higher the noise, the less reliable the biometric system becomes.

Advancements in biometrics show two emerging solutions: com-
bining several biometric modalities [2], [3] (often called multi-modal
biometrics) and combining several samples of a single biometric
modality [4]. These techniques are related tovariance reduction
(VR). This is a phenomenon originating from combining classifier
scores. Specifically, by combining the outputs ofN classifier scores
using an average operator (in the simplest case), one can reduce the
variance of the combined score, with respect to the target score, by a
factor ofN [5, Chap. 9], if the classifier scores are not correlated (or

independent from each another). On the other hand, in the extreme
case, when they are completely correlated (dependent on each other),
there will be no reduction in variance at all [6].

In the context of BA, when one combines several biometric
modalities or several samples, one indeed exploits the independence
of each modality and sample, respectively. In this work, we examine
several other ways to exploit this (often partial) independence, namely
via extractors, classifiers and synthetic samples. In short, all these
methods can be termed as follows: Variance Reduction (VR) via
classifiers, VR via extractors, VR via samples and VR via (biometric)
modalities.

In our opinion, VR techniques have the potential to improve
the accuracy of BA systems because better classifiers or ensemble
methods, feature extraction algorithms and biometric-enabled sensors
are emerging. Instead of choosing one best technique (best fea-
tures, classifiers, etc), VR techniques propose to combine these new
algorithms with existing techniques (features, classifiers) to obtain
improved results, whenever this is feasible. The added overhead cost
will be computation time and possibly hardware cost in the case of
adding new sensors (as opposed to other VR techniques whichdo
not requireany extra hardware).

II. VARIANCE REDUCTION IN BIOMETRIC

AUTHENTICATION

A. Variance Reduction

This section presents a brief findings on the theory of variance
reduction (VR). Details can be found in [6].

A person requesting an access can be measured by his or her
biometric data. Let this biometric data bex. This measurement can
be done by several methods, to be explored later. Leti denote the
i-th extract ofx by a given method. For the sake of comprehension,
one method to do so is to use multiple samples. Thus, in this
case,i denotes thei-th sample. If the chosen method uses multiple
biometric modalities, theni refers to thei-th biometric modality. Let
the measured relationship be denoted asyi(x). It can be thought
as thei-th response (of the sample or modality, for instance) given
by a biometric system. Typically, this output (e.g. score) is used to
make the accept/reject decision.yi(x) can be decomposed into two
components, as follows:

yi(x) = h(x) + ηi(x), (1)

whereh(x) is the “target” function that one wishes to estimate and
ηi(x) is a random additive noise with zero mean, also dependent on
x.

Let N be the number of trials, (e.g., the number of samples,
assuming that the chosen method uses multiple samples hereinafter).



The mean ofy over N trials, denoted as̄y(x) is:

ȳ(x) =
1

N

NX
i=1

yi(x). (2)

When N samples are available and they are used separately, the
average of variancemade by each sample, independently, is:

VARAV (x) =
1

N

NX
i=1

VAR[yi(x)], (3)

where VAR[x] is the variance ofx.
The variance as a result of averaging (orvariance of average) due

to Eqn. (2) is defined as:

VARCOM (x) = E[(ȳ(x)− h(x)])2], (4)

where E[x] is the expectation ofx. In our previous work [6], it has
been shown that:

1

N
VARAV (x) ≤ VARCOM (x) ≤ VARAV (x). (5)

This equation shows that when scoresyi, i = 1, . . . , N are uncor-
related, the variance of average is reduced by a factor of1/N with
respect to the average of variance. On the other hand, when the scores
are totally correlated, there is no reduction of variance, with respect
to the average of variance.

To measureexplicitly the factor of reduction, we introduceα,
which can be defined as follows:

α =
VARAV (x)

VARCOM (x)
. (6)

By dividing Eqn (5) by VARCOM and rearranging it, we can
deduce that1 ≤ α ≤ N .

B. Variance Reduction and Classification Reduction
Fig. 1 illustrates the effect of averaging scores in a two-class

problem, such as in BA where an identity claim could belong either
to a client or an impostor. Let us assume that the genuine user scores
in a situation where 3 samples are available but are used separately,
follow a normal distribution of mean 1.0 and variance (VARAV (x)
of genuine users) 0.9, denoted asN (1,

√
0.9), and that the impostor

scores (in the mentioned situation) follow a normal distribution of
N (−1,

√
0.6) (both graphs are plotted with “+”). If for each access,

the 3 scores are used, according to Equation 6, the variance of the
resulting distribution will be reduced by a factor (which is the value
α defined in Equation 6) of 3 or less. Both resulting distributions
are plotted with “o”. Note the area where both the distributions
cross before and after. The later area is shaded in Fig. 1. This area
corresponds to the zone where minimum amount of mistakes will be
committed given that the threshold is optimal1. Decreasing this area
implies an improvement in the performance of the system.

C. Variance Reduction and Correlation in Input Score Space
From the previous section, it is obvious that by reducing the

variance, the classification results should be improved. How much
variance can be reduced depends on how correlated the input scores
are. The correlation between scores of two experts can be examined
by plotting their scores on a 2D-plan, with one axis for each expert.
This is shown in Figs. 2 and 3. The first figure shows a scatter-plot
of scores taken from two experts working on thesamefeatures. The
second figure shows a scatter-plot of scores taken from two experts

1Optimal in the Bayes sense, when (1) the cost and (2) probability of both
types of errors (i.e., false acceptances and false rejections) are equal.
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Fig. 1. Averaging score distributions in a two-class problem

working ondifferent biometric modalities. Details of the experts are
explained in Sec. IV. As can be seen, the scores of the former
overlaps more than the latter, i.e., if a boundary is to be drawn
between clients and impostors scores, it would be more difficult for
the former problem than the latter problem. Note that overlapping
occurs when both experts make the same errors. Thus, there will be
more classification errors in the former problem than in the latter.

D. Exploring Various Variance Reduction Techniques
This section explores various variance reduction (VR) techniques

that can be applied to the BA problem. A BA system can be
viewed as a system consisting of sensors, extractors, classifiers and
a supervisor. Sensors such as cameras are responsible to capture a
person’s biometric traits. Extractors are responsible for extracting
salient features that are useful for discriminating a person from
others. Classifiers (also referred to as “experts”) are responsible for
comparing the extracted features to previously stored features that
are known to belong to the person. Finally, in the context of multiple
modalities, features, classifiers or samples, a supervisor is needed to
merge all the results. A survey of different fusion techniques can be
found in [7].

This serial concatenation process of sensors, extractors, classifiers
and a supervisor shows that errors may accumulate along the chain
because each module depends on the previous module. An important
finding in Sec. II-A [6] is that it is beneficial to increase the number of
processes. For instance, one can use more samples or more biometric
modalities. In these two cases,N will be the number of samples and
modalities, respectively. This is because by increasingN , one can
decrease the variance further, regardless of how correlated the scores
obtained from theseN experts are. Note that in the work of Kittler
et al [4], they showed that by increasingN samples up to a limit,
there is no more gain in accuracy. When this happens, they deem
the system to be “saturated”. In our context, we expandN through
different methods, as follows:
• Multiple Biometric Modalities . Each modality has its own

feature set and classifiers. In other words, they operate inde-
pendently of each other [7]–[10]

• Multiple Samples. Samples could be real [4] or virtually
generated [11].
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• Multiple Extractors . Each feature is classified by a classifier
independently of other features [12]–[14].

• Multiple Classifiers. All classifiers receive the same input
features. Heterogeneous types of classifiers can be used. Un-
stable homegenous classifiers such as Multi-Layer Perceptrons
(MLPs) trained by bagging or with different hidden units can
also be used. In general, many ensemble methods such as
bagging, boosting, via Error-Correcting Output-Coding fall in
this category [15], [16].

For each method mentioned above, the problem now is to combine
theseN scores. This is treated in the next subsection.

E. Fusions in Variance Reduction Techniques

In Sec. II-A, it has been illustrated that correlation of scores in
the input space plays a vital role in determining the success of the
resultant combined system. Furthermore, by simple averaging ofN
scores, it has been shown that the variance of the resultant combined

score can be reduced by a factor between 1 andN with respect to
the average of variance.

Instead of using simple averaging, one could have used weighted
average, or even non-linear techniques such as MLPs and Support
Vector Machines (SVMs) [5]. In the latter two cases however, one
needs to select carefully the various hyper-parameters of these models
(such as the number of hidden units in the MLPs or the kernel
parameters in the SVMs). According to the Statistical Learning
Theory [17], the expected performance of a model such as an MLP or
an SVM on new data depends on thecapacityof the set of functions
the model can approximate. If the capacity is too small, the desired
function might not be in the set of functions, while if it too high,
several apparently good functions could be approximated, with the
risk of selecting a bad one. This phenomenon is often calledover-
training. Although this capacity cannot unfortunately be explicitely
estimated for complex set of functions such as MLPs and SVMs, its
ordering can be used to select efficiently the corresponding hyper-
parameters using some sort of validation technique. One such method
is the K-fold cross-validation.

Algorithm 1 shows how K-fold cross-validation can be used to es-
timate the correct value of the hyper-parameters of our fusion model,
as well as the decision threshold used in the case of authentication.
The basic framework of the algorithm is as follows: first perform
K-fold cross-validation on the training set by varying the capacity
parameter, and for each capacity parameter, select the corresponding
decision threshold that minimises Half Total Error Rate (HTER)2;
then choose the best hyper-parameter according to this criterion and
perform normal training with the best hyper-parameter on the whole
training set; finally test the resultant classifier on the test set [8] with
HTER evaluated on the previously found decision threshold.

There are several points to note concerning Algorithm 1:Z is a set
of labelled examples of the form(X ,Y), where the first term is a set
of patterns and the second term is a set of corresponding labels.
The “train” function receives a hyper-parameterθ and a training
set, and outputs an optimal classifier̂F by minimising the HTER
on the training set. The “test” function receives a classifierF̂ and
a set of examples, and outputs a set of scores for each associated
example. The “thrdHTER” function returns adecision thresholdthat
minimises HTER by minimising|FAR(∆) − FRR(∆)| with respect
to the threshold∆ (FAR(∆) and FRR(∆) are false acceptance and
false rejection rates, as a function of∆) while LHTER returns the
HTER value for a particular decision threshold. What makes this
cross-validation different from classical cross-validation is that there
is only one single decision threshold and the corresponding HTER
value for all the held-out folds and for a given hyper-parameterθ.
This is because it is logical to union scores of all held-out folds into
one single set of scores to select the decision threshold (and obtain
the corresponding HTER).

F. Fusions For VR via Samples
All the VR techniques discussed earlier can be treated in a general

manner, except VR via samples. This is because the ordering of scores
induced by samples are not important. Simply concatenating the
scores and feeding them to a classifier may not be an optimal solution.
Another problem that might arise is that when there are many scores,
possibly in the range of hundreds (one can generate as many virtual
scores as one wishes), matching should be done in terms of their
distribution instead. We hence propose two solutions to handle this: 1)
estimate the likelihood of the set of virtual scores when coming from
either a client or an impostor distribution; 2) estimate the distribution
of the scores so that matching will be performed between a competing

2HTER is defined as (FAR+FRR)/2, where FAR is False Acceptance Rate
and FRR is False Rejection Rate.



Algorithm 1 Risk Estimation(Θ,K,Ztrain,Ztest)
REM: Risk Estimation with K-fold Validation. See [8].
Θ : a set of values for a given hyper-parameter
Zi : a tuple(X i,Yi), for i ∈ {train, test} where
X : a set of patterns. Each pattern contains scores/hypothesis
from base experts
Y : a set of labels∈ {client, impostor}
Let ∪K

k=1Zk = Ztrain

for each hyper-parameterθ ∈ Θ do
for eachk = 1, . . . , K do

F̂θ = train(θ, ∪K
j=1,j 6=kZj)

Ŷk
θ = test(F̂θ, X k)

end for
∆θ = thrdHTER

(
{Ŷk

θ }K
k=1, {Yk}K

k=1

)

end for
θ∗ = arg minθ

(
LHTER

(
∆θ, {Ŷk

θ }K
k=1, {Yk}K

k=1

))

F̂θ∗ = train(θ∗, Ztrain)
Ŷtest

θ∗ = test(F̂θ∗ , X test)
returnLHTER(∆θ∗ , Ŷtest

θ∗ ,Ytest)

client and an impostor distribution. Both approaches assume that the
scores are generated independently from some unknown distributions.
Of course this independence assumption is not true, but it is good
enough for most practical problems.

The first approach is carried out using Gaussian Mixture Models
(GMMs) to model the scores. First estimate the client and impostor
distributions using GMMs by separately maximising the likelihood
of the client and impostor scores using the Expectation-Maximisation
algorithm [5]. During an access request with one real biometric
sample, a set of synthetic samples and hence a set of scores are
generated. These scores will be fed to the client and an impostor
GMM score distribution. Letlog p(x|θC) be the log likelihood of
the set of scoresx given the client GMM modelθC and log p(x|θI)
be the same term but for the impostor model. The decision is often
taken using the so-called log-likelihood ratio:

s = log p(x|θC)− log p(x|θI)

In the second approach, we propose to first model the distribution
of these synthetic scores using a Parzen window non parametric
density model [5, Chap. 2] and then compute the relative entropy
of each distribution, which is defined as follows:

L(p, q) = −
X

i

p(yi) log
q(yi)

p(yi)
, (7)

whereq and p are two distributions. Entropy can be regarded as a
distortion ofq(y) from p(y). This alone does not give discriminative
information. To do so, entropies of a client and an impostor distri-
bution should be used together. LetL(pC , q) be the entropy ofq(y)
with respect to a client distribution andL(pI , q) be that ofq(y) with
respect to an impostor distribution. Then the difference between these
two entropies, can be defined as:

s = L(pI , q)− L(pC , q).

Whens > 0, the distortion ofq(y) from an impostor distribution
is greater than that of a client distribution, which reflects how likely a
set of synthetic scores belong to a client. In fact, for both approaches,

s > 4 is used instead, where4 is a threshold chosena priori
according to the HTER criterion.

III. E XPERIMENTAL SETTINGS

A. XM2VTS Database Description
The XM2VTS database [18] contains synchronised video and

speech data from 295 subjects, recorded during four sessions taken
at one month intervals. On each session, two recordings were made,
each consisting of a speech shot and a head shot. The speech shot
consisted of frontal face and speech recordings of each subject during
the recital of a sentence.

The database is divided into three sets: a training set, an evaluation
set and a test set. The training set was used to build client models,
while the evaluation set (Eval) was used to compute the decision
thresholds (as well as other hyper-parameters) used by classifiers.
Finally, the test set (Test) was used to estimate the performance.

The 295 subjects were divided into a set of 200 clients, 25 evalua-
tion impostors and 70 test impostors. There exists two configurations
or two different partitioning approaches of the training and evaluation
sets. They are called Lausanne Protocol I and II, denoted asLP1 and
LP2 in this paper. Thus, besides the data for training the model, the
following four data sets are available for evaluating the performance:
LP1 Eval, LP1 Test, LP2 Eval and LP2 Test. Note that LP1 Eval
and LP2 Eval are used to calculate the optimal thresholds that will
be used in LP1 Test and LP2 Test, respectively. Results are reported
only for the test sets, in order to be as unbiased as possible (using
an a priori selected threshold). Table I is the summary of the data.
In both configurations, the test set remains the same. However, there
are three training shots per client for LP1 and four training shots per
client for LP2. More details can be found in [19].

B. Feature Extraction
For the face data, a bounding box is placed on a face according

to manually located eye co-ordinates. This assumes a perfect face
detection3. The face is cropped and the extracted sub-image is down-
sized to a40× 30 (rows× columns) image. After enhancement and
smoothing, the face image is represented as a feature vector with a
dimensionality of1200.

In addition to these normalised features, RGB (Red-Green-Blue)
histogram features are used. For each colour channel, a histogram is
built using32 discrete bins. Hence, the histograms of three channels,
when concatenated, form a feature vector of96 elements. More
details about this method, including experiments, can be obtained
from [20].

Another feature set derived from Discrete Cosine Transform (DCT)
coefficients [21], [22] has also given good performance. The idea is

3Hence, even if this is often done in the literature, the final results using face
scores could be optimistically biased due to this manual detection step. Note
on the other hand that due to the clean and controlled quality of XM2VTS,
automatic detectors often yield detection rates of around 99%.

TABLE I

THE LAUSANNE PROTOCOLS OFXM2VTS DATABASE

Data sets Lausanne Protocols
LP1 LP2

Training client accesses 3 4
Evaluation client accesses 600 (3× 200) 400 (2× 200)
Evaluation impostor accesses 40,000 (25× 8× 200)
Test client accesses 400 (2× 200)
Test impostor accesses 112,000 (70× 8× 200)



to divide images into overlapping blocks. For each block, a subset of
DCT coefficients is computed. The horizontal and vertical deltas of
several DCT coefficients are also found. It has been shown that this
feature set (referred to as DCTmod2) has better performance than
features derived from Principal Component Analysis [21].

For the speech data, the feature sets used in the experiments
are Linear Filter-bank Cepstral Coefficients (LFCC) [23], Phase
Auto-correlation derived Mel-scale Frequency Cepstrum Coeffi-
cients (PAC) [24] and Mean-Subtracted Spectral Subband Centroids
(SSC) [25]. The speech/silence segmentation is done using two
competing Gaussians trained in an unsupervised way by maximising
the likelihood of the data given a mixture of the 2 Gaussians. One
Gaussian will end up modelling the speech and the other will end
up modelling the non-speech feature frames [26]. In general, the
segmentation given by this technique is satisfactory.

IV. RESULTS

In order to analyse the effects due to VR techniques, we first
present the baseline experimental results. This is followed by results
obtained by various VR techniques. Note that all results reported
here are in terms ofpercentage of HTER, the thresholds are all
selecteda priori (i.e., tuned on the training set, hence the threshold
is completely independentof the test set and is thus unbiased), and
for the combination strategy,only two experts are usedeach time.

A. Baseline Performance on The XM2VTS Database
The face baseline experts are based on the following features:
1) FH: normalised face image concatenated with its RGB

Histogram (thus the abbreviationFH)
2) DCTs: DCTmod2 features extracted from face images with a

size of40×32 (rows× columns) pixels. The DCT coefficients
are calculated from an 8× 8 window with horizontal and
vertical overlaps of 50%, i.e., 4 pixels in each direction.
Neighbouring windows are used to calculate the “delta” fea-
tures. The result is a set of 35 feature vectors, each having a
dimensionality of 18. (s indicates the use of this small image
compared to the bigger size image with the abbreviationb.)

3) DCTb: Similar to DCTs except that the input face image has
80× 64 pixels. The result is a set of 221 feature vectors, each
having a dimensionality of 18.

The speech baseline experts are based on the following features:
1) LFCC : The Linear Filter-bank Cepstral Coefficient (LFCC)

speech features were computed with 24 linearly-spaced filters
on each frame of Fourier coefficients sampled with a window
length of 20 milliseconds and each window moved at a rate of
10 milliseconds. 16 DCT coefficients are computed to decorre-
late the 24 coefficients (log of power spectrum) obtained from
the linear filter-bank. The first temporal derivatives are added
to the feature set.

2) PAC: The PAC-MFCC features are derived with a window
length of 20 miliseconds and each window moves at a rate
of 10 miliseconds. 20 DCT coefficients are computed to
decorrelate the 30 coefficients obtained from the Mel-scale
filter-bank. The first temporal derivatives are added to the
feature set.

3) SSC: The mean-subtracted SSCs are obtained from 16 coeffi-
cients. Theγ parameter, which is a parameter that raises the
power spectrum and controls how much influence the centroid,
is set to 0.7. Also The first temporal derivatives are added to
the feature set.

Two different types of classifiers were used for these experiments:
an MLP and a Bayes Classifier using GMMs to estimate the class
distributions [5]. While in theory both classifiers could be trained

using any of the previously defined feature sets, in practice only
some specific combinations appear to yield reasonable performance.

Whatever the classifier is, the hyper-parameters (e.g. the number
of hidden units for MLPs or the number of Gaussian components for
GMMs) are tuned on the evaluation set LP1 Eval. The same set of
hyper-parameters are used in both LP1 and LP2 configurations of the
XM2VTS database.

For each client-specific MLP, the samples associated to the client
are treated as positive patterns while all other samplesnot associated
to the client are treated as negative patterns. All MLPs reported here
were trained using the stochastic version of the error-backpropagation
training algorithm [5].

For the GMMs, two competing models are often needed: a world
and a client-dependent model. Initially, a world model is first trained
from an external database (or a sufficiently large data set) using the
standard Expectation-Maximisation algorithm [5]. The world model
is then adapted for each client to the corresponding client data using
the Maximum-A-Posteriori adaptation [27] algorithm.

The baseline experiments based on DCTmod2 feature extraction
were reported in [22] while those based on normalised face images
and RGB histograms (FH features) were reported in [20]. Details of
the experiments, coded in the pair(feature, classifier), for the face
experts, are as follows:

1) (FH, MLP) Features are normalisedFace concatenated with
Histogram features. The client-dependent classifier used is
an MLP with 20 hidden units. The MLP is trained with
geometrically transformed images [20].

2) (DCTs, GMM) The face features are the DCTmod2 features
calculated from an input face image of40× 32 pixels, hence,
resulting in a sequence of 35 feature vectors each having 18
dimensions. There are 64 Gaussian components in the GMM.
The world model is trained usingall the clientsin the training
set [22].

3) (DCTb, GMM) Similar to (DCTs,GMM), except that the fea-
tures used are DCTmod2 features calculated from an input face
image of80× 64 pixels. This produces in a sequence of 221
feature vectors each having 18 dimensions. The corresponding
GMM has 512 Gaussian components [22].

4) (DCTs, MLP) Features are the same as those in (DCTs,GMM)
except that an MLP is used in place of a GMM. The MLP has
32 hidden units [22]. Note that in this case a training example
consists of abig single feature vector with a dimensionality
of 35 × 18. This is done by simply concatenating 35 feature
vectors each having 18 dimensions4.

5) (DCTb, MLP) The features are the same as those in
(DCTb,GMM) except that an MLP with 128 hidden units is
used. Note that in this case the MLP in trained on asingle
feature vector with a dimensionality of221× 18 [22].

and for the speech experts:
1) (LFCC, GMM) This is the Linear Filter-bank Cepstral Coeffi-

cients (LFCC) obtained from the speech data of the XM2VTS
database. The GMM has 200 Gaussian components, with the
minimum relative variance of each Gaussian fixed to 0.5, and
the MAP adaptation weight equals 0.1. This is the best known
model currently available.

2) (PAC, GMM) The same GMM configuration as in LFCC
is used. Note that in general, 200-300 Gaussian components

4This may explain why MLP, an inherently discriminative classifier, has
worse performance compared to GMM, a generative classifier. With high
dimensionality yet having only a few training examples, the MLP cannot
be trained optimally. This may affect its generalisation on unseen examples.
By treating the features as a sequence, GMM was able to generalise better
and hence is more adapted to this feature set.



TABLE II

BASELINE PERFORMANCE INHTER(%) OF DIFFERENT MODALITIES

EVALUATED ON XM2VTS BASED ON a priori SELECTED THRESHOLDS

Data sets (Features, FAR FRR HTER
classifiers)

Face LP1 Test (FH,MLP) 1.751 2.000 1.875
Face LP1 Test (DCTs,GMM) 4.454 4.000 4.227
Face LP1 Test (DCTb,GMM) 1.840 1.500 1.670
Face LP1 Test (DCTs,MLP) 3.219 3.500 3.359
Face LP1 Test (DCTb,MLP) 4.443 8.000 6.221

Speech LP1 Test (LFCC,GMM) 1.029 1.250 1.139
Speech LP1 Test (PAC,GMM) 4.608 8.000 6.304
Speech LP1 Test (SSC,GMM) 2.374 2.500 2.437

Face LP2 Test (FH,MLP) 1.469 2.250 1.860
Face LP2 Test (DCTb,GMM) 1.039 0.250 0.644

SpeechLP2 Test (LFCC,GMM) 1.349 1.250 1.300
Speech LP2 Test (PAC,GMM) 5.283 8.000 6.642
Speech LP2 Test (SSC,GMM) 2.276 1.750 2.013

would give about 1% of difference of HTER.
3) (SSC, GMM) The same GMM configuration as in LFCC is

used.

The baseline performances are shown in Table II.
As can be seen, among the face experiments, (DCTb,GMM) per-

forms the best across all configurations while (DCTb,MLP) performs
the worst. In the speech experiments, LFCC features are the best
features, followed by SSC and PAC, in decreasing order of accuracy.
Regardless of strong or weak classifiers, as long as their correlation
is weak, they can be used in the VR techniques.

B. VR via Different Modalities, Extractors, Classifiers

Table III shows the results combining scores of two modalities, two
extractors and two classifiers (working on the same feature space).
The second to last column shows the mean HTER of each of the
two underlying experts while the last column shows the minimum
HTER of the two experts. The three sub-columns under the heading
“joint HTER” are the HTERs of the combined experts via the mean
operator, MLP and SVM. Numbers in bold are the best HTER among
the three fusion methods. A quick examination of this table reveals
that all combined experts via modalities are better than the best
underlying expert (compare min HTER with the scores in the joint
HTER). However, the combined experts via extractors and classifiers,
as shown in Table IV, are not always better than their participating
experts.

C. VR via Virtual Samples

The experiments on VR via samples are presented differently than
the rest because they cannot be evaluated using the mean HTER
and min HTER. Instead, the combined experts are compared to the
original baseline experts (compare the first row of Table V against the
other rows). The two numbers in bold are the best fusion technique
for LP1 and LP2 configurations, respectively. The Entropy and GMM
approaches are discussed in Sec. II-F. The median technique refers to
combining synthetic scores using the median operator which is known
to be robust to outlier scores. We note that the best fusion techniques
on these datasets are the entropy approach and the GMM approach
for LP1 and LP2, respectively. For LP1, the entropy approach is
significantly betterwith 90% confidence level than the mean operator

TABLE III

PERFORMANCE IN (%) OF HTER OF VR VIA MODALITIES ON XM2VTS

BASED ON a priori SELECTED THRESHOLDS

(a) Face experts and (LFCC,GMM) expert

Data sets Face, Joint HTER mean min
Experts mean MLP SVM HTER HTER

LP1 Test (FH,MLP) 0.399 0.366 0.381 1.507 1.139
LP1 Test (DCTs,GMM) 0.537 0.576 0.613 2.683 1.139
LP1 Test (DCTb,GMM) 0.520 0.483 0.475 1.405 1.139
LP1 Test (DCTs,MLP) 0.591 0.611 0.587 2.249 1.139
LP1 Test (DCTb,MLP) 0.497 0.489 0.485 3.680 1.139
LP2 Test (FH,MLP) 0.151 0.150 0.389 1.580 1.300
LP2 Test (DCTb,GMM) 0.147 0.130 0.252 0.972 0.644

(b) Face experts and (PAC,GMM) expert

Data sets Face, Joint HTER mean min
Experts mean MLP SVM HTER HTER

LP1 Test (FH,MLP) 1.114 0.856 0.970 4.090 1.875
LP1 Test (DCTs,GMM) 1.407 1.425 1.402 5.266 4.227
LP1 Test (DCTb,GMM) 0.899 0.900 0.923 3.987 1.670
LP1 Test (DCTs,MLP) 1.248 1.056 1.009 4.832 3.359
LP1 Test (DCTb,MLP) 3.978 2.455 2.664 6.263 6.221
LP2 Test (FH,MLP) 1.282 0.765 0.855 4.251 1.860
LP2 Test (DCTb,GMM) 0.243 0.222 0.431 3.643 0.644

(c) Face experts and (SSC,GMM) expert

Data sets Face, Joint HTER mean min
Experts mean MLP SVM HTER HTER

LP1 Test (FH,MLP) 0.972 0.786 0.742 2.156 1.875
LP1 Test (DCTs,GMM) 1.028 1.175 1.213 3.332 2.437
LP1 Test (DCTb,GMM) 0.756 0.704 0.742 2.053 1.670
LP1 Test (DCTs,MLP) 1.167 0.829 0.850 2.898 2.437
LP1 Test (DCTb,MLP) 2.986 1.176 1.121 4.329 2.437
LP2 Test (FH,MLP) 0.901 0.302 0.404 1.937 1.860
LP2 Test (DCTb,GMM) 0.049 0.162 0.383 1.329 0.644

according to the McNemar’s Test5 [28] (i.e., with a difference of
0.006 HTER% between the two approaches). For LP2, the GMM
approach issignificantly betterthan the mean operator with 99%
confidence level. This shows that exploiting the distribution of scores
is better than using the simple mean operator.

D. Evaluation of Experiments

Let us define two measures of gain so as to draw a summary of
the experiments carried out above, as below:

βmean =
meani(HTERi)

HTERc

βmin =
mini(HTERi)

HTERc
,

whereβmean andβmin measure how many times the HTER of the
combined expertc is smaller than the mean and the min HTER of
the underlying expertsi = 1, . . . , N . βmean is designed to verify
Eq. 6, which is somewhat akin toα. According to the theoretical
analysis presented in Sec. II-A,α ≥ 1 should be satisfied. Theβmin,
on the other hand, is a more realistic criterion, i.e., one wishes to

5This is done by calculating((n01−n10)2− 1)/(n01 +n10) > p where
p is the inverse function ofX 2 distribution (with 1 degree of freedom) at a
desired confidence interval (i.e., 90%), andn01 and n10 are the number of
different mistakes done by the two systems on thesameaccesses



TABLE IV

PERFORMANCE IN (%) OF HTER OF VR VIA EXTRACTORS AND

CLASSIFIERS ONXM2VTS BASED ON a priori SELECTED THRESHOLDS

Data sets (Features, Joint HTER mean min
classifiers) mean MLP SVM HTER HTER

LP1 Test (FH,MLP)
(DCTs,GMM)

1.641 1.379 1.393 3.051 1.875

LP1 Test (FH,MLP)
(DCTb,GMM)

1.123 1.151 1.528 1.772 1.670

LP1 Test (FH,MLP)
(DCTs,MLP)

1.475 1.667 1.476 2.617 1.875

LP1 Test (FH,MLP)
(DCTb,MLP)

1.948 1.933 1.938 4.048 1.875

LP1 Test (LFCC,GMM)
(SSC,GMM)

1.296 1.444 1.142 1.788 1.139

LP1 Test (PAC,GMM)
(SSC,GMM)

3.594 2.954 2.663 4.370 2.437

LP2 Test (FH,MLP)
(DCTb,GMM)

0.896 0.670 0.488 1.252 0.644

LP2 Test (LFCC,GMM)
(SSC,GMM)

1.107 1.034 1.063 1.656 1.300

LP2 Test (PAC,GMM)
(SSC,GMM)

2.614 2.316 2.125 4.328 2.013

LP1 Test (DCTs,GMM)
(DCTs,MLP)

2.873 2.486 2.697 3.793 3.359

LP1 Test (DCTb,GMM)
(DCTb,MLP)

2.898 1.532 1.471 3.946 1.670

TABLE V

PERFORMANCE IN (%) OF HTER OF DIFFERENT COMBINATION METHODS

OF SYNTHETIC SCORES.

Method HTER
LP1 LP2

Original 1.875 1.737
Mean 1.612 1.518

Median 1.667 1.547
GMM 1.709 1.493

Entropy 1.606 1.559

obtain better performance than the underlying experts, but there is
no analytical proof thatβmin ≥ 1.

The βmean for each experiment are shown in Table VI(a) for VR
via modalities, extractors and classifiers, (b) for VR via synthetic
samples and (c) for the gain ratioβmin. Note that VR via synthetic
samples cannot be evaluated with theβmin criterion. It can only be
compared to its original method (i.e., with real samples). This gain
ratio can be defined as:

βreal =
HTERreal

HTERc
,

wherereal is the expert that takes real samples andc is the expert
that combines scores obtained from synthetic samples (in addition to
the real sample).

Note that theβmean for VR via modalites are sub-divided into
3 parts according to the 3 baseline speech experts (LFCC,GMM),
(SSC,GMM) and (PAC,GMM) in asignificantlydecreasing order of
accuracy. In such situations, theβmean for these 3 baselines still
have comparable range of values, which are bigger than other VR
techniques. One possible conclusion is that regardless of the degree

TABLE VI

COMPARISON OF VARIOUSVR TECHNIQUES BASED ON ALL EXPERIMENTS

CARRIED OUT USINGβmean , βmin AND βreal

(a) βmean of all experiments

VR Table No. Joint HTER
techniques of exp. mean MLP SVM
Modalities III(a) 21 5.559 5.390 4.164

(all) ±5.879 ±3.287 ±1.474
III(a) 7 5.680 5.843 4.375

(LFCC) ±2.683 ±2.744 ±1.482
III(a) 7 5.086 5.999 4.694
(PAC) ±4.459 ±4.686 ±1.869
III(a) 7 5.910 4.326 3.422
(SSC) ±9.365 ±2.128 ±0.733

Extractors IV 9 1.604 1.719 1.842
±0.269 ±0.313 ±0.420

Classifiers IV 2 1.341 2.051 2.044
±0.029 ±0.742 ±0.902

Synthetic samples V 2 1.154 MLP and SVM
±0.0002 not used; see (b)

(b) βreal of VR via synthetic samples

Methods Gain ratio
Mean 1.154± 0.000178

Median 1.124± 0.000002
GMM 1.130± 0.002198

Global Entropy 1.141± 0.001422
Local Entropy 0.854± 0.000028

(c) βmin of all VR techniques except synthetic samples

VR Table No. Joint HTER
techniques of exp. mean MLP SVM
Modalities III(a) 21 3.043 3.109 2.459
Extractors III(b) 9 1.009 1.067 1.120
Classifiers III(c) 2 0.873 1.221 1.190

of accuracy of participating experts, as long as they are weakly
correlated, highβmean can be achieved. Although the mean operator
seems to perform the best in the overall VR via modalities based on
βmean, it should be noted that out of the 27 experiments in Table III,
4 experiments are best combined with the mean operator, while there
are 10 and 7 best results for MLPs and SVMs, respectively. Moreover,
the standard deviation of the mean operator is much larger than that
of MLPs and SVMs. In these experiments, MLP turns out to be a
good candidate for fusion in most situations for VR via modalities.
It should be emphasized that the success application of MLPs or
SVMs in this fusion problem depends largely on the correct capacity
estimate of cross-validation.

Note that Table VI(a) shows thatβmean ≥ 1 for all fusion
techniques but in (c),βmin ≥ 1 is only true for MLPs and SVMs,
but not for the mean operator, which we cannot guarantee. According
to βmean on the mean operator, VR via modalities achieves the
highest gain, followed by VR via extractors, VR via classifiers
and VR via synthetic samples. A similar trend is observed in (c)
according toβmin. Such ordering is not a coincidence. It reveals
that the correlation is greater and greater in the list just mentioned.
In other words,βmean is inversely proportional to the correlation of
the underlying experts. However, with MLP and SVM as non-linear
fusion techniques, this ordering is slightly perturbed because both
theβmean andβmin show that VR via classifiers arebetter than VR
via extractors. Clearly, in highly correlated problems such as these,
non-linear fusion techniques are better than the simple mean operator
(but they come at an increase in complexity).



V. CONCLUSIONS

Variance reduction (VR) is an important technique to increase
accuracy in regression and classification problems. In this study,
several approaches are explored to improve Biometric Authentication
systems, namely VR via modalities, VR via extractors, VR via
classifiers and VR via synthetic samples. The experiments carried
out on the XM2VTS database show that the combined experts due
to VR techniquesalways perform better than the average of their
participating experts, which can be explained by VR using the
mean operator. Furthermore, all combined experts via modalities
outperform the best participating expert based on the HTER. By
means of non-linear variance reduction techniques, i.e., the use of
MLPs and SVMs for combing scores obtained from participating
experts, empirical study shows that, in average, these techniques
could produce better results than their participating experts, in the
context of VR via extractors and classifiers. In the context of VR via
samples, exploiting the distribution of synthetic scores using GMM or
Parzen-windows is better than the mean operator. In short, this study
shows that non-linear fusion techniques using MLPs and SVMs, and
incorporating othera priori information (i.e., distribution of synthetic
scores in the case of synthetic samples) are vital to achieve high gain
of fusion. In highly correlated situations (i.e., VR via extractors and
classifiers), non-linear fusion techniques are very useful. In weakly
correalted situations (i.e., VR via modalities), the mean operator
could be feasible but non-linear fusion techniques are still useful if the
capacity search using cross-validation is reliable. As new and more
powerful extraction and classification algorithms become available,
they can all be integrated into the VR framework. Therefore, VR
techniques are potentially very useful for biometric authentication.
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Abstract

Typically, biometric systems authenticate the user at
a particular moment in time, granting or denying ac-
cess to resources for the complete session. This model
of authentication does not appropriately address envi-
ronments where a different individual may take over a
system from the original user (either willingly or other-
wise). We propose a multimodal system that performs
authenticationcontinuouslyby integrating information
temporally as well as across modalities. Such continu-
ous authentication provides ongoing (rather than one-
time) verification and can easily be coupled with an-
other system for dynamically adjusting access to privi-
leges accordingly.

We present an initial approach for temporal inte-
gration based on uncertainty propagation over time
for estimating channel output distribution from recent
history, and classification with uncertainty. Our method
operates continuously by computing expected values
as a function of time differences. Our preliminary
experiments show that temporal information improves
authentication accuracy. These empirical results are
promising and justify further investigation.

1. Introduction
Biometric user authentication is typically formulated

as a “one-shot” process, providing verification of the
user when a resource is requested (e.g., logging in to a
computer system or accessing an ATM machine). Once
the user’s identity has been verified, the system re-
sources are available for a fixed period of time or, more
typically, until the user logs out or exits the session.
While perhaps appropriate for short sessions or low-
security environments, this model for authentication is
flawed, as it is based on two strong assumptions: (1) a
single verification is sufficient, and (2) the identity of
the user is constant during the complete session. If the
user leaves the work area for a while, or is forcibly re-

moved in a hostile environment, the system continues to
provide access to the resources that should be protected.
Continuous biometrics attempts to improve on this situ-
ation by addressing these assumptions and making user
authentication an ongoing process, rather than a one-
time, point-of-access occurrence.

One way to approximate continuous biometrics is
to require active user authentication on a regular basis,
e.g., requesting a password or thumbprint verification
every few minutes or so. In most environments, this is
not an acceptable requirement. Passive verification, via
modalities such as face recognition, can be used to au-
thenticate at a much higher rate, perhaps several times
per second, without requiring active user participation.
This raises other questions that affect usability: What if,
due to a lighting change, noise, or any of several other
conditions, the verification fails momentarily? What if
the modality in use cannot provide any authentication
report for a time?

To be truly useful, continuous biometrics requires
temporal integration. In general, a continuous biomet-
ric authentication system should be able to provide a
meaningful estimate of authentication certainty at any
time. This requires analyzing the temporal characteris-
tics of biometric modalities and user behavior to pro-
vide a model of user identity that is a continuous func-
tion of time (or a discrete function with a reasonably
small update rate). Intuitively, the certainty of an au-
thentication result should be relatively high at the mo-
ment the score is reported (depending on the character-
istics of the modality), and then decrease monotonically
over time, until a new report is received.

Temporal integration is particularly relevant and use-
ful in the case of multimodal biometrics. When mul-
tiple modalities are used in concert to provide user au-
thentication, there is usually an implicit temporal model
— even though the different modalities may report at
slightly different times, the results are treated as if they
had arrived simultaneously. This is equivalent to as-
suming a constant user model during this short period.



The most interesting and potentially useful case is when
there are multiple modalities in use, where the char-
acteristics of the various modalities may differ signif-
icantly.

For example, consider a high-security workstation
situation where the biometric modalities are fingerprint,
face, voice, and keyboard (keystroke pattern), repre-
senting a range of temporal characteristics (frequency
and regularity of reports) and accuracies. Keystroke
pattern recognition is likely to be the least reliable as
an authentication technique, but at times it will give al-
most continuous output, while the other modalities may
have nothing to report. Fingerprint recognition may be
quite accurate, but will only be available occasionally.
In this situation, we envision a system that monitors all
the modalities and makes the best possible decision at
any given point in time — even if there has been no in-
formation in the recent past. With this model of contin-
uous authentication, a system can constantly commu-
nicate the degree of belief in a user’s identity, and a
monitoring system can implement an appropriate pro-
gram of action for the particular security environment.
A slight decline in authentication certainty may cause
certain sensitive areas to be made inaccessible to the
user (in many cases not at all disturbing the benign ac-
tivity of the user), while a large decline may result in
the system shutting down access.

Integrating biometric modalities into decision-
making has produced successful results in terms of ac-
curacy and robustness [1, 5, 8]. Still, this model of au-
thentication fails to address the temporal nature of the
problem. The main goal of this work is to present a tem-
poral integration method to investigate potential bene-
fits of time information for the realization of a contin-
uous authentication system. As such, the system could
generate continuous results in terms of confidence in the
identity of the user, which would enable adjusting the
security level accordingly in real time. In relation with
behavioral traits, which are under investigation as ad-
missible biometrics [7], temporal integration would be
useful for detecting gradual or abrupt changes or varia-
tions in fitness to perform a task.

2. Multimodal Biometrics

There has been a good deal of research in recent
years on integrating multiple modalities to identify or
authenticate a user. In such a multimodal biometric sys-
tem, the method of integration is very important, as the
accuracy of a strong biometric could suffer when inte-
grated with a weaker biometric [3, 6]. To our knowl-
edge, there has been no published research in the bio-
metrics community to date that focuses on temporal in-

Figure 1: A static multimodal system (top) vs. one
with temporal integration ( bottom). Normalized
scores from three channels are shown, with the inte-
grated authentication score below. The multimodal
system at top can not integrate information from all
channels. For most of the time froma to b, the static
multimodal system cannot perform authentication.

tegration as formulated here.
Figure 1 shows a qualitative comparison between

a multimodal system that performs integration across
modalities (without integration over time) and one
which does temporal integration as well. The first sys-
tem would be ineffective when there is no channel re-
porting — e.g., for most of the time betweena andb.
Through the entire sequence, the system would have to
make decisions based on only partial observations, ex-
cept where all channels are reporting an opinion (as in-
dicated by arrows in Figure 1). In reality, due to the
nature of biometric modalities involving lengthy com-
putations or sample collection times, this should not be
expected to happen frequently.

Interestingly, most accurate biometrics (iris scan, fin-
gerprint, DNA matching and the like) are either lengthy
procedures in collection or verification, or they are in-
trusive and cannot be performed frequently. A static
multimodal system can only use such accurate indica-
tors once they are observed.



2.1. Channel Integration

A multimodal biometric system can integrate modal-
ity information (“vertical” integration) atfeature, score,
andfigurethreelevels [1, 11, 5, 9]. In general, the most
information is available at the feature level; integrat-
ing at this level is considered to be “early” integration.
However, training at this level can be very complex and
require an inordinate amount of data; later (higher) lev-
els of integration are easier to build and often yield
higher degrees of robustness. For decision level inte-
gration, it can be shown analytically that a strong bio-
metric can achieve better accuracy alone than combined
with a weaker biometric if both are operating at their
cross-over points [6]. Unless the cross-over point of the
weaker biometric is shifted, integration at the decision
level would not be more accurate. Incorporating tempo-
ral information could change this limitation by shifting
the cross-over point of weaker biometrics.

Since modality integration can be handled indepen-
dent of temporal integration, it is possible to use vari-
ous channel integration methods to improve overall ac-
curacy of the system. In this work, channel integra-
tion is not our primary goal, so we chose a simple
naive Bayes classifier to handle channel integration as a
binary classification problem incorporating uncertainty
measures. Similarity scores from individual biometric
channels are normalized to the interval[0, 1] ∈ < and
integrated using the Bayes classifier. Our temporal inte-
gration method generates an expected score distribution
and an estimated related uncertainty about this distri-
bution. We weight class priors by the associated un-
certainty before classification. It should be noted that
weighting class priors would not scale well with larger
data sets [4] presenting a potential limitation, especially
since we are concerned with real-time operation.

2.2. Temporal Integration

There are several challenges for temporal (“horizon-
tal”) integration of a multimodal authentication system.
First, as mentioned in the introduction, individual bio-
metric channels cannot always provide simultaneous
observations. One channel might provide information
at a much higher frequency than another channel. Sec-
ond, some channels might only provide sporadic obser-
vations over time. For example, we could not expect the
user to provide a fingerprint at certain times. Third, for
sporadic channels alone, temporal integration could be
useless or statistically meaningless, if not impossible, to
formulate, since there might be unexpectedly long inter-
vals between observations. Fourth, the system should
provide a way of making decisions during time inter-
vals even if none of the individual channels provide any

observations in that instant. For example, if we made
observationsδ milliseconds ago, then the system should
be able to make decisions based on recent observations
as we would not expect the user to be away in such a
short interval. Our method addresses all of these chal-
lenges.

Logically, we have the choice of first integrating
temporally or over channels (horizontally or vertically).
If we first integrate over channels, then the problem is
equivalent to temporal integration using a single bio-
metric channel. On the other hand, integrating tempo-
rally first enables us to work with asynchronous biomet-
ric channels, since within some neighborhood in time of
an observation we will have very good estimates from
that observation. For making decisions in the absence
of observations at a given point in time, we use expected
values of observations from channels with varying de-
gree of uncertainty. Perhaps the best approach, but also
the most complex to formulate, is to integrate in both
directions (across channels and across time) simultane-
ously, rather than sequentially.

3. Method

Just as in integrating channels, for temporal inte-
gration we can choose to integrate information at level
of features, scores, or decisions. Our method works
in continuous time by computing expected values of
scores as a function of time difference between the last
observation and current time. The main idea is based on
the assumption that an authentication score is still valid
for some amount of time,δt. As time passes, we should
be less and less certain about this value. To formulate
this idea as a function of time we estimate an uncer-
tainty measure of scores per channel from the recent
past, until a new observation is recorded. The joint pos-
terior distribution of a score is approximated and then
propagated over time until we obtain a new score from
that channel. Due to the propagation of the score dis-
tribution over time, we use a degeneracy model for the
uncertainty measure of each score.

The most important reason in favor of working with
scores, rather than at the feature or decision level, is the
way of modeling uncertainty of channel opinions. In
lower levels, uncertainty has a related physical mean-
ing. For example, at the physical measurement level,
uncertainty is related to signal noise, which might not
necessarily map well into an uncertainty about the deci-
sion. Treating scores as random variables is in fact this
mapping, statistically backed by the Central Limit The-
orem. Another reason to work with scores, aside from
the underlying mathematical difficulty of using many
features, is the fact that feature selection is still as much



art as it is science. Naturally, we would prefer our in-
tegration method to be as general as possible. On the
other hand, the later the integration, the more informa-
tion is discarded, so early integration may achieve bet-
ter results, using an appropriate set of features. After
establishing promising results with scores, we plan to
continue investigating such directions in the future.

Each channel is assumed to provide a normalized
similarity scores, and an expected varianceσch as a
characteristic parameter of the channel. Ifσch is not
provided, it is computed for each channel offline. This
measure is equivalent to inherent uncertainty in a chan-
nel’s decisions. This variance is only used as the default
variance of the channel if computing the channel vari-
ance is not possible from recent past. For example,σch

is needed for initial few scores or for channels which
provide scores at longer intervals. One might ask that if
the uncertainty is known, why compute it from the past
again? The reason is that theσch measure itself varies
over time. For example, if lighting conditions were the
underlying reason for the face recognition channel to re-
port highly variable scores over the past5 seconds, this
variability should be corrected in par with the lighting
conditions.

We normalize channel scores to[0, 1] ∈ <, where1
indicates perfect similarity to the user model and0 indi-
cates an unknown person. For channels with higher fre-
quency, we compute the uncertaintyσp from past scores
within a τch time period. Note that this duration is the
crucial part of our method and it has a different value
for each channel.

We model each channel with a GaussianÑ(µ, σch)
or Ñ(µ, σp), whereµ is the reported score for the chan-
nel, as discussed above. (We will refer toσch andσp as
σ from now on.) Consequently, scores are random vari-
ables withs ∼ Ñ(µ, σ). This distribution is propagated
over time with increasing uncertainty in the score value
as a function of time.

Figure 2 shows conceptually how a scores is treated.
The darker lines over the Gaussian show the change in
shape of Gaussian over time.

When a score is recorded, a timestampt is generated
and the uncertaintyσ is computed over the pastt− τ , if
applicable, otherwiseσ = σch. The idea is that we will
be less and less certain about this score and probabilities
of all possible scores will increase as time passes by.

The increase of uncertainty over time is computed
as a function of time from the last score. We used an
exponential degeneracy functionφ(τ) to estimate the
mode ( 1

σ
√

2π
) of theÑ(µ, σ) at t + τ . The degeneracy

functionφ(τ) = k expατ depends only onα which we
take as the mean variability over the lastτch time period.

Once an estimate of score distributioñN(µ, σ) att+

Figure 2: Propagation of scores and associated un-
certainties over time. As time passes,σ increases
from a recently computedσp.

τ is obtained, we compute the expected value of a score
at t + τ from this distribution by evaluating

EÑpast
{Nnow(s)} =

∫ ∞

−∞
Ñnow(s)Ñpast(s)ds

Note that the limits of the integral we are interested
in are not−∞ and∞, but0 and1. Hence the distribu-
tion at t + τ is not a proper Gaussian anymore. How-
ever, the error resulting from ignoring the tails of this
distribution is insignificant. Although we could opt for
a proper distribution, such as a triangular distribution,
this would introduce a larger modeling error. Alterna-
tively, this Gaussian can easily be scaled to cover unit
area, which would not change the expected value of the
score. To evaluate the expected value we use the fol-
lowing approximation.

SupposeX = {X1, X2, ..., Xn} is the set of random
variables that characterize the model, with values
x1, x2, ..., xn. The expectation,E(a), of a function
a(X1, X2, ..., Xn) can be approximated by

∑
x1

...
∑
xn

a(x1, ..., xn)P (X1 = x1, ..., Xn = xn)

≈ 1
N

N−1∑

k=0

a(xk
1 , ..., xk

n)

wherexk
i are the values for pointk in a sample of size

N .
It should be noted that we want to minimize the fil-

tering effect of our method, where occasional false pos-
itives and false negatives arecorrectedby subsequent
scores. Therefore a predictor-corrector style modeling,
such as a Kalman Filter, is not a model of choice. Also,



the choice of the exponential function was based on life-
time modeling studies, which could be better modeled
with (1 − tanh(x)) or a similar function. The crucial
heuristic of our method is the length of considered past,
and how many correct scores it includes. Clearly, the
degeneracy model leaves room for refinement. Incor-
porating contextual information successfully into the
model and learning appropriate parameters from data
are possible refinements.

4. Experiments

We chose face, voice, and fingerprint as individual
biometric modes for simulating channels with different
temporal characteristics. The lack of a suitable multi-
modal corpus with face recognition, voice verification,
and fingerprints of individuals forced us to simulate in-
dividuals by matching independently collected data into
virtual identities for24 individuals. Scores from each
channel are obtained as detailed below. Our goal is to
achieve continuous multimodal authentication which is
more accurate than the component channels and gives
meaningful results at any point in time. A second set
of experiments was run with different lengths of past
scores in consideration.

4.1. Face Recognition

This is the channel with the highest reporting fre-
quency. Face scores are obtained from a face recognizer
based on Eigenfaces [12]. Images are obtained using a
face detector built on [13] from 20fps video. For each
individual, there is a2 min video containing∼80 frames
at (near) frontal pose.20 images from frontal images
were used for training. The data does not have frontal
pose throughout the entire video sequence, hence the
recognition does not provide good scores every50ms.

4.2. Voice Verification

A subset of the TIMIT database [10] was used. The
subset contains LPC cepstrum feature vectors. The
energy in all recordings was normalized to compen-
sate for possible differences in loudness. After pre-
emphasis,16th-order LPC-cepstra were calculated for
32ms frames centered at16ms intervals. The feature
vectors are the rows of the resultant matrix. Each frame
is used as an independent sample drawn from the dis-
tribution of that speaker. Each speaker is modeled as
a Gaussian. In total just under15s of training data per
speaker are available. Log-likelihoods are the scores for
voice verification.

Table 1: Recognition rates of individual channels vs
temporal multimodal integration.

Integrated 304 47.50%
Face 210 32.81%
Integrated 173 97.74%
Voice 171 96.61%

Table 2: Correct recognition at variable history
lengths.

History length (secs) 0.5 1.0 2.0 5.0
Correct recognition 304 310 318 301
Recognition rate (%) 47.5 48.4 49.7 47.0

4.3. Fingerprint
A subset of fingerprint data was obtained from the

FVC2002 fingerprint verification competition. A demo
version of fingerprint identification/verification soft-
ware [14] was used to obtain similarity scores between
fingerprints. The software extracts minutiae-based fea-
tures. It handles rotation and intensity variations. For
successful operation it requires a minimum of 10 fea-
tures for each fingerprint.

4.4. Results
We expect that temporal integration would be useful

by enabling continuous authentication and by improv-
ing accuracy of a multimodal biometric system. Figure
3 shows decisions made by our method over a period of
32 seconds (each tick = 1 frame). The simulated user
is the authentic (virtual) identity over the entire period,
so that a1 indicates a correct authentication, and a0
marks where the system fails to authenticate the iden-
tity correctly. The varying face recognition scores are
due to face motion, where it becomes frontal 6 times
during the 32 second period. Better recognition scores
are obtained when the face became full frontal in view.

The top three graphs show individual channel scores.
The bottom graph shows the decisions obtained by our
method with a history length of0.5 second for all chan-
nels. The first few points are not affected by temporal
integration due to insufficient history. In the case of a
non-temporal multimodal system, all (if any) decisions
would have to be based on what is observed at that point
in time, regardless of what happened in the instant be-
fore. We can poll our system at any time for an authen-
tication.



Figure 3: Temporal integration over a period of 32
seconds. Individual channels report scores in real
time as they become available; note the single finger-
print score in frame 141. The bottom graph shows
binary verification decisions made at every frame, a
1 being valid authentication.

To verify that integrated results are actually com-
parable to individual channel rates, we compared the
correct recognition counts of integrated and individual
channels. Table 1 shows this comparison over the peri-
ods when each individual channel is active.

Table 2 shows the effect of history length on recog-
nition. The history length is applied to all channels.
Our results suggest that there is a cross-over point for
the length of relevant history, although more extensive
study is necessary.

Figure 4 shows an enlarged sequence between
frames 205 and 220 (0.75 seconds). Vertical lines show
the variances of propagated distributions around the
means since the last score. Fingerprint channel is omit-
ted from both Figure 4 and Figure 5 since the only score
lies beyond the relevant history of 0.5 seconds. An au-
thentication result was requested 10 times within each
frame. Our method is only limited by the underlying
hardware in terms of temporal resolution, and an au-
thentication score can be obtained given any point in
time.

Figure 5 shows the same enlargement for a system
that only integrates channels. Authentication is only
possible when at least of the channels report an opinion.
Note that in Figure 4 and Figure 5 the authentication is
based only on face recognition scores for the first half
of the sequence as no previous data was recorded from
other channels within the last 0.5 seconds. Depending
on the length of relevant history, our system can evalu-

Figure 4: An enlarged version of Figure 3 between
frames 205 and 220. Each frame is polled 10 times
within the frame. Vertical lines show the variances
of propagated distributions around the means since
the last score. Fingerprint channel is not shown since
the only score is beyond the history window of 0.5
seconds. Circles show actual scores from Figure 3.

ate what has been seen within the lastn seconds even if
there were no scores reported from any channel, which
would be impossible without temporal integration.

5. Conclusion
We have introduced a new model for temporal in-

tegration in biometric user authentication and devel-
oped an initial method for a continuous authentication
system. Our temporal integration method depends on
the availability of past observations, which makes the
length of relevant history an important heuristic. An-
other important design choice is the degeneracy func-
tion. The existence of a cross-over point in the history
suggests further investigation of the degeneracy.

We have shown on simulated data that our prelimi-
nary system can provide continuous authentication re-
sults which are consistently better than individual com-
ponents of the system. Clearly, gathering a true multi-
modal database is very important for continued work in
this field.

When the history length is set to0, the system ig-
nores temporal integration and degenerates into a mul-
timodal system. Although our approach attempts to
minimize the filtering effect of false positives and false
negatives, our temporal integration method would suf-
fer from this smoothing behavior to some degree as it
stands. The net effect of this behavior is integration of
positive decisions, as well as negative ones, as expected.



Figure 5: An enlarged version of Figure 3 between
frames 205 and 220. Channel integration only, no
temporal integration was performed. The system
can perform authentication only when a score was
reported by at least one channel.
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Abstract 
 

In this paper we present a method of automatic color 
correction of face images and its application in a face 
detection algorithm. The color correction method is based 
on the phenomenon of color constancy observed in human 
visual perception. This technique is further applied in a 
face detection system, which draws upon the analogy to 
the parallel organization of visual neural pathways, the 
magno- and parvocellular channels. Presented method 
proved to be efficient in diverse background and 
illumination conditions, including face images with 
background chromatically close to human skin and where 
prominent facial features are obscured by adverse 
illumination conditions. 

 
 

1. Introduction  
 

Processing of human face images is an important 
research area with many applications, ranging from image 
enhancement to automatic face recognition in security 
systems. Beside the face itself, most face images contain 
background that must be discarded before subsequent face 
recognition process. Thus in most cases the first step in 
the image-processing task is the detection and localization 
of the face in the image. 

A comprehensive overview of state-of-the-art face 
detection methods is presented by Yang et al. [1]. 
Particularly the knowledge-based, feature invariant, and 
template matching algorithms are listed as the most 
frequently used ones. 

Human skin color can be regarded as an invariant 
feature and so are the skin color based methods classified 
by Yang et al. In fact, the skin color is an easily 
accessible, computationally inexpensive feature. 
Therefore it has been used in various face detection and 
recognition systems [2,3,4]. 

Despite the apparent skin color variations between 
different ethnic groups the actual skin chromaticity 
parameters can be clustered into a surprisingly compact 
set, which allows very accurate modeling [5]. The 

resulting skin color model can be used for color-based 
image segmentation focused on locating the skin-colored 
areas. This method of segmentation can deliver very 
precise distinction between the face and non-face areas of 
the image, provided that the background differs 
chromatically from the skin tone. The skin colored areas 
considered for further face recognition (verification or 
identification) can be accurately cropped out from the 
original image. 

Skin model-based segmentation can result in precise 
skin area detection only if the model was created using 
the same spectral content of the skin illuminant as in the 
processed face image. Usually the information about skin 
illuminant is unknown for an arbitrary color image. 
Therefore a mismatch can occur between the model 
assumptions and the chromatic properties of skin depicted 
in the actual image. To avoid this mismatch it is necessary 
to normalize the image chromatically by introducing a 
chromatic frame of reference, common to both the model 
and the segmented image. 

Precise retrieval of the spectral content of the 
illuminant in an arbitrary visual scene is an ill-posed 
problem [6]. Therefore a few heuristic methods have been 
proposed to normalize the chromaticity of the image [7]. 

Humans are known to cope well with the problem of 
color discrimination under varying illuminants thanks to 
the mechanism of color constancy observed in the natural 
visual processing [8]. In order to process a color face 
image acquired under unknown lighting conditions it is 
necessary to first employ a color correction mechanism, 
which would do what the phenomenon of color constancy 
does in humans. 

The classical two assumptions that most color 
correction methods are based on are the “white world 
assumption” and the “gray world assumption” [9]. The 
first one assumes that there is a part of each image that is 
white. The second one postulates that all colors in the 
image should average to gray. 

Hsu et al. [10] presented an interesting approach 
toward color correction of face images. They proposed an 
automatic color correction based on the localization of 
pixels with top 5% of luminance in the image, and assume 



those pixels to be ‘white’ (the “white world assumption”). 
Based on the chromatic distance between the white color 
and the actual color of the selected pixels the entire 
picture is being corrected. This method works with 
images that contain no specular reflections. However, in 
non-controlled environment or where the illumination 
control is limited, the specular reflections of the face 
appear very frequently.  

The “gray world assumption” is not applicable to face 
images either, taking into consideration the fact that face 
images normally contain large skin-colored areas. 

In this paper, we propose a new method of color cast 
removal from face images based on the inherent 
chromatic features of the face itself. In order to take full 
advantage of the method we incorporate it into a new 
robust face detection algorithm inspired by the 
organization of the human visual pathways (magno-and 
parvocellular channels) [8]. 

The rest of the paper is organized as follows: firstly, 
the general assumptions and details of the proposed 
method are explained. Then the proposed method is 
employed in a face detection algorithm. Results and final 
remarks conclude the paper. 

 
2. The concept of image color correction 
inspired by the color constancy phenomenon 
 

In order to be compliant with the assumption that the 
skin model must be built around a common frame of 
reference with processed face image we propose to use 
the chromatic information contained in the eye area as 
such a reference. We use this reference to perform the 
chromatic correction of the entire image. This process can 
be interpreted as a chromatic normalization. 

The vast majority of images that are otherwise suitable 
for face verification (frontal pose, no occlusions etc.) 
show the face in such a way that both or at least one of the 
eyes are clearly visible. The image of an open eye 
contains normally the pupil, the iris, the eye-white and the 
eyebrow. A close inspection of eye images reveals that 
the eye-whites and the pupil areas are the locations, which 
are chromatically close to gray. The concept of the 
chromatic normalization can be best formulated as 
“bringing to gray what is closest to gray”. 

The proposed method is to find in the image of the eye 
pixels that are closest to gray. Consequently the chromatic 
coordinates of such pixels are modified to match gray, 
and same transformation is applied to the entire image. In 
order to perform this normalization procedure it is 
necessary to: localize the eye areas in the image, crop out 
the eye images and find the appropriate pixels for 
correction. 

 
 

3. Color correction algorithm and creation of 
the skin color model 
 

We build the skin color model using samples from face 
images from the VIDTIMIT database [11]. Before we 
take the samples, the images have to be chromatically 
normalized. To do that, we first locate the eye areas in the 
image. In our experiments we found them manually. We 
select for correction the area of left or right eye, 
whichever has the lower mean luminance. We assume that 
if the specular reflections are present, they will be more 
prominent in the overall “brighter” eye image. 

For each pixel in the cropped eye image a distance 
from gray is calculated, using the formula: 

 
Dg = abs(R-G) + abs(G-B) + abs(B-R),   (1) 
 
where Dg is the distance from gray and R,G,B are 

corresponding red, green and blue chromatic coordinates 
of the pixel. The pixel whose Dg is smallest is selected as 
the normalization reference and this pixel will be brought 
to gray. Next, the target gray coordinates Cg  (equal for all 
three RGB channels) of the pixel are calculated as the 
rounded average of its actual coordinates: 

 
Cg = round(R+G+B) / 3.   (2) 
 
The difference between the original RGB coordinates 

of the pixel and its new target gray coordinates is 
calculated as follows: 

 
DR =  R - Cg,     (3) 
DG = G - Cg, 
DB =  B - Cg. 
 
The calculated values of DR, DG, and DB are 

respectively subtracted from corresponding red, green and 
blue chromatic coordinates of every pixel in the original 
image. Should the resulting coordinate exceed the allowed 
range, its value is set to the extreme allowed value. 

The described color correction was performed on 13 
face images from the VIDTIMIT database. Then, from 
each image a 30 by 30 pixels patch containing skin from 
the face was cropped out. Each of the patches (initially in 
RGB format) has been converted into YCbCr color space, 
and the Y coordinate discarded. Resulting Cb and Cr 
coordinates have been clustered and their distribution 
modeled by a sum of two normal distributions (Figure 1). 



 

 

Figure 1. Skin color model in the YCbCr color space. 
The graph represents a probability density distribution of 
Cr and Cb coordinates of pixels that belong to skin-
colored areas of the image. 

4. Skin-color oriented image segmentation 
 

For the processed image, the probability that each 
pixel’s color belongs to the skin model distribution is 
calculated. The calculated probability values are stored in 
a new grayscale image, further referred to as the “skin 
map”. 

Performance of the model has been tested on a set of 
images different from those used for the creation of the 
skin color model. For each of the images the coordinates 
of the eyes were found manually, like during the model 
training. The test images were treated using the color 
correction procedure as described in Section 3.  The 
model was tested for segmentation on images with and 
without the proposed color correction procedure. Example 
results are presented in Figure 2: 

Figure 2. Results of the skin-color segmentation of the 
face images: (a) original image,  (b) skin map of the 
original image, (c) original image after color correction, 
(d) skin map of the image after color correction. 

In order to be able to use the color information to 
detect face in any image, we draw upon the analogy to the 
natural human visual system, which is known to 
successfully cope with the task of distinguishing colors in 
the presence of various illuminants. 

 
5. Application of the color correction method 
to face detection Firstly, we revert to the idea of two separate neural 

pathways in the human visual system, the parvocellular 
and the magnocellular pathways [8] (further referred to as 
P-channel and M-channel, respectively). The M-channel 
conveys the generic shape, motion and intensity 
information, while the P-channel is responsible for the 
transmission of fine detail and color information. 

 
Color information is used in many face detection and 

tracking algorithms. If all of the images originate from the 
same camera type and the spectral content of the 
illuminant is known, color-based segmentation is a way to 
quickly and robustly localize skin-colored areas without 
applying any prior chromatic correction. Typically, 
precise shape-based face detection techniques are applied 
after the color-based image segmentation [1]. 

As shown in numerous studies in visual search tasks, 
humans use the information from both neural pathways to 
find the desired information from a visual scene. For a 
given scene, the information from the channel that 
conveys the more discriminating data is used. If the object 
of interest stands out chromatically from the rest of the 
scene the color information is predominantly used. In a 
chromatically uniform scene the shape information 
prevails. 

However, if the face in the image is illuminated with a 
light source of unknown spectral power distribution, 
or/and the illumination is highly non-uniform, this 
approach often produces errors. Frequently the skin area 
in the image is not detected, or even worse, erroneously 
labeled. 



Therefore, we propose to use the color information 
simultaneously with shape-based face detection 
techniques for robust detection of faces in images as a 
high-level analogy to the M/P-channel visual processing 
in humans. 

 
6. M/P-channel inspired face detection 

 
Since the M- and P-channel processing is responsible 

for processing qualitatively different information about 
the image we propose to reproduce this dichotomy in a 
face detection system. In particular, we design a shape 
processing routine to model the M-channel, and a color 
processing routine to model the P-channel. 

 
7.1 M-channel-based search 
 

To model the M-channel search for faces in the visual 
scene (image) we use a template-matching approach. As a 
template a general grayscale ‘average face’ image is used 
(Figure 3). 

 

 
Figure 3. Average face template, resolution 115×119 

(columns×rows). 

 
The search process is performed as follows: the 

original image is converted into its grayscale version. 
Both the resulting grayscale image and the face template 
are high-pass filtered to reduce high contrasts in the face 
caused by non-uniform lighting distribution, specular 
reflections and self-shadows. Filtered image is divided 
into highly overlapping windows (5 pixels overlap) of the 
same size as the face template. For every window a 2D 
correlation coefficient with the face template is 
calculated. Negative correlation coefficient values are 
changed to null. Resulting values from the range (0,1) are 
regarded as probabilities of finding the face at a given 
window. 

 
7.2 P-channel-based search 
 

For each monochromatic window processed as 
described above, a corresponding window of identical 
size and location is cropped out of the original color 
image. Since each window is expected to contain a face 
image, we process them as if they would indeed contain a 

face. Figure 4 shows an example of this procedure. Figure 
4(a) shows a chosen window before correction. Using the 
geometry of the average face template we automatically 
designate the areas that are most likely to contain the eyes 
in each window, presuming that the face is indeed there. 
Those areas are shown in Figure 4(c) and (d). Selection of 
the chromatic reference point for normalization is 
depicted in Figure 4(e). Consequently we perform color 
correction procedure described in Section 3, but the 
correction is applied to the current window only, rather 
than the entire image. The color-corrected window is 
shown in Figure 4(b). 

 

 
Figure 4. Automatic color correction of the image 

window; (a) original window, (b) window after color 
correction, (c) right eye area, (d) left eye area, (e) 
selection of the chromatic point of reference for color 
correction. Window taken from an image acquired from 
an USB camera (IBM), resolution 320×240. Window 
resolution 60×60. 

Following the correction, a skin map is calculated for 
each window using the skin model as described in 
Sections 2 and 3.  

Calculating the skin map for every window is a high 
computational burden. In order to speed up this stage, 
after the color correction step every window is 
downsampled by the factor of 4, and the skin map is 
calculated on the downsampled window. 

The probabilities calculated for every pixel of the 
window are then averaged, which gives a mean likelihood 
measure that the given window contains the image of 
human skin. 

 
7.3 Combining the M- and P-channel information 
 

The procedure eventually returns two probability 
values for every window: PL, probability that the shape in 
the window has a shape of a human face, and PS, 
probability that the window contains object colored like 
human skin.  



Since the information used in shape and color 
processing are obtained independently we calculate the 
joined probability that the window contains a face PS,L by 
multiplication of probabilities: 

 

 
PS,L = PS · PL.     (4) 
 
The window with the highest PS,L is a candidate to be 

the actual detected face in the image. However, the exact 
size of the face in the image is not a priori known, so it is 
necessary to perform the face search as described above 
for a few scaled versions of the face template. For each 
run with a different template size, we obtain a new PS,L 
and the window that corresponds to it. We choose the 
window wit the highest overall value of the probability 
PS,L. 

Figure 6. Image acquired from an USB camera (res. 
320×240) 

 

The presented method of color correction for face 
detection has been tested on high quality images from the 
VIDTIMIT database, pictures with adverse lighting 
conditions taken from a web-cam, and scanned 
photographs. Figures 5-9 show the results of the 
experiments. Figure 5 shows an example of a good quality 
picture taken from the VIDTIMIT database. Figures 6, 7 
and 8 show the images acquired from a computer USB 
camera (IBM), taken in our laboratory, where the walls 
and the ceiling are chromatically close to the color of the 
skin. The face in Figure 6 is illuminated from its right side 
with daylight (coming from a window). Due to this 
condition the right side of the face shows strong 
reflections while the left side remains in the shadow. 
Figures 7 and 8 have the same daylight illuminant as 
present in Figure 6, additionally augmented by warm-
white light originating from the fluorescent lamps 
overhead. In those pictures, top left part of the head shows 
highlights and the entire scene is illuminated by sources 
of two distinctly different spectral contents. Finally, 
Figure 9 shows a picture scanned from a paper 
photograph and saved in low resolution. In this figure, the 
background is chromatically very close to the skin tone. 

Figure 7. Image acquired from an USB camera (res. 
320×240) 

 
Figure 8. Image acquired from an USB camera (res. 
320×240) 

 

 

 
Figure 5. Image from VIDTIMIT database (res. 512×384) 

Figure 9. Image scanned from paper photograph, 
resolution of the jpeg compressed image 157×221.  

 
  



7. Conclusions 
 

In this paper we propose a method that successfully 
performs color correction of face images. We presented a 
way to incorporate this method into a generic algorithm 
that detects faces in images of various resolution and 
quality, where the face image may be distorted by adverse 
illumination. The advantage of the technique is that it 
detects a face if it is present; if it is not this fact can be 
inferred from the probability measures obtained during 
the detection process. 

The algorithm may produce erroneous detection only 
in rare cases where neither the shape, nor the color can 
deliver reliable information about the location of the face. 
This can happen when the shape of the face is heavily 
distorted by adverse lighting conditions and at the same 
time the color of the background is indistinguishable from 
the skin tone. In such cases, due to lack of reliable color 
clues the system relies entirely on the template matching 
to find the best face candidate. In order to improve the 
system performance in such cases more appropriate 
filtering method than simple high-pass filter should be 
applied. 
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Abstract

We present two novel methods for extremely low-
dimensional representation of facial images that achieve
graceful degradation of recognition performance. We have
observed that if data is well-clustered into classes, fea-
tures extracted from a topologically continuous transforma-
tion of the data are appropriate for recognition when low-
dimensional features are to be used. Based on this idea,
our methods are composed of two consecutive transforma-
tions of the input data. The first transformation is concerned
with best separation of the input data into classes and the
second focuses on the transformation that the distance re-
lationship between data points before and after the trans-
formation is kept as closely as possible. We employ LDA
(Linear Discriminant Analysis) for the first transformation,
and SOFM (Self-Organizing Feature Map) or MDS (Multi-
Dimensional Scaling) for the second transformation. We
have evaluated the recognition performance of our meth-
ods: LDA combined with SOFM method and LDA combined
with MDS method. Experimental results using Yale, AT&T
and FERET facial image databases show that the recogni-
tion performance of our methods degrades gracefully when
low-dimensional features are used.

1. Introduction
In computer vision research, dimensional reduction is one
of the most important problem. Especially, in face recogni-
tion research, statistical methods for feature extraction such
as PCA (Principal Components Analysis) [1] [2], ICA (In-
dependent Components Analysis) [3] [4] and LDA (Lin-
ear Discriminant Analysis) [5] [6] are widely used for
dimensional reduction. The problem on extremely low-
dimensional image representation for face recognition has
little been investigated while many researchers study on
face recognition robust to illumination [7] [8],posture [9]
and facial expression changes [10]. When facial feature
data need to be stored in low capacity storing devices such
as bar codes and smart cards, extremely low-dimensional
image representation of facial data is very important.

In this research, we present two novel methods for low-

dimensional data representation of which the recognition
performance degrades gracefully. The technique reduces
dimension of high-dimensional input data as much as pos-
sible, while preserving the information necessary for the
pattern classification. The algorithms like PCA, LDA and
ICA can be used for reduction of the dimension of the input
data but are not appropriate for low-dimensional representa-
tion of high dimensional data because their recognition per-
formance degrade significantly. For low-dimensional data
representation, SOFM (Self-Organizing Feature Map) [11],
PP (Projection Pursuit) [12] and MDS (Multi-Dimensional
Scaling) [13] are proposed. These techniques suitable for
data representation in low-dimensions, usually two or three
dimensions. They try to represent the data points in a such
way that the distances between points in low-dimensional
space correspond to the dissimilarities between points in
the original high dimensional space. However, these tech-
niques do not yield high recognition rates mainly because
they do not consider class specific information. Our idea
is that these methods incorporated with class specific infor-
mation can provide high recognition rates.

We have found that if data is well-clustered into classes,
features extracted from a topologically continuous transfor-
mation of the data are appropriate for recognition when ex-
tremely low-dimensional features are to be used. Based on
this idea, we first apply a transformation to the input data
to achieve the most separation of classes, and then apply
another transformation to maintain the topological continu-
ity of the data that the first transformation produces. By
Topological continuity [11], we mean that the distribution
of data before and after dimensional reduction is similar in
the sense that the distance relationship between data points
is maintained.

To experimentally prove our claim, we have proposed
two novel methods for extremely low-dimensional repre-
sentation of data with graceful degradation of recognition
performance. It is composed of two consecutive transfor-
mations of the input data. The first transformation is con-
cerned with best separation of the input data into classes
and the second focuses on the transformation in the sense
that the distance relationship between data points is kept.
Our methods are implemented as the following. The first



method employs LDA and SOFM for the transformations.
SOFM preserves the distance relationship before and after
the data is transformed. This way, it is possible to repre-
sent data in low-dimensions without serious degradation of
recognition performance. The second method applies LDA
and classical MDS. The MDS preserves the distance rela-
tionship before and after the data is transformed as closely
as possible.

The following section gives a brief overview of the
feature extraction and dimensional reduction methods that
have preciously been used for object recognition. In section
3, we describe the proposed LDA combined with SOFM
method and the LDA combined with MDS method, respec-
tively. (Let us call them ‘LDA+SOFM’ and ‘LDA+MDS’
methods, respectively.) We report the experimental re-
sults on the recognition performance of LDA+SOFM and
LDA+MDS methods in section 4.

2. Dimensional Reduction and Topo-
logical Continuity

Facial images of high resolution exhibit significant correla-
tion between neighboring pixels. There have been reported
many algorithms for dimensional reduction and feature ex-
traction. Dimensional reduction methods can be catego-
rized into topologically continuous map and topologically
discontinuous map methods. Among the former methods
are SOFM, MDS and GTM (Generative Topographic Map-
ping) [14] and these methods are used mainly for data vi-
sualization. LDA, Kernel LDA [15] and multi-layer neural
networks are examples of the latter category and are mostly
used for pattern classification [16].

2.1. Difficulty of Extremely Low-Dimensional
Data Representation

We can achieve very low-dimensional data representation
with graceful degradation of performance by using a topo-
logically continuous map method when the data is well clus-
tered into classes. However, the typical facial image data in
real environments do not have well-clustered distribution as
shown in Fig. 1. Fig. 1 shows an example that within-class
variance is much higher than between-class variance. In
such case, it is not guaranteed to achieve high classification
performance by a topologically continuous map method al-
though we can get a low-dimensional data set. Accordingly,
we have to focus more on the discriminant power rather than
dimensional reduction in the case of Fig. 1. Since LDA
yields a linear transformation that minimizes within-class
variations while maximizing between-class variations, we
can apply LDA to facial images in real environments [5] [6].

In an LDA method, the dimension of feature space is re-
lated to the number of classes. It means that we might not

(a) (b) (c) (d)

Figure 1: Facial images in the case of illumination changes.
The images show that within-class variances are much
higher than those between-class variances. For example,
the cosine distance between (a) and (b) is 0.622 though they
are from the same person. On the other hand, the cosine
distance between (a) and (c) is 0.933 though they are from
different persons. The value closer to 1.0 represents more
similarity in the case of cosine distance.

be able to achieve dimensional reduction lower than the di-
mension of input space depending on the number of classes.
In addition, blind dimensional reduction using just a few ba-
sis vectors that correspond to large eigenvalues drastically
degrades the recognition rate [17].

3. Our Methods for Low-Dimensional
Data Representation

3.1. Two-Stage Dimensional Reduction
We present two methods for extremely low-dimensional
data representation by applying two different transforma-
tions in a row. The first stage is only concerned with
best separation of classes. Once the data is rendered well-
separated into classes by the first stage transformation, the
second stage transformation only focuses on preservation
of topological continuity before and after the transforma-
tion of the data. As previously described, the idea is based
on the fact that if data is well-clustered into classes, fea-
tures extracted from a topologically continuous transforma-
tion of the data are appropriate for recognition when ex-
tremely low-dimensional features are to be used. Fig. 2 il-
lustrates the idea of our method. In the example, the two-
stage dimensional reduction method solely makes a low-
dimensional feature space appropriately for classification.

3.2. Method I: LDA+SOFM
Let us xk ∈ R

N , k = 1, · · · ,M be a set of training data.
LDA produces a linear discriminant function f(x) = WTx
which maps the input data onto the classification space. We
have employed FLD (Fisher’s linear discriminant) as an in-
stance of LDA techniques. FLD finds a matrix W that max-
imizes

J(W) =
|WT SbW|
|WT SwW| (1)



Figure 2: Conceptual illustration of dimensional reduction
of 3D data into 1D data: (a) shows the input data distribu-
tion in a 3D input space. The curve represents interpolated
weight vectors of a trained SOFM. Although we can reduce
its dimension into 1D using the SOFM, the data in 1D fea-
ture space become not clustered. An LDA-like method can
map 3D input space onto 2D space so that the data may be
well classified as shown in the figure (b). If any basis vector
of the 2D space were eliminated, we would not classify A,
B and C appropriately using the 1D data projected onto the
remaining axis.

where

Sb :=
1
M

M∑
i=1

(mi − m)(mi − m)T (2)

Sw :=
1
M

C∑
i=1

∑
x∈χi

(x − mi)(x − mi)T . (3)

Sb and Sw are between- and within-class scatter matrices,
respectively. χi represents ith class and the mean of class
χi, mi is computed as mi := 1

ni

∑
x∈χi

x. m denotes the
total mean. W is computed by maximizing J(W). That
is, we find a subspace where, for the data projected onto
the subspace, between-class variance is maximized while
minimizing within-class variance. As a result of the first
transformation, we obtain z = WT x.

After the stage of LDA, the next stage maps z onto a
low-dimensional feature space f = G(z) by SOFM. SOFM
is a kind of competitive network. SOFM first determines
the winning neuron using a competitive layer. Next, weight
vectors for all neurons within a certain neighborhood of the
winning neuron are updated using the Kohonen rule [11].
When a vector is presented, the weights of the winning neu-
ron and its neighbors move toward the input pattern. After
learning, the neurons of the output layer will be a feature
map revealing a distance relationship within input patterns.

3.3. Method II: LDA+MDS
3.3.1 Classical MDS

Given M points and the corresponding dissimilarity ma-
trix, classical MDS is an algebric method to find a set of
points in low-dimensional space so that the dissimilarity
are well-approximated by the interpoint distances. Let us
xk ∈ R

N , k = 1, · · · ,M be a set of observations and

D =




d11 · · · dM1

...
. . .

...
d1M · · · dMM


 (4)

be a dissimilarity matrix, where dij is a squared Euclidean
distance, dij = ‖xi − xj‖2 = 〈xi − xj ,xi − yj〉. In sum-
mary, the inner product matrix of raw data B = XTX can
be computed by B = −1

2HDH, where X is the data matrix
X = [x1, · · · ,xM ] ∈ R

N×M and H is a centering matrix
H = I − 1

M1T1. B is real, symmetric and positive semi-
definite. Let the eigendecomposition of B be B = VΛVT,
where Λ is a diagonal matrix and V is a matrix whose
columns are the eigenvectors of B. The matrix X̂ for low-
dimensional feature vectors can be obtained as

X̂ = Λ1/2
k VT

k (5)

where Λ1/2
k is a diagonal matrix of k largest eigenvalues and

Vk is its corresponding eigenvectors matrix. Thus, we can
compute a set of feature vectors, X̂, for a low-dimensional
representation. See [18] for a detailed description.

3.3.2 Mapping onto an MDS subspace via PCA

We could not map new input vectors to features by using
the classical MDS because the map is not explicitly defined
in the classical MDS [19]. We used a method that achieves
mapping onto an MDS subspace via PCA based on the re-
lationship between MDS and PCA. Let YMDS be a set of
feature vectors in an MDS subspace and YPCA be a set of
feature vectors in a PCA subspace. Let ΛMDS denotes the
digonal matrix of eigenvalues of inner product matrix B.
Then, the relationship between PCA and MDS is

YPCA = ΛMDS
1/2YMDS. (6)

The derivation of equation (6) is described in the fol-
lowing [20]. For centered data, the covariance matrix is
Σ = E{XXT} = 1

M XXT. PCA is concerned with the
eigendecomposition of the covariance matrix as follows;

ΣVPCA =
1
M

XXTVPCA = VPCAΛPCA. (7)

MDS is concerned with the eigendecomposition of the inner
product matrix B = XTX as follows;

BVMDS = XTXVMDS = VMDSΛMDS. (8)



Using equations (7) and (8), we have

XXT(XVMDS) = (XVMDS)ΛMDS (9)

and VPCA = XVMDS, where ΛPCA � ΛMDS. The fea-
ture vector set of PCA subspace is

YPCA = VT
PCAX

= (XVMDS)TX

= VT
MDSB (10)

= ΛMDSVT
MDS

= Λ
1
2

MDSYMDS.

Note that, whereas the classical MDS computes inner
product matrix B from the given dissimilarity matrix D
without using input patterns X, in this dimensional reduc-
tion problem for pattern recognition, we can obtain B di-
rectly from the input patterns X. For the purpose of low-
dimensional feature extraction, we need to compute projec-
tions onto LDA and MDS subspaces. Let p be an input pat-
tern, then the feature vector in LDA+MDS space becomes

fLDA+MDS = (Λ−1/2
PCA)WT

PCAWT
FLD p. (11)

4. Experimental Results
We have evaluated the recognition performance of the pro-
posed LDA+SOFM and LDA+MDS methods as follows.

4.1. Experiment I: LDA+SOFM with Yale and
AT&T Databases

We have compared the recognition performance of PCA [2],
LDA [6], SOFM and the proposed LDA+SOFM method us-
ing three different facial image databases.

4.1.1 Facial Image Databases

We have used Yale [21] and AT&T [22] databases. The Yale
database consists of facial images captured in simple back-
grounds. Facial images are gathered under variations of lu-
minance, facial expressions, glasses and time intervals. The
database contains 165 images of 15 persons. The facial im-
ages of the AT&T database are gathered under variations of
postures. The database contains 400 images of 40 persons.
We tightly cropped and normalized all the facial images in
each database for the experiment.

4.1.2 Training and Testing

In the FLD stage, we compute the linear transformation ma-
trix for FLD and then transform the entire patterns in train-
ing sets into feature vectors using the matrix. In the test

Table 1: Correct Recognition Rates (%) (C: number of
class)

Yale AT&T
Dimension Methods (C=15) (C=40)

2 PCA 16.4 11.9
LDA 41.8 11.9

SOFM 64.3 71.3
LDA+SOFM 96.4 86.2

C-1 PCA 87.3 94.0
LDA 98.2 94.8

stage, each input pattern was also transformed into its cor-
responding feature vector using that matrix. We have used
a nearest neighbor classifier for recognition.

In the SOFM stage, the entire training patterns are rep-
resented by the indices of neurons corresponding to two-
dimensional map. In testing, only the node that is the most
similar to the given input pattern is activated. As a result, in-
put patterns are classified into classes of the activated nodes.
In the proposed method, the number of input neurons in
SOFM is the same as the dimension of feature vectors ob-
tained from the FLD stage. The output layer represents a
two dimensional square map. Table 1 shows the recogni-
tion performance in the case of dimensional reduction to
two dimensions.

4.1.3 Cross Validation

The performance of the SOFM algorithm varies depending
on the initial parameters. Hence, we have applied cross
validation to correctly evaluate the performance of SOFM.
We have partitioned the training set into two subsets. One
set is for learning and the other for validation. First, we
change the number of grids. After learning using multiple
SOFMs, we evaluate the performance using the validation
set. We have decided the number of neurons as the number
of grids that have the highest average recognition perfor-
mance. Secondly, after the number of neurons is settled,
multiple SOFMs with various initial parameters are learned
by the learning set. Then we select the SOFM that has high
performance corresponding to the upper 10% in the valida-
tion set.

4.1.4 Results

We show initial experimental results for extreme dimen-
sional reduction to two dimensions. As shown in Table 1,
LDA+SOFM method performs better than the others in the
case of very low-dimensional representation. The recogni-
tion rate of LDA is high (98.2%) when a sufficient number,
C-1, of features are used. However, the recognition rate de-



graded significantly to 41.8% when only two dimensional
representation of the data is used. The recognition rate of
SOFM is higher than that of LDA when two dimensional
representation is employed. The experimental results show
that very low-dimensional data representation with grace-
ful degradation of recognition performance can be achieved
by using a topologically continuous transformation after the
input data is rendered well clustered into classes.

4.2. Experiment II: LDA+MDS with FERET
Database

We have compared the recognition performance of LDA [6]
and the proposed LDA+MDS method using a part of
FERET database [23].

4.2.1 FERET Database and Experimental Method

The FERET Database is a set of facial images collected by
NIST from 1993 to 1997. For preprocessing, we closely
cropped all images in the database which include internal
facial structures such as the eyebrow, eyes, nose, mouth and
chin. The cropped images do not contain the facial con-
tours. Each face image is downsampled to 50x50 to reduce
the computational complexity and histogram equalization is
applied.

The whole set of images, U, used in the experiment, con-
sists of three subsets named ‘ba’, ‘bj’ and ‘bk’. Basically,
the whole set U contains images of 200 persons and each
person in the U has three different images within the ‘ba’,
‘bj’ and ‘bk’ sets. The ‘ba’ set is a subset of ‘fa’ which has
images with normal frontal facial expression. The ‘bj’ set is
a subset of ‘fb’. The images of ‘fb’ have some other frontal
facial expressions. The ‘ba’ and ‘bj’ set contain 200 images
of 200 persons, respectively. The ‘bk’ set is equal to the ‘fc’
of which images were taken with different cameras and un-
der different lighting conditions. The ‘bk’ set contains 194
images of 194 persons.

For the experiment, we have divided the whole set U into
training set (T), gallery set (G) and probe set (P). In order
to get an unbiased result of performance evaluation, no one
within the training set (T) is included in the gallery and the
probe sets. i.e. T ∩ {G ∪ P} = ∅. The experiment con-
sists of two sub-experiments; The first experiment is con-
cerned with evaluation regarding normal facial expression
changes. We use the ‘ba’ set as the gallery and the ‘bj’ set
as the probe. The second experiment is to evaluate the per-
formance under illumination changes. We have assigned the
‘ba’ set to the gallery and the ‘bk’ set to the probe. In ad-
dition, we randomly selected 50% of the whole set in each
sub-experiment in order to reduce the influence of a particu-
lar training set because a facial recognition algorithm based
on statistical learning depends on the selection of training

images. Thus, a training set contains 100 persons in each
sub-experiment.

We have compared the recognition performance of our
LDA+MDS with that of LDA. In each algorithm, we have
computed a linear transformation matrix that contains a set
of basis vectors for a subspace using the training set, and
then have transformed the entire patterns in the gallery set
into feature vectors. For the test, each input pattern in the
probe set was transformed into its corresponding feature
vector. We used a nearest neighbor classifier for recogni-
tion.

4.2.2 Results

As shown in Figures 3 and 4, LDA+MDS method per-
forms better than the others in the case of low-dimensional
representation. The experimental results show that low-
dimensional data representation with graceful degradation
of recognition performance can be achieved by using an
inter-distance preserving transformation after the input data
is rendered well clustered into classes. The recognition rate
for a given number of features in these figures was obtained
by averaging thirty experiments.

Figures 5 and 6 show the recognition rates of LDA+MDS
for three different distance measures, L1, L2 and cosine. We
can see that there is no significant performance difference
between the three distance measures.

5. Conclusion
This research features novel methods for low dimensional
reduction of facial data that do not give significant degra-
dation of the recognition rate. The LDA+SOFM method
achieves very accurate recognition rates although only
two dimensional features are used for recognition. The
LDA+MDS method also outperforms LDA method when
represented in a low-dimensional space. These results ex-
perimentally prove that if data is tightly clustered and well
separated into classes, a few features extracted from a topo-
logical continuous mapping of the data are appropriate
low dimensional features for recognition without significant
degradation of recognition performance.

Our methods are practically useful for face recognition,
especially when facial feature data need to be stored in low
capacity storing devices such as bar codes and smart cards.
It is also readily applicable to real-time face recognition in
the case of a large database.
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Figure 3: Comparison of recognition rates for ‘ba’-‘bj’ set
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Figure 4: Comparison of recognition rates for ‘ba’-‘bk’ set
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Figure 5: Comparison of recognition rates for various dis-
tance measures in the case of ‘ba’-‘bj’ set
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Figure 6: Comparison of recognition rates for various dis-
tance measures in the case of ‘ba’-‘bk’ set
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Abstract 
 
Face recognition and verification is an important 
problem for many real-world tasks, such as user access 
control. In this paper, we describe and evaluate an 
automatic face recognition and verification (FRV) system 
that has been developed to support user access control 
for a shared-use vehicle system program which operates 
under real world conditions. In this application, three 
important FRV issues are discussed: 1) recognition of 
faces over time (i.e., months); 2) user verification using 
temporal image sequences; and 3) recognition across 
different kiosks. In order to perform robust recognition 
over time, a unique feature update method has been 
developed and implemented. Further, a method has been 
developed to select the best face image among an image 
sequence acquired in one vehicle-trip registration session 
for verification purposes. The implemented system has 
been operated for several months and carefully 
evaluated. Under real-world conditions, the proposed 
methods achieve 13% improvement in recognition and 
15% improvement in verification compared to standard 
principal component analysis based techniques. 
 
 
1. Introduction 
 
Face recognition from still and video images is an 
important problem, which has many commercial and law 
enforcement applications [1]. Face recognition can be 
defined as the task of computing the similarity between 
two faces and matching a face with one or more subjects 
in a database. On the other hand, face verification 
(authentication) can be viewed as a one-to-one system 
that compares the biometric information presented by an 
individual with the biometric information stored in a 
database corresponding to that individual [2]. Although 
considerable progress has been made in the field of FRV 
[5-10], not many methods have been tested with data sets 
from real-world applications that have variable lighting 

and other conditions. Outside some exceptions (e.g., [3]), 
FRV algorithms are typically tested on a collection of a 
few hundred images, where the pictures are taken under 
well-controlled conditions.  

In this work, the focus has been to develop and 
evaluate a face recognition and verification system by 
maintaining and updating a training set operating under 
real world conditions. The system supports user access 
control for vehicle registration as a part of a larger shared-
use vehicle system program [13, 14]. In this program, 
subscribers utilize smartcards for multiple purposes . The 
goal is to identify the mismatches between smartcard-
based user-IDs and the card users to prevent fraudulent 
usage. This is an important task not only for this 
particular project, but also for wider-scale applications 
such as automated teller machines (ATMs), building 
access, entry into secure areas, etc. In this framework, the 
FRV system is also used for user authentication and has 
been tested on a large data set of over 5000 images of 
approximately 100 people acquired over several months, 
where the collection of images consists of difficult 
recognition cases. The difficulty posed by this data set 
stems from the fact that the images are taken under 
different lighting conditions, at different times and 
locations, with different viewing of face directions and 
facial expression when the users perform their normal 
trip-registration process. For the face recognition stage, a 
feature update method has been developed to make it 
possible for the system to perform robust recognition over 
time. Further, for the face verification stage of the system, 
a new method has been developed that chooses the best 
face for verification and discards the rest of the images 
acquired in one trip registration session to improve the 
performance. 
 
2. System description 
 
The application domain of the developed face 
recognition/verification system is a shared-use vehicle 
system operating on the University of California-



Riverside campus called UCR IntelliShare. This 
intelligent car-sharing system allows multiple users to 
easily access a fleet of electric vehicles in order to 
improve mobility on campus. In this system, users utilize 
smartcards to gain access small kiosk buildings, check out 
vehicles with a touchscreen display, and then gain access 
to assigned vehicles. At the touchscreen kiosks in the 
station buildings, a user swipes his/her smartcard at the 
card reader to start the trip registration process. The user 
touches the screen to enter information such as 
anticipated destination, estimated trip distance, and 
number of occupants on the trip. Each time the user 
touches to screen to make a selection, a digital picture of 
the person is taken via a camera located at the top of the 
touchscreen kiosk. The image database for the FRV 
system is collected at two of five kiosks. The two 
registration kiosks with the camera systems are illustrated 
in Figure 1. 

 

     
 
Figure 1. System touchscreen kiosks at two different 
locations used in the experiments   
 
3. UCR IntelliShare face database 
 
A large database of face images and/or image sequences 
is an important part of any FRV system. The content of 
such a database depends mostly on the purpose of the 
system. The UCR IntelliShare database is constructed by 
imaging the users via the cameras embedded in the 
touchscreen kiosks. The database has over 5000 images 
of 99 subjects (76 male and 23 female). The images of 
subjects were captured over three months at two separate 
kiosks (Figure 1). The acquisition of the images is 
performed with minimal cooperation from the users, as 
they only perform their typical trip registration process 
through the touchscreen display in the kiosks, which takes 
approximately 20 seconds. Since special instructions were 
not given to the users during the imaging process, the face 
pose and distance of the subjects to the camera varies 
greatly (e.g., see Figure 2). Therefore the conditions that 
the proposed FRV system operates are difficult to work 
with than those found in controlled laboratory conditions.  

 
 

 
 

Figure 2. Example images from IntelliShare face 
database 
 
4. Face recognition methodology 
 
The entire FRV system is composed of three stages: 
automatic face detection, face normalization, and feature 
extraction. The overall effectiveness of the system 
strongly depends on the first stage of the system. In this 
stage, the face is extracted from the scene and 
approximate eye coordinates are located. For face 
detection, a combination of color and motion information 
is used which is followed by a template-based face search 
[15]. The motion change detection map in the face 
detection system is obtained by differencing two 
consecutive image frames, which are approximately 3 
seconds apart on average. Simple differencing however 
cannot be used alone for locating faces due to noise, 
global illumination changes, and other moving objects in 
the scene. For this reason, skin color segmentation [5] is 
added as another cue for face location. The skin color 
model is obtained by training pixels from face regions, 
and applying a line fit model in normalized RGB color 
space to pixel color data. After obtaining a tighter face 
search area based on motion and color information, the 
face search map is downscaled to reduce the face search 
time. The search is carried out by using correlation over 
different-sized templates to compensate for size changes. 
After extracting the face from the refined search map, the 
primary facial marks are located and all the faces are 
normalized to a standard size to perform recognition and 
verification more efficiently.  

The second stage is face normalization. The statistical 
approach that is used for face recognition requires a face-
in-the-face-in-the-box model, where the extracted face is 



registered to the system in an 80x80 pixel box. To obtain 
the face-in-the-box model, each image is rotated 
automatically based on the eye centers found in the 
previous step. Accordingly, the line that passes through 
the central points of two eyes is kept horizontal. Then 
each face is normalized to a fixed scale to guarantee that 
the distance between the two eyes is kept constant to 40 
pixels and each face fits in the same box. After face 
normalization, histogram equalization is performed for 
gray level normalization to partly reduce the effect of 
variable illumination strength.  

The feature extraction stage of the proposed FRV 
system is based on the eigenface approach. This method, 
which was originally presented by [4], finds the principal 
components of the face image distribution or the 
eigenvectors of the covariance matrix of the set of face 
images. It is important to note that state of the art in face 
recognition has moved on since the eigenface approach, 
and many algorithms have been proposed [5-10]. Since 
our objective is to study training set maintenance, update 
over time and recognition across kiosks, we used the 
recognition algorithm given in [4] for the ease of its 
implementation.  

To obtain recognition models, the proposed system 
goes into an off-line mode training stage. The training set 
used in this application, which has approximately 150 
faces, is a subset of the larger UCR IntelliShare face 
database. The images in the training set are also acquired 
under uncontrolled conditions, and are manually selected. 
These 150 faces in the training set include at least one and 
at most three sample face of each subject. To obtain the 
basis vectors for recognition, principal component 
analysis is performed on the training set. Each subject’s 
face is projected onto these basis vectors. The resulting 
coefficients with Euclidean distance measure are used as 
features in recognition and verification. Detailed 
explanation of these stages can be found in [15]. 
 
4.1. Updating features over time  
 
The performance of face recognition algorithms degrades 
vastly over time even when tested with images that are 
taken under uncontrolled conditions [3]. To improve the 
performance over time, a feature update method is 
proposed as illustrated in Figure 3.  

Let U be the unknown face to be tested, X be the 
feature vector of the unknown face and T be the feature 
vector of a known face in the training set. Tij is the jth 
feature vector of the ith subject in the training database, 
where 1 ≤ i ≤ 99, 1≤ j ≤ 3. j varies between 1 and 3, since 
for some subjects more than one sample has been used in 
the training set. Let p=E(X,T)  be the Euclidean distance 
between X and T and let Ii be the updated feature vector. 
In the proposed method, for each day k of a certain week 
(in this application,  the 8th  week was used after the start  

 
 
Figure 3. Feature Update Algorithm (Dk represents the 
image set acquired on Day k.  In-dk represents the best 
match for subject n for k th day. E(In-dk) selects the best 
match “In” for subject n for days from k=1,…,5 ) 
 
of image database collection), and for each user i, the best  
match is selected based on p as follows: pik=E(Xik,Ti) is 
calculated for all days (k with 1≤  k ≤ 5) of the updating 
period. Then Ii= 

k
min (pik) is selected as the new feature 

vector. For subjects that has more than one instance (i.e. 
feature vector) in the training set the update is given as 
Ii[j]= 

k
min (pik) where  k≠ previous  k  found in Ii[j-1],Ii[j-

2], …,I i[1]. 
 
4.2. Face verification through an image sequence  
 
Conventional methods perform face recognition and 
verification on single face images. To improve the 
verification performance, a method has been developed 
that uses image sequence as given in Figure 4. The 
system does not need to be trained by an image sequence. 
The same training set can be used for verification of both 
single and multiple images.  

In this method, each image is considered as a classifier 
[16]. The distance measure p, which has been defined as a 
match score, is calculated for all images in the sequence 
acquired in one trip registration session. The one with the 
minimum score (i.e. max probability) is chosen as the 
best face for verification. If the test image is taken under 
different lighting conditions with different pose variances, 



 
 
Figure 4. Combining image sequence for face verification 
(Xi represents the images in image sequence acquired for 
one subject in one session, Pi represents the match score 
of Xi. S(Pi) selects the best face F to use for identity 
verification) 
 
then the distance measure increases. Another reason for 
the greater distance measure is due to the failures in the 
automatic eye localization and normalization stage. If the 
eye centers cannot be located correctly and the face 
normalization is carried out inaccurately, the face 
recognition performance as well as verification 
performance degrades. However, by using the proposed 
method in verification, it is possible to compensate for 
some of the illumination and pose problems as well as 
possible incorrect automatic eye localization and 
normalization problems.  
 
5. Test results and analysis 
 
In the testing protocol, the testing and the training sets 
were separated, so that the images in both sets are 
distinct.  The testing set (which includes more than 4000 
images) is divided into separate subsets based on the time 
period that they have been acquired (e.g., March week1, 
May week 1, May week 2, etc.). Each subset has images 
taken on different days of the week, and even within each 
day there are many variations of the images of the same 
subject. The training set (which has about 150 images) is 
composed of the images which are acquired only in 
March week 1 and May week 1 (that is the first two 
weeks that the FRV system is up and running). The 
closed universe model was used for testing recognition 
performance, and the open universe model was used for  
testing verification performance [3]. In the closed model, 
every subject (i.e. every person) in the testing set is 
trained upon, but in the open universe model, the subject 

in the testing set may not have been trained upon and 
could be used as an impostor to test the verification 
performance.  
 
5.1 Face recognition performance over time  
 
In the first test, recognition performance degradation was 
analyzed over time. The rank n (Figure 5) represents the 
number of images that needs to be examined to get the 
desired level of performance. The statistics are given by 
percentage of correct identification as a function of rank. 
The horizontal axis represents the rank, and the vertical 
axis represents the percentage of correct matches. For the 
ease of visualization, the recognition results are given in 
terms of weekly time frames. When the recognition rates 
for each individual weekly set are examined, it is apparent 
that the performance degrades over time. The 
performance degrades from 52% to 36% in the best match 
and from 89% to 79% in the top 15 matches after a two 
months period. 

Figure 5. Face recognition performance in successive 
weeks  

 
To illustrate the improvement obtained with proposed 
time-based feature update method, a recognition 
experiment was designed on an image set acquired during 
the tenth week after the start of system operation. The 
recognition experiment is performed by using both 
automatically and manually updated training sets 
obtained from the data set acquired in the ninth week. The 
difference between manual update and automatic update 
is that in the manual update method, the images of each 
subject in the database are chosen manually from the 
image data set, whereas in the automatic update method, 
the images of each subject used for training are chosen 
automatically by the proposed feature update algorithm. 
As can be seen from Figure 6, a 13% improvement can be 
obtained in the first match, and a 5% improvement in the 
top 15 matches. The improvement in the case of manual 
update is 5% more than that of the automatic update. The 



 

Figure 6. Face recognition performance after training set 
update 
 
reason is that in manual update, the images from the data 
set are chosen by considering the quality of image, such 
as being fully frontal, having acceptable face size, not 
having occlusion or uneven illumination, etc.   

To ensure that the improvement is due to proposed 
technique, face detection results are checked manually. 
The face detection decision is given if eye coordinates are 
found correctly within a ±5 pixel range. The face 
detection performance stays same over time. For the same 
testing period, detection rates are as follows: March week 
1= 94%, May week 1= 97%, May week 2= 89%, May 
week 3= 91%, June week1= 91%. So if we fix the 
detection rate, than the overall performance increase is 
due to proposed feature update method.  

 
5.2 Face recognition performance across 
different locations  
 
The purpose of this experiment is to show that the 
recognition performance depends strongly on the 
correlation of the training data to the testing data. In other 
words, if the recognition system is trained with images 
taken with the same physical set-up under consistent 
conditions with the testing data, superior recognition 
performance can be achieved.   

To demonstrate this effect, we have conducted a 
recognition experiment by using two training sets (CE-
CERT images and COE images) together with the 
manually labeled COE image data. The COE image set 
has different characteristics than the CE-CERT image and 
acquired   with a different camera set-up.  The best 
recognition performance of 81% on COE database is 
achieved by building the training set with the images 
from the same COE image data set as shown in Figure 7. 
On the other hand, if recognition tests are performed on   

Figure 7. Face recognition performance in COE kiosk by 
using COE and CE-CERT training sets  

 
COE data by using the training test built with CE-CERT 
image data, the recognition performance degrades to as 
low as 20% using the best match, and 56% using the first 
ten matches.  
 
5.3 Face verification performance  
 
The verification performance results are given by FRR 
(False Rejection Rate) and FAR (False Acceptance Rate) 
curves. The FRR is defined as the probability that a 
person is not authenticated to access the trip registration 
system even though you are the proper user. On the other 
hand, the FAR is the probability that someone other than 
the correct person is granted access to the system by 
using the person’s account or card. The performance of a 
verification system is judged by the Equal Error Rate 
(EER), which is the point in the Receiver Operating 
Characteristics (ROC) curve where FAR = FRR.  

Figures 8 and 9 illustrate the ROC curves obtained by 
using standard verification method and the proposed 
method respectively. Both figures are obtained by using a 
data set of 274 images acquired in June week 1, from 
kiosk 1. For that specific set, 32 trip registration sessions 
were made. The False Rejection Rate is found by FR = 
EC/C, where EC is the number of client rejections, and C 
is the number of client claims. To find the False 
Acceptance Rate, impostors were introduced as follows: 
For each trip registration session, the actual user is 
excluded from the training set and given a false identity, 
where the false identity is found by a random number 
generated among the system users. Then the False 
Acceptance Rate is found by FA = EI/I, where EI is the 
number of impostor acceptances, and I is the number of 
Impostor claims.  

When a comp arison is made between the standard 



method where a single face shot is used for verification 
with the proposed method where an image sequence is 
used, it is apparent that EER falls from 30% to 15.4 %. 
 
6. Conclusions  
 
In this research, an automatic FRV system has been 
designed, implemented, and evaluated, operating under 
real world conditions. In particular, focus was placed on 
the problem of face recognition/verification over long 
periods of time by training set maintenance. A new 
method to update the feature space was introduced to 
make it possible for the system to perform robust 
recognition over time. Further, a verification strategy is 
described which uses image sequences. Using a temporal 
image sequence instead of a single image helps to 
overcome some of the problems such as pose, 
illumination, and incorrect face and eye coordinate 
location, which greatly affect the robustness of the 
performance. The effectiveness of both proposed 
strategies is demonstrated through experimental results. It 
has also been shown that recognition performance 
degrades vastly when a system is trained with face images 
taken in another location.  
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Abstract

We recently introduced a novel approach to face recogni-
tion which consists in modeling the set of possible trans-
formations between face images of the same person. While
our previous work focused on geometric transformations to
model facial expressions, in this article we consider feature
transformations as a means to compensate for illumination
variations. Although this approach requires to learn the set
of possible illumination transformations through a training
phase, we will show experimentally that the trained param-
eters are very robust. Even in the challenging case where
the databases used to train the transformation model and
to assess the performance of the system are very different,
the proposed approach results in large improvements of the
recognition rate.

1. Introduction

Pattern classification deals with the general problem of in-
ferring classes from observations [1]. Hence, the success
of a pattern classification system is based on its ability to
distinguish between inter- and intra-class variabilities. Face
recognition is a very challenging task as different faces have
the same global shape while face images of the same person
are subject to a wide range of variabilities including facial
expressions, pose, illumination conditions, presence or ab-
sence of eyeglasses and facial hair, aging, occlusion, etc.
Illumination, which will be the focus of this paper, remains
one of the toughest variabilities to cope with as shown dur-
ing the FERET evaluation [2] and the facial recognition ven-
dor test 2000 [3].

It is possible to deal with the illumination at three differ-
ent stages: during the preprocessing, the feature extraction
or the classification.

Preprocessing algorithms for illumination compensation
include general image processing tools such as histogram
equalization and gamma correction [4]. A simple but very

This work was supported in part by France Telecom Research & De-
velopment.

effective preprocessing, which is based on Weber’s law, con-
sists in applying a logarithm transform to the image inten-
sity [5, 6]. Another class of preprocessing algorithms con-
sists in separating an image into its reflectance and illumi-
nation fields [7]. An assumption which is generally made
for this type of approach is that the luminance varies slowly
across the image while sharp changes can occur in the re-
flectance.

At the feature extraction stage, the goal is to derive fea-
tures that are invariant to illumination. Edge maps, deriva-
tives of the gray level and Gabor features were compared
in [5] and an empirical study showed that none of these
features was sufficient to overcome the variations due to
changes in the direction of illumination. Another idea is
to learn features which are insensitive to illumination vari-
ations such as the Fisherfaces [8].

Finally, various algorithms have been proposed to cope
with the illumination variation at the classification stage.
The idea underlying [9] is that the set of images of an object
in fixed pose, but under all possible illumination conditions,
is a convex cone in the space of images that can be approx-
imated by low dimensional linear subspaces. [10] proposed
an approach based on 3D morphable models which encode
both shape and texture information and an algorithm that
recovers these parameters from a single face image.

We recently introduced a novel approach to face recog-
nition which consists in modeling the set of possible trans-
formations between face images of the same person [11].
While our previous work focused on geometric transforma-
tions to model facial expressions, we introduce in this ar-
ticle feature transformations as a means to compensate for
illumination variations. This approach to illumination com-
pensation, which works at the classification stage, involves a
training phase to learn the set of possible illumination trans-
formations. While approaches based on learning can suffer
from poor generalization when the training and test sets are
different, we will show experimentally the good generaliza-
tion ability of our approach.

The remainder of this paper is organized as follows. A
brief review of the probabilistic model of face transforma-



tion is given in the next section. Section 3 introduces our
model of illumination transformation. Section 4 focuses
on how to find jointly the best set of geometric and feature
transformations between two face images. Finally, section
5 summarizes experimental results for a face identification
task. While it is common to train and test a system on the
same database, to assess the performance of our novel illu-
mination compensation algorithm we used two very differ-
ent databases. We think this is a much more realistic ap-
proach as, in practice, one never has access at training time
to the exact test conditions. Even in this challenging case
the proposed approach results in large improvements of the
recognition rate.

2. A model of face transformation

2.1. Framework

While most face recognition techniques directly model the
face, [11] models the set of possible transformations be-
tween face images of the same person. The global face
transformation is approximated with a set of local transfor-
mations under the constraint that neighboring transforma-
tions must be consistent with each other.

Local transformations and consistency costs are embed-
ded within the probabilistic framework of a 2D HMM. At
any position on the query face image, the system is in one
of a finite set of states where each state represents a local
transformation. Emission probabilities model the cost of lo-
cal transformations and transition probabilities relate states
of neighboring regions and implement the consistency rules.

A major assumption in our system is that the intra-class
variability is the same for all classes and, thus, that the
model of face transformation is shared by all individuals.
Hence, it can be trained on pairs of images of persons that
are not enrolled in the system.

2.2. Local Transformations

Let us assume that we have two face images: a template
image FT and a query image FQ. Feature vectors are ex-
tracted on a sparse grid from FQ and on a dense grid from
FT . We then apply a set of local transformations at each po-
sition (i, j) of the sparse grid. In our previous work, these
transformations were limited to geometric transformations
and, more precisely, to translations. Each translation maps
a feature vector of FQ with a feature vector in FT .

Let oi,j be the observation extracted from FQ at position
(i, j) and let qi,j be the associated state (i.e. local deforma-
tion). If τ is a translation vector, the probability that at posi-
tion (i, j) the system emits observation oi,j , knowing that it
is in state qi,j = τ , is bτi,j(oi,j) = P (oi,j |qi,j = τ, λ) where
λ = (λT , λM). We separate λ into face dependent (FD)

parameters λT which are extracted from FT and face inde-
pendent transformation (FIT) parameters λM, i.e. the pa-
rameters of the shared transformation model M. The emis-
sion probability bτi,j(oi,j) represents the cost of matching
oi,j with the corresponding feature vector in FT that will be
denoted mτ

i,j . bτi,j(oi,j) is modeled with a mixture of Gaus-
sians as linear combinations of Gaussians have the ability to
approximate arbitrarily shaped densities:

bτi,j(oi,j) =
∑

k

wk
i,jb

τ,k
i,j (oi,j)

bτ,k
i,j (oi,j)’s are the component densities and the wk

i,j’s are
the mixture weights and must satisfy the following con-
straint: ∀(i, j),

∑

k w
k
i,j = 1. Each component density is

a D-variate Gaussian function of the form:

bτ,k
i,j (oi,j) =

exp
{

− 1
2 (oi,j − µτ,k

i,j )T Σ
k(−1)
i,j (oi,j − µτ,k

i,j )
}

(2π)
N
2 |Σk

i,j |
1

2

where µτ,k
i,j and Σk

i,j are respectively the mean and covari-
ance matrix of the Gaussian, D is the size of feature vectors
and |.| is the determinant operator. We use a bi-partite model
which separates the mean into additive FD and FIT parts:

µτ,k
i,j = mτ

i,j + δk
i,j (1)

wheremτ
i,j is the FD part of the mean. wk

i,j , δk
i,j and Σk

i,j are
FIT parameters. Intuitively, bτi,j should be approximately
centered and maximum around mτ

i,j .

2.3. Neighborhood Consistency

The neighborhood consistency of the local transformations
is ensured via the transition probabilities of the 2D HMM.
We explain in the next section that a 2D HMM can be ap-
proximated by a set of interdependent horizontal and verti-
cal 1D HMMs. The transition probabilities of the horizontal
and vertical 1D HMMs are P (qi,j = τ |qi,j−1 = τ ′, λ) and
P (qi,j = τ |qi−1,j = τ ′, λ). They model respectively the
horizontal and vertical elastic properties of the face at po-
sition (i, j) and are part of the face transformation model
M.

2.4. Turbo-HMMs

While HMMs have been extensively applied to 1D prob-
lems, the complexity of their extension to 2D grows expo-
nentially with the data size and is intractable in most cases
of interest. [12] introduced Turbo-HMMs (T-HMMs), in
reference to the turbo error-correcting codes, to approxi-
mate the computationally intractable 2D HMMs. A T-HMM
consists of horizontal and vertical 1D HMMs that “commu-
nicate” through an iterative process by inducing prior prob-
abilities on each other. The T-HMM framework provides



efficient formulas to 1) compute efficiently P (FQ|FT ,M),
i.e. the probability that FT and FQ belong to the same per-
son knowing the face transformation model M, and 2) train
automatically all the parameters of M.

The computation of P (FQ|FT ,M) is based on a mod-
ified version of the forward-backward algorithm which is
applied successively and iteratively on the horizontal and
vertical 1D HMMs until they reach agreement.

The Maximum Likelihood Estimation (MLE) of the pa-
rameters of M is based on a modified version of the Baum-
Welch algorithm. To train M, we present pairs of pictures (a
template and a query image) that belong to the same persons
and optimize the transformation parameters λM to maxi-
mize the likelihood of the pairs of pictures.

3. Modeling the illumination variation

In this section, we will first show how to transform the il-
lumination into an additive variability in the feature domain
and then, how to constrain the illumination variation.

3.1. The illumination as an additive variability

The starting point of our approach is the well-known as-
sumption that an image I can be seen as the product of a
reflectance R and an illumination L [13]:

I(x, y) = R(x, y) × L(x, y)

Applying the logarithm operator, we obtain:

log I(x, y) = logR(x, y) + logL(x, y)

and the illumination turns into an additive term in the pixel
domain. If the feature extraction involves only linear op-
erators, such as the convolution, the illumination remains
additive in the feature domain. Denoting Fd the linear fea-
ture extraction operator for the d-th dimension of the feature
vectors and oi,j = {oi,j [1], ...oi,j [D]} the feature vector ex-
tracted at position (i, j), we get:

oi,j [d] = Fd{log I(x, y)}
= Fd{logR(x, y)} + Fd{logL(x, y)}

Hence, if the illumination was constant in each feature
component across the whole face, subtracting in each com-
ponent the average value ō[d] would be a simple approach
to removing the undesired additive illumination term. How-
ever, the illumination is unlikely to be perfectly constant in
each component. Moreover, when subtracting ō[d], one may
also discard useful reflectance information. Nevertheless,
this simple combination of logarithm transform in the pixel
domain and mean normalization in the feature domain, that
will be referred to as the Log-Mean Normalization (or LM-
Norm), and which, to the best of our knowledge, has never

been suggested, will be tested in the section on experimental
results.

Our goal is now to alleviate the unrealistic constraint
of a constant illumination in each frequency band. As the
system described in section 2 is designed to model additive
variabilities, as expressed by equation (1), a first idea would
be to train the Gaussian mixtures parameters, i.e. w’s, δ’s
and Σ’s, not only to model the facial expression variations,
but also the various possible illumination conditions. Al-
though this approach might first sound appealing, we be-
lieve it is suboptimal for two main reasons :

• A very large number of Gaussians would be neces-
sary to model all the possible variabilities, increasing
unreasonably the memory and CPU requirements.

• The choice of Gaussians at adjacent positions would
be unconstrained, which is not satisfying as the illu-
mination cannot vary in an arbitrary manner over the
face.

However, the performance of this approach will also be eval-
uated in the section on experimental results and will serve
as a baseline for our novel model of illumination transfor-
mation.

3.2. Constraining the illumination variation

The idea is to introduce feature transformations to model
the illumination variation and to enforce consistency be-
tween feature transformations at adjacent positions in the
same manner we enforced consistency between geometric
transformations. Hence, our states which represent both lo-
cal geometric and feature transformations are now doubly
indexed: qi,j = (q1i,j , q

2
i,j). q

1
i,j is the geometric transfor-

mation part of the state and q2i,j is the feature transformation

part. If qi,j = (τ, φ), the emission probability bτ,φ
i,j is still

modeled with a mixture of Gaussians:

bτ,φ
i,j =

∑

k

wk
i,jb

τ,φ,k
i,j

where the bτ,φ,k
i,j ’s areD-variate Gaussians with means µτ,φ,k

i,j

and covariance matrices Σk
i,j . The new means are of the

form:
µτ,φ,k

i,j = µτ,k
i,j + φ = mτ

i,j + δk
i,j + φ

In [11] we only separated parameters into FD and FIT pa-
rameters. Here, we go one step further by separating the
FIT parameters into geometrical transformation parameters
and feature transformation parameters.

If we assume that geometric and feature transformations
model respectively differences in facial expression and il-
lumination between images, and that facial expression and



illumination variations are mostly independent (i.e. a fa-
cial expression change between two adjacent positions has a
limited impact on the illumination change between the same
positions and vice versa), then the horizontal and vertical
transition probabilities can be separated as follows:

P (qi,j |qi,j−1) = P (q1i,j |q1i,j−1) × P (q2i,j |q2i,j−1)

P (qi,j |qi−1,j) = P (q1i,j |q1i−1,j) × P (q2i,j |q2i−1,j)

While the choice of a discrete number of geometric trans-
formations is natural due to the discrete nature of the feature
extraction grid of the template image, it is easier to deal
with the illumination with an infinite continuous set of il-
lumination states. We choose the horizontal and vertical il-
lumination components of the transition probabilities to be
D-variate Gaussians:

P (q2i,j = φ|q2i,j−1 = φ′) = P (q2i,j = φ|q2i−1,j = φ′)

=
exp

{

− 1
2 (φ− φ′)TS(−1)(φ− φ′)

}

(2π)
N
2 |S| 12

In the following we will assume that the covariance matrix
S is diagonal and therefore, that the components of the fea-
ture vectors are independent from each other. S is the only
parameter of our illumination transformation model.

4. Finding the best transformation

Let O = {oi,j} and Q = {qi,j} denote respectively the set
of all observations and states, with i ∈ [1, I] and j ∈ [1, J ].
Finding the best transformation between two face images
requires to find the sequence of states Q∗, which satisfies:

Q∗ = arg max
Q

logP (Q|O, λ) = arg max
Q

logP (O,Q|λ)

where Q = (T,Φ) and T = {τi,j} and Φ = {φi,j} corre-
spond respectively to the set of geometric and feature trans-
formations. A central idea in our approach is to apply it-
erative passes to find successively the geometric and fea-
ture transformations that best explain the transformation be-
tween the two face images.

LetQn = (Tn,Φn) be the best set of states after the n-th
iteration. Assuming for instance that we start by decoding
geometric transformations, the steps of the algorithm are as
follows:

1. Initialize Φ0: ∀(i, j), φi,j = 0, i.e. we assume there
is no illumination variation between the two images.

2. Tn = arg max
T

logP (O, T |Φn−1, λ), i.e. Tn maxi-

mizes the joint probability of observations and geo-
metric transformations knowing Φn−1, the set of pre-
viously obtained feature transformations.

3. Φn = arg max
Φ

logP (O,Φ|Tn, λ), i.e. Φn maximizes

the joint probability of observations and feature trans-
formations knowing Tn, the set of geometric transfor-
mations previously obtained.

4. Go back to step 2 until Tn and Φn converge.

We will now detail the steps 2 and 3 of this algorithm.

4.1. Finding Tn

To find the best sequence of geometric transformations Tn,
one applies the modified version of the forward-backward
algorithm introduced in [12] and estimates the occupancy
probabilities γi,j(t) = P (q1i,j = t|O,Φn−1, λ), i.e. the
probability of being in state q1i,j = t at position (i, j). At
each position (i, j), we look for the best state τ :

τ = arg max
t
γi,j(t)

Although choosing the sequence of locally optimal states
may not lead to the sequence of globally optimal states, this
approximation is valid in the case where the best sequence
of states accounts for most of the total probability.

If γi,j(τ, n) is the probability of being in state τ with
the n-th mixture component accounting for oi,j , the best
Gaussian index k is given by:

k = arg max
n

γi,j(τ, n)

If τ and k are respectively the indexes of the best state
and Gaussian at position (i, j), we introduce the quantity
Ψτ,k

i,j = (oi,j − µτ,k
i,j ) which can be interpreted as the vari-

ability that is left unexplained by the geometric transforma-
tions. Let Σk

i,j be the covariance of the best Gaussian at
position (i, j). In the following, for simplicity, we will drop
the τ and k indexes and replace the notation Ψτ,k

i,j with Ψi,j

and Σk
i,j with Σi,j .

4.2. Finding Φn

To find the best sequence of feature transformations Φn,
we can pursue two different approaches: either apply di-
rectly the Viterbi algorithm, or a modified version of the
forward-backward. In both cases, as Σi,j and S the co-
variances of the emission and transition probabilities are as-
sumed diagonal, it it simple to show that finding the best
state sequence Φ can be done independently in each of the
D dimensions. Therefore, if Ψi,j = [ψi,j [1], ...ψi,j [D]]T ,
Σi,j = diag{σi,j [1]

2
, ...σi,j [D]

2} and S = diag{s[1]2, ...
s[D]

2} in the following, we drop the dimension indexes and
use the notations ψi,j , σ2

i,j and s2.



4.2.1. Viterbi variant

We assume that transition probabilities are separable, i.e.:

P (q2i,j |q2i−1,j , q
2
i,j−1) ∝ P (q2i,j |q2i−1,j)P (q2i,j |, q2i,j−1)

(see [12] for more details on this approximation). The joint
likelihood P (O,Φ|Tn, λ) can be written as a product of
emission probabilities and horizontal and vertical transition
probabilities. For one given dimension, to find the best se-
quence of states Φn, we set ∂ logP (O,Φ|Tn, λ)/∂φi,j =
0 , ∀(i, j) and obtain:

φi−1,j + φi+1,j + φi,j−1 + φi,j+1 −

φi,j

(

s2

σ2
i,j

+ 4

)

= −ψi,j

(

s2

σ2
i,j

)

, ∀(i, j)

with obvious modifications for i = 1 or I and j = 1 or J .
This is a linear system of I × J equations with I × J un-
knowns. If equations are ordered properly, this system is
banded with bandwidth min(I, J). Hence, the complexity
of solving this system is in O((I × J) × min(I, J)

2
). We

recall that there areD such systems to solve, one per dimen-
sion of the feature vectors.

At training time, to find the optimal s2 which maximizes
logP (O,Φ|Tn, λ), we set ∂ logP (O,Φ|Tn, λ)/∂s2 = 0
and obtain:

ŝ2 =

∑

i,j

[

(φi,j − φi−1,j)
2 + (φi,j − φi,j−1)

2
]

(I − 1) × J + I × (J − 1)

In the previous formula, s2 is estimated with one pair of im-
ages. The extension to multiple pairs of images is straight-
forward.

4.2.2. Forward-backward variant

A complexity in O((I × J) × min(I, J)
2
) is much lower

than the complexity of solving a general linear system of
I × J equations with I × J unknowns which is in O((I ×
J)3). However it might still be too demanding if I and J are
large. Therefore, we explored an alternative approach which
is based on our modified forward-backward algorithm, as
applied to T-HMMs [12]. The extension from discrete states
HMMs to continuous states HMMs (also referred to as state
space models or SSMs) consists mainly in replacing sums
with integrals.

We define γi,j(φ) = P (q2i,j = φ|O, Tn, λ), i.e. the
probability of being in state φ at position (i, j). To find the
states that best explain the illumination transformation, we
choose the sequence of locally optimal states Φ, i.e.:

φi,j = arg max
φ

γi,j(φ)

We introduce the following vertical forward, backward and
occupancy probabilities:

αV

i,j(φ) = P (o1,j , ...oi,j , q
2
i,j = φ|Tn, λ)

βV
i,j(φ) = P (oi+1,j , ...oI,j |q2i,j = φ, Tn, λ)

γVi,j(φ) = P (q2i,j = φ|o1,j , ...oI,j , Tn, λ)

Defining the corresponding horizontal quantities is straight-
forward. As the emission and transition probabilities are
Gaussians, if we initialize the occupancy probabilities γ’s
in a Gaussian manner, one can show that the forward, back-
ward and occupancy probabilities are Gaussian shaped. The
parameters of these Gaussians, i.e. their means and vari-
ances, will be respectively denoted µαV

i,j , µβV
i,j , µγV

i,j and σαV
i,j

2
,

σβV
i,j

2
, σγV

i,j

2
. It is easy to show that we have:

µγV
i,j =

µαV
i,j σ

βV
i,j

2
+ µβV

i,j σ
αV
i,j

2

σαV
i,j

2
+ σβV

i,j

2 σγV
i,j

2
=

σαV
i,j

2
σβV

i,j

2

σαV
i,j

2
+ σβV

i,j

2

Successive horizontal and vertical passes of our modi-
fied forward-backward (extended to T-HMMs with an infi-
nite continuous set of states) are applied iteratively to esti-

mate µαV
i,j , µβV

i,j , σαV
i,j

2
and σβV

i,j

2
until convergence of the

γHi,j and γVi,j probability densities. As we do not have access
to γi,j but to γHi,j and γVi,j , a simple combination rule based
on the minimum divergence criterion is to set:

φi,j =
σγV

i,j

2
µγH

i,j + σγH
i,j

2
µγV

i,j

σγV
i,j

2
+ σγH

i,j

2

The complexity of this algorithm is clearly in O(I×J×N)
where N is the number of horizontal and vertical passes.

The optimal parameter s2 is given by:

ŝ2 =

∑

i,j

∫

φ,φ′
(φ− φ′)2

[

ξHi,j(φ, φ
′) + ξVi,j(φ, φ

′)
]

dφdφ′

(I − 1) × J + I × (J − 1)

where ξHi,j(φ, φ
′) = P (q2i,j−1 = φ, q2i,j = φ′|O, Tn, λ) and

ξVi,j(φ, φ
′) = P (q2i−1,j = φ, q2i,j = φ′|O, Tn, λ). Intro-

ducing the notations ραH
i,j = s2/(s2 + σαH

i,j

2
) and ραV

i,j =

s2/(s2 + σαV
i,j

2
), we get:

ŝ2 =

∑

i,j

[

(µγH
i,j − µγH

i,j−1)
2 + (µγV

i,j − µγV
i−1,j)

2
]

(I − 1) × J + I × (J − 1)

+

∑

i,j

[

ραH
i,j−1σ

αH
i,j−1

2
+ ραH

i,j−1
2
σγH

i,j

2
]

(I − 1) × J + I × (J − 1)

+

∑

i,j

[

ραV
i−1,jσ

αV
i−1,j

2
+ ραV

i−1,j

2
σγV

i,j

2
]

(I − 1) × J + I × (J − 1)



The term (µγH
i,j − µγH

i,j−1)
2 + (µγV

i,j − µγV
i−1,j)

2 corresponds
to (φi,j − φi,j−1)

2 + (φi,j − φi−1,j)
2 in the re-estimation

formula of the Viterbi variant (c.f. the previous section).
The additional terms are due to the fact that the forward-
backward algorithm integrates over all paths to estimate s2

while Viterbi only takes into account the best path.

5. Experimental results

In this section, we will first introduce the databases used
to train and test our system and briefly describe Gabor fea-
tures. We will then evaluate the performance of the LM-
Norm introduced in section 3.1 and finally the performance
of our novel model of illumination transformation.

5.1. Databases

5.1.1. The FERET face database

To train our transformation model, we used the FERET face
database [2]. 500 individuals were extracted from the FAFB
set which contains frontal views that exhibit large variations
in facial expressions but very little variability in terms of il-
lumination. There are two images per person in the FAFB
set. We also used the 200 individuals in the FAFC set which
contains frontal views that exhibit large variations in illu-
mination conditions and facial expressions. There are three
images per person in the FAFC set. All the FERET im-
ages were pre-processed to extract 128x128 pixels normal-
ized facial regions.

5.1.2. The YALE B face database

The YALE B face database [9] was used to assess the perfor-
mance of our system. It contains the images of 10 subjects
under 9 different poses and 64 illumination conditions. As
the focus of this paper is on illumination compensation, we
used only the set which contains frontal face images. We
divided the database into the four traditional subsets S1, S2,
S3 and S4 according to the angle the light source makes with
the axis of the camera (less than 12◦, between 12◦ and 25◦,
between 25◦ and 50◦ and between 50◦ and 77◦). For each
person, the 7 images in S1 were successively used as the en-
rollment image and the images in S2, S3 and S4 were used
as test images which made a total of 26,600 comparisons.
The same pre-processing that was applied to the FERET im-
ages was applied to the Yale B face images.

5.2. Gabor features

In our experiments, we used Gabor features which have
long been successfully applied to face recognition and fa-
cial analysis. Assuming polar coordinates (ρ, θ), the spec-

tral half plane is partitioned into M frequency and N orien-
tation bands [14]:

Gi,j(ρ, θ) = exp

{

−1

2

[

(ρ− ωρi
)2

σ2
ρi

+
(θ − ωθj

)2

σ2
θi

]}

with i ∈ [1,M ] and j ∈ [1, N ]

The parameters ωρi
, σρi

, ωθj
and σθi

are defined as follows:

ωρi
= ωmin + σ0

(f+1)f i−1
−2

f−1 σρi
= σ0f

i−1

ωθj
= (j−1)π

N
σθi

=
πωρi

2N

After preliminary experiments, we chose ωmin = π/24,
ωmax = π/3, f =

√
2, M = 4 and N = 6, which resulted

in 24 dimensional feature vectors. Gabor responses are ob-
tained through the convolution of an image and the Gabor
wavelets. We use the modulus of these responses as feature
vectors which introduces a non-linearity in the computation
of our features. Thus, the illumination cannot be considered
as a perfectly additive term in the feature domain.

Feature vectors were extracted every 16 pixels of the
query images and every 4 pixels of the template images in
both horizontal and vertical directions.

5.3. Performance of the LM-Norm

The goal of this section is to assess the performance of the
LM-Norm introduced in 3.1. In this first set of experiments,
we applied straightforwardly the face transformation model
introduced in [11] which does not make use of feature trans-
formations.

When the LM-Norm is associated to Gabor features, the
feature extraction consists of 3 steps:

1. logarithm transform in the pixel domain

2. Gabor features extraction

3. mean normalization in each frequency band

Gabor features combined with LM-Norm will be denoted
LM-GB features. We compared the performance of these
features to Gabor features that will be referred to as GB fea-
tures and to features that combine steps 1 and 2 and that will
be denoted L-GB features.

The face transformation model was trained on the FAFB
data only. Hence, no information on illumination variations
could be learned at training time. The transformation model
was trained as described in [11] up to 8 Gaussians per mix-
ture (Gpm). Figure 1 shows the results.

Averaging the performance over the 3 subsets, the iden-
tification rate is 68.0% for GB features compared to 74.0%
for L-GB features and 84.8% for the LM-GB features. Note
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Fig. 1. Performance of GB (Gabor), L-GB (log + Gabor)
and LM-GB (log + Gabor + mean normalization) features
when the transformation model is trained solely on FAFB.

that with L-GB features the performance decreases signif-
icantly compared to GB features on the simple S2 subset
which seems to indicate that the log transform has a nega-
tive impact on the recognition when there is little illumina-
tion variation.

We performed similar tests (not shown in this paper)
with the GB, L-GB and LM-GB features on the popular
Eigenfaces [15] and Fisherfaces [8] algorithms and observed
similar trends. We would like to underline that, although we
tested the combination of Gabor features and LM-Norm, we
believe that LM-Norm could benefit to other “linear” fea-
tures such as DCT features.

5.4. Performance of our novel approach

The goal of this second set of experiments is not only to
assess the performance of our novel model of illumination
transformation but also to assess the performance of the
simple approach discussed in section 3.1, which is based
solely on the transformation model introduced in [11] and
which does not make use of any feature transformation. The
latter algorithm will be referred to as the baseline.

For both algorithms, we applied a logarithm transform
in the pixel domain prior to the extraction of Gabor features
(L-GB features) as both methods require the illumination to
be an additive term in the feature domain.

For our novel approach, we first trained our system up
to 8 Gpm using only the FAFB data as explained in [11].
Then, using this model, we trained the covariance matrix
S, which is the only parameter of the illumination transfor-
mation model, on the FAFC data only. The assumption is
that, as the transformation model trained on FAFB already
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Fig. 2. Performance of the baseline system compared to the
Viterbi and forward-backward variants (resp. V- and FB-
variant) of our novel illumination compensation algorithm.

accounted for variations due to facial expressions, all the
variability that remained unexplained was due to illumina-
tion. The diagonal elements of S were initialized to values
close to 0 and then, 3 training iterations were applied. At
both training and test time, the number of iterations of the
decoding process described in section 4 was set to 3. To find
Φn with the forward-backward variant of the algorithm de-
scribed in section 4.2, we applied 5 horizontal and vertical
passes.

For the baseline, we simply trained the system on both
the FAFB and FAFC data up to 16 Gpm, instead of 8 Gpm,
as more data was available.

Figure 2 shows the performance of the baseline com-
pared to the Viterbi and forward-backward variants of our
novel approach (resp. V-variant and FB-variant). Compar-
ing Figures 1 and 2, one can see that adding the FAFC data
increases on the average the identification rate of the base-
line system from 74.0% to 84.1%. However, both variants
of our novel approach clearly outperform the baseline, es-
pecially for the harder S3 and S4 subsets.

It is also interesting to notice that the FB-variant out-
performs the V-variant. Actually, the latter one is optimal
in the Maximum-Likelihood framework while our modified
forward-backward based on the T-HMM framework is not
guaranteed to be optimal. However, while Viterbi only takes
into account the best path, i.e. the one that best explains
the data, the forward-backward algorithm integrates over all
paths. As explained in 4.2.2, this choice has an impact on
the re-estimation of S and we believe that the difference
in performance is mainly due to the difference in the re-
estimation formula. The average identification rate of the
V-variant and FB-variant over the three subsets are respec-



tively 89.1% and 90.8%.
We also compared our novel approach with the eigen-

faces [15] and Fisherfaces [8]. Especially Fisherfaces were
shown to compensate for illumination variations if trained
with the appropriate data. To carry out a fair comparison, we
did not apply these algorithms directly on the gray level im-
ages but on their LM-GB representations. A feature vector
was extracted every four pixels of the images in both hori-
zontal and vertical directions. The eigen- and Fisher-spaces
were trained on the FAFB and FAFC sets as was done for
our baseline system. The best identification rates we ob-
tained for eigenfaces and Fisherfaces are respectively 87.1%
and 83.1%. The fact that eigenfaces outperform Fisherfaces
is not surprising considering the small number of training
observations per class and the mismatch between training
and test conditions [16].

Finally, we would like to stress the fact that our novel
algorithm is very efficient as it takes on the average to our
best system less than 25 ms to compare two images on a
2 GHz Pentium 4 with 1 GB RAM.

6. Conclusion and future work

In this paper, we introduced a novel approach to illumina-
tion compensation, which consists in modeling the set of
possible illumination transformations between face images
of the same person. This approach is naturally embedded
in a face recognition system which already models transfor-
mations between face images due to facial expressions. We
showed experimentally that, even in the challenging case
where we trained and tested our system on two different
databases, our novel approach to illumination compensation
resulted in large improvements of the recognition rate. Note
that our results are competitive with state of the art results
recently published on the YALE B database [7].

However, much work remains to be done to perfectly
compensate for illumination variations. For the challeng-
ing S4 subset, the best identification rate we obtain is close
to 80%. Although this corresponds to an almost 70% rela-
tive error rate reduction compared to the same system with-
out any illumination compensation, we are still far from the
almost perfect recognition rate we get for the simpler S2

subset. We believe that one limitation of our current ap-
proach is the fact that the covariance matrix S in our illu-
mination transformation model is fixed for all pairs of im-
ages. We think that S should incorporate both some a priori
knowledge learned off-line through a training phase, as is
currently the case, but also some information which is de-
pendent on the pairs of images that need to be compared.

Finally, we would like to point out that, while our model
of illumination compensation has been introduced in the
context of face recognition, it could benefit to other research
areas. As our original approach to face recognition has a lot

in common with motion estimation algorithms, and espe-
cially MAP estimation of dense motion [4], we think that
our approach could be applied to the difficult problem of
motion estimation in the presence of illumination variations.
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Abstract
In this work we propose to address the problem of non-frontal
face verification when only a frontal training image is available
(e.g. a passport photograph) by augmenting a client’s frontal face
model with artificially synthesized models for non-frontal views. In
the framework of a Gaussian Mixture Model (GMM) based classifier,
two techniques are proposed for the synthesis: UBMdiff and LinReg.
Both techniques rely on a priori information and learn how face mod-
els for the frontal view are related to face models at a non-frontal
view. The synthesis and augmentation approach is evaluated by
applying it to two face verification systems: Principal Component
Analysis (PCA) based and DCTmod2 [29] based; the two systems
are a representation of holistic and non-holistic approaches, respec-
tively. Results from experiments on the FERET database suggest that
in almost all cases, frontal model augmentation has beneficial ef-
fects for both systems; they also suggest that the LinReg technique
(which is based on multivariate regression of classifier parameters) is
more suited to the PCA based system and that the UBMdiff technique
(which is based on differences between two general face models) is
more suited to the DCTmod2 based system. The results also sup-
port the view that the standard DCTmod2/GMM system (trained on
frontal faces) is less affected by out-of-plane rotations than the corre-
sponding PCA/GMM system; moreover, the DCTmod2/GMM system
using augmented models is, in almost all cases, more robust than the
corresponding PCA/GMM system.

1.Introduction
In the context offrontal faces, recent approaches to face recognition
(here we mean both identification and verification) are able to achieve
very low error rates (e.g. [19]). A more realistic and challenging
task is to verify a face at a non-frontal view when only one (frontal)
training image is available (e.g. a passport photograph).

While the task of view-independent recognition has been ad-
dressed through the use of training images (for the person to be rec-
ognized) at multiple views (e.g. [22]), the much harder task of us-
ing only one training image has received relatively little attention
(e.g. [2, 21]). Whereas it is possible to use 3D approaches to ad-
dress the single training image problem (e.g. [1, 17]), here we con-
centrate on extending two well understood 2D based techniques. In
particular, we will extend the Principal Component Analysis (PCA)
based approach [30] and the recently proposed DCTmod2 based ap-
proach [29]. In both cases we employ a Gaussian Mixture Model
(GMM) based classifier [25], which is central to our extensions.

The PCA/GMM system is an extreme example of a holistic sys-
tem where the spatial relation between face characteristics (such as

The authors thank the Swiss National Science Foundation for supporting
this work through the National Center of Competence in Research (NCCR)
on Interactive Multimodal Information Management (IM2). The authors
also thank Andrzej Drygajlo, Daniel Gatica-Perez, Sebastien Marcel, Alexei
Pozdnoukhov and Alessandro Vinciarelli for helpful suggestions.

the eyes and nose) is rigidly kept (with the advantage of robust-
ness to compression artefacts & additive noise [28]). Conversely, the
DCTmod2/GMM approach is an extreme example of a non-holistic
approach; here, the spatial relation between face characteristics is
effectively lost (which results in robustness to translations [4]). In
between the two extremes are systems based on multiple template
matching [3], modular PCA [20, 22], Pseudo 2D Hidden Markov
Models (HMMs) [10, 26] and heuristic approaches such as Elastic
Graph Matching (EGM) [8, 16].

Generally speaking, an appearance based face recognition system
can be thought of as being comprised of:

1. Face localization and segmentation
2. Normalization
3. Feature extraction
4. Classification

The second stage (normalization) usually involves an affine transfor-
mation (to correct for size and rotation), but it can also involve an il-
lumination normalization (however, illumination normalization may
not be necessary if the feature extraction method is robust). In this
paper we shall concentrate on the last stage (and thus postulate that
the preceding steps have been performed correctly).

Some approaches to addressing the single training image prob-
lem involve the synthesis of new face images (at various angles)
based ona priori information (e.g. [2, 21]). In these approaches,
the image synthesis comes before the usual step of feature extraction.
A question thus arises: if we are only interested in recognition and
hence we are going to extract features from synthesized images, why
not synthesize the features instead? If we follow this line of think-
ing, a natural followup question is: instead of synthesizing features
with which we are going to train a classifier, why not directly synthe-
size the classifier’s parameters? This is in fact the central idea of our
proposed extensions, sketched below.

Usinga priori information in the form of a set of faces at different
views (these faces will never be used during performance evaluation),
we construct face models for specific views (by “model” we mean a
GMM); we then find thedifferencesbetween the model for the frontal
view and, say, the model for the +25o view. Let us now suppose that
we wish to enroll a new client in our face verification system and we
only have their frontal view; given a face model created from their
frontal view, we can synthesize a model for +25o by applying the
a priori differences to the client’s frontal model. In order for the
system to automatically handle the two views, we then augment the
client’s frontal model by concatenating it with the newly synthesized
+25o model. We can of course repeat this procedure for other views.

The proposed synthesis and augmentation approach thus differs
from the approach presented in [2, 21] where actual face images for
non-frontal views were synthesized; the synthesized images shown
in [2] have considerable artefacts, which we believe can easily lead
to a decrease in performance. The proposed approach is somewhat
related to [18] where a feature transformation approach is employed
in the context of an EGM based classifier. We note that in [18] man-
ual intervention is required, while our proposed approach is auto-



Fig. 1. Images of subject00647 from the FERET database for (from
left to right)−60o, −40o, −25o, −15o and0o views; note that the
angles are approximate.

matic; moreover, unlike [18], our approach is based on a statistical
framework. The augmentation part of our proposed approach is re-
lated to [14]; the main difference being that in [14] features from the
client’s manyreal images are used to extend the client’s face model,
while in our proposed approach we synthesize the models to repre-
sent the face of a client at various non-frontal angles, without having
access to the client’s real images.

The rest of the paper is organized as follows. In Section 2
we briefly describe the database used in the experiments and the
pre-processing of the images. In Sections 3 and 4 we overview
the DCTmod2 and PCA based feature extraction techniques, re-
spectively. Section 5 provides a concise description of the GMM
based classifier and the different training strategies used when deal-
ing with DCTmod2 and PCA based features. In Section 6 we de-
scribe two techniques used for synthesizing non-frontal models as
well as a method to address the problem of correspondence between
two GMMs. Section 7 details the process of concatenating two or
more GMMs. Section 8 is devoted to experiments evaluating the two
synthesis techniques and the use of augmented models. The paper is
concluded and future work is suggested in Section 9.

2.FERET Database: Setup & Pre-Processing
In our experiments we utilized face images from the FERET
database [23]. In particular, we used images from theba, bb, bc,
bd, be, bf, bg, bh andbi subsets, which represent views of 200 per-
sons for (approximately)0o (frontal), +60o, +40o, +25o, +15o, -15o,
-25o, -40o and -60o, respectively; thus for each person there are nine
images. Example images are shown in Fig. 1.

The 200 persons were split into three disjoint groups: group A,
group B and impostor group; the impostor group is comprised of 20
persons, resulting in 90 persons in groups A and B. Throughout the
experiments, group A is used as a source ofa priori information while
the impostor group and group B are used for verification tests (i.e.
clients come from group B). Thus in each verification trial there is
90 true claimant accesses and 90×20=1800 impostor attacks; more-
over, in each verification trial the view of impostor faces matched the
testing view.

In order to reduce the effects of variations possible in real
life (such as facial expressions, hair styles, clothes and ornaments)
closely cropped faces are used instead of full face images [5]. In par-
ticular, we used the location of the eyes to normalize the inter-ocular
distance and extract a 56×64 (rows× columns) face window con-
taining the area from the eyebrows to the nose (inclusive). Example
face windows are shown in Fig. 2.

Since in this paper we are proposing extensions to existing 2D ap-
proaches, we obtain normalized face windows for non-frontal views
exactly in the same way as for the frontal view; this has a significant
side effect: for large deviations from the frontal view (such as -60o

and +60o) the effective size of facial characteristics is significantly
larger than for the frontal view. The non-frontal face windows thus
differ from the frontal face windows not only in terms of out-of-plane
rotation of the face, but also scale.

Fig. 2. Extracted face windows from images in Fig. 1.

Overlap (NO) Vectors (NV ) Spatial width
0 30 24
1 35 22
2 56 20
3 80 18
4 143 16
5 255 14
6 621 12
7 2585 10

Table 1. Number of DCTmod2 feature vectors extracted from a
56×64 face usingNP =8 and varying overlap; also shows the effec-
tive spatial width (& height) in pixels for each feature vector.

3.Feature Extraction: DCTmod2 Based Sys.
In DCTmod2 feature extraction [29] a given face image is analyzed
on a block by block basis; each block isNP×NP (here we use
NP =8) and overlaps neighboring blocks byNO pixels. Each block is
decomposed in terms of 2D Discrete Cosine Transform (DCT) basis
functions [13]. A feature vector for each block is then constructed
as:

~x =
h

∆hc0 ∆vc0 ∆hc1 ∆vc1 ∆hc2 ∆vc2 c3 c4 ... cM−1

iT

(1)

wherecn represents then-th DCT coefficient, while∆hcn and∆vcn

represent the horizontal & vertical delta coefficients respectively; the
deltas are computed using DCT coefficients extracted from neighbor-
ing blocks. Compared to traditional DCT feature extraction [10], the
first three DCT coefficients are replaced by their respective horizon-
tal and vertical deltas in order to reduce the effects of illumination
changes, without losing discriminative information. In this study we
useM=15 (choice based on [29]), resulting in an18 dimensional
feature vector for each block.

The degree of overlap (NO) has two effects: the first is that as
overlap is increased the spatial area used to derive one feature vector
is decreased; the second is that as the overlap is increased the num-
ber of feature vectors extracted from an image grows in a quadratic
manner. Table 1 shows the amount of feature vectors extracted from
56× 64 face using our implementation of the DCTmod2 extractor.

As will be shown later, the larger the overlap (and hence the
smaller the spatial area for each feature vector), the more the system
is robust to out-of-plane rotations.

4.Feature Extraction: PCA Based System
In PCA based feature extraction [30], a given face image is repre-
sented by a matrix containing grey level pixel values; the matrix is
then converted to a face vector,~f , by concatenating all the columns;
aD-dimensional feature vector,~x, is then obtained by:

~x = UT (~f − ~fµ) (2)

whereU containsD eigenvectors (corresponding to theD largest
eigenvalues) of the training data covariance matrix, and~fµ is the
mean of training face vectors. In our experiments we use frontal faces
from group A to findU and~fµ. If robustness to illumination changes
is required, an extension such asenhanced PCAcan be utilized [28].



It must be emphasized that in the PCA based approach, one feature
vector represents the entire face, while in the DCTmod2 approach
one feature vector represents only a small portion of the face.

5.GMM Based Classifier
The distribution of training feature vectors for each person is modeled
by a GMM. Given a claim for clientC ’s identity and a set of (test)
feature vectorsX = {~xi}NV

i=1 supporting the claim, the average log
likelihood of the claimant being the true claimant is found with:

L(X|λC) =
1

NV

XNV

i=1
log p(~xi|λC) (3)

where: p(~x|λ) =
XNG

j=1
wj N (~x; ~µj ,Σj) (4)

λ = {wj , ~µj ,Σj}NG
j=1 (5)

Here,N (~x; ~µ,Σ) is aD-dimensional Gaussian function with mean
~µ and diagonal covariance matrixΣ:

N (~x; ~µ,Σ) =
1

(2π)
D
2 |Σ| 12

exp

�−1

2
(~x− ~µ)T Σ−1(~x− ~µ)

�
(6)

λC is the parameter set for clientC, NG is the number of Gaussians
andwj is the weight for Gaussianj (with constraints

PNG
j=1 wj = 1

and∀ j : wj ≥ 0).
Given the average log likelihood of the claimant being an impos-

tor,L(X|λC), an opinion on the claim is found using:

Λ(X) = L(X|λC)− L(X|λC) (7)

The verification decision is reached as follows: given a thresholdt,
the claim is accepted whenΛ(X) ≥ t and rejected whenΛ(X) < t.
In our experiments we use a global threshold to obtain performance
as close as possible to the Equal Error Rate (EER) (i.e. where the
false rejection rate is equal to the false acceptance rate), following
the popular practice used in the speaker verification field [7, 11].

Methods for obtaining the parameter set for the impostor model
(λC ) and each client are described in the following sections.

5.1.Classifier Training: DCTmod2 Based System
First, a Universal Background Model (UBM) is trained with a form of
the Expectation Maximization (EM) algorithm [6, 9] usingall 0o data
from group A; here the EM algorithm tunes the model parameters to
optimize the Maximum Likelihood (ML) criterion (i.e. so that the
likelihood of the training data is maximized).

The parameters (λ) for each client model are then found by using
the client’s training data and adapting the UBM (the number of Gaus-
sians is varied in the experiments); the adaptation is accomplished
using a different form of the EM algorithm, often referred to as max-
imum a posteriori(MAP) estimation [12, 25]. The two instances of
the EM algorithm are summarized in appendixes A and B.

Since the UBM is a good representation of a general face, it is
also used to find the likelihood of the claimant being an impostor,
i.e.:

L(X|λC) = L(X|λubm) (8)

5.2.Classifier Training: PCA Based System
The image subset from the FERET database that is utilized in this
work has only one frontal image per person; in PCA-based feature
extraction, this results in only one training vector, leading to neces-
sary constraints in the structure of the classifier and the classifier’s
training paradigm.

The UBM and all client models (for frontal faces) are constrained to
have only one component (i.e. one Gaussian). As for the DCTmod2
system (described above), the parameters for the UBM are found by
running the EM algorithm on all data from group A. Instead of MAP
estimation, each client model inherits the covariance matrix from the
UBM; moreover, the mean of each client model is taken to be the
single training vector for that client.

6.Synthesizing Models for Non-Frontal Views
6.1.UBMdiff Technique
Let us suppose that we have two UBMs,λ0o

ubm andλ+25o

ubm (trained
usinga priori data) that describe a general face for a view at0o and
+25o, respectively. Let us define the set of parameters which de-
scribes the difference between the two UBMs as:

∆+25o

=
n

w+25o

∆,i , ~µ+25o

∆,i , ~σ+25o

∆,i

oNG

i=1
(9)

The parameters are defined as:

w+25o

∆,i = w+25o

ubm,i/w0o

ubm,i (10)

~µ+25o

∆,i = ~µ+25o

ubm,i − ~µ0o

ubm,i (11)�
~σ+25o

∆,i

�T

= [ σ∆,i,d ]Dd=1 =
h
Σ+25o

ubm,i,(d,d)/Σ
0o

ubm,i,(d,d)

iD

d=1
(12)

whereΣ+25o

ubm,i,(d,d) denotes the element at rowd and columnd (i.e.

d-th diagonal) ofΣ+25o

ubm,i. Since the two UBMs are a good represen-
tation of a general face at the two views, and each client model is
derived from the0o UBM, it is reasonable to assume that we can ap-
ply the above difference to clientC ’s 0o model to synthesize a +25o

model. Formally, the parameters for the +25o model are:

λ+25o

C =
n

w+25o

C,i , ~µ+25o

C,i ,Σ+25o

C,i

oNG

i=1
(13)

and are synthesized using:

w+25o

C,i = bw+25o

C,i /γ (14)

~µ+25o

C,i = ~µ0o

C,i + ~µ+25o

∆,i (15)

Σ+25o

C,i,(d,d)

���D
d=1

= Σ0o

C,i,(d,d)σ
+25o

∆,i,d

���D
d=1

(16)

where the non-diagonal elements ofΣ+25o

C,i are set to zero andbw+25o

C,i = w0o

C,i w+25o

∆,i (17)

γ =

NGX
i=1

bw+25o

C,i (18)

As can be seen, theγ is a scale factor used to ensure that synthesized
weights sum to unity. We can of course use the above procedure to
synthesize models for angles other than +25o.

6.2.LinReg Technique
Let us suppose that we have the following multi-variate linear regres-
sion model:

Y=XB (19)26664
~y T
1

~y T
2

...
~y T

n

37775=

26664
~x T

1 1
~x T

2 1
...

~x T
n 1

37775
26664

β(1,1) · · · β(1,D)

β(2,1) · · · β(2,D)

...
...

...
β(D+1,1) · · · β(D+1,D)

37775 (20)



wheren > D + 1, with D being the dimensionality of each~y and~x.
B is a matrix of unknown regression parameters; under the sum-of-
least-squares regression criterion,B can be found using [15]:

B =
�
XT X

�−1

XT Y (21)

Given a set ofa priori models (from group A), representing faces at
0o and +25o, we can thus find the relation between the means (and
diagonal covariances) for the two angles; specifically, we findBµ,i

andBΣ,i (i=1,2,· · · ,NG). We can then synthesize model parameters
for +25o [c.f. Eqn. (13)] from clientC ’s 0o model using:

w+25o

C,i = w0o

C,i (22)

~µ+25o

C,i = [ (~µ0o

C,i)
T 1 ] Bµ,i (23)

diag(Σ+25o

C,i ) = [ diag(Σ0o

C,i)
T 1 ] BΣ,i (24)

where the non-diagonal elements ofΣ+25o

C,i are set to zero. It must
be noted that unlike the UBMdiff technique (Section 6.1), there is no
guarantee that the diagonal elements ofΣ+25o

C,i are> 0; thus after
synthesis, any diagonal elements which are≤ 0 are set to a small
positive value (1−25). By the same token, the weights for the +25o

model are merely copied from the0o model (while this seems drastic,
the weights have only a minor influence on performance [25]).

6.3.The Model Correspondence Problem
The UBMdiff and LinReg synthesis techniques pre-suppose that there
is a correspondence between components of the client’s0o model, the
0o UBM, the +25o UBM and all models for group A (loosely speak-
ing, by correspondence we mean that corresponding components in
all three models describe the same areas of the face). This is true
when there is one Gaussian in each model (as for the PCA based sys-
tem). However, under traditional training paradigms (as described
in Section 5.1), this is generally not true when there is two or more
Gaussians.

To address this issue, we propose the following modified train-
ing paradigm. Instead of training the +25o UBM directly using the
ML criterion, we instead adapt the0o UBM using a modified form
of MAP estimation; moreover, whenever adapting any client model
from any UBM, the modified MAP estimation is also used.

Traditional MAP estimation by itself will not help with the corre-
spondence problem, as for GMMs it is a form of probabilistic cluster-
ing (albeit constrained clustering). During clustering, the Gaussians
tend to “wander” around before converging to a solution1. We il-
lustrate the wandering problem as follows: let’s say we have a 32
Gaussian0o UBM and we adapt it to create a +25o UBM; after con-
vergence, it is quite possible for, say, the tenth Gaussian of the +25o

UBM to be the “closest” to the first Gaussian of the0o UBM; more-
over, it is also possible to have more than one Gaussian in the +25o

UBM that is the “closest” to a given Gaussian in the0o UBM. Due
to the “wandering” problem, there is no guarantee that the first Gaus-
sian from the +25o UBM corresponds to the first Gaussian from the
0o UBM (or in other words, the first Gaussian from the +25o UBM
may be modeling a completely different area of the face when com-
pared to the first Gaussian from the0o UBM).

Before describing the modification to the MAP estimation, let us
first define a “parent UBM” as the UBM to be adapted and a “child
UBM” as the UBM that resulted from adapting a “parent UBM”; in a
similar vein, let us define a “parent Gaussian” as a Gaussian from the
“parent UBM” and a “child Gaussian” as the Gaussian that resulted

1It must be noted that this observed behaviour is counter-intuitive; it is
under further investigation.

from a particular “parent Gaussian” through the process of adapta-
tion. moreover, let us define the distance between two Gaussians as
the Mahalanobis distance [9] between their means:

M (~µa, ~µb) = (~µa − ~µb)
T Σ−1

all (~µa − ~µb) (25)

whereΣall is the overall covariance matrix of the “parent UBM”; we
shall assume that it is a diagonal matrix. It can be shown that thed-th
diagonal element (Σall,(d,d)) is found using:

Σall,(d,d) = −µ2
all,(d) +

NGX
i=1

wi

�
Σi,(d,d) + µi,(d)

�
(26)

whereµall,(d) is thed-th element of~µall , which is in turn found using
~µall =

PNG
i=1 wi~µi. Here,{wi, ~µi,Σi}NG

i=1 are the components of the
“parent UBM”.

Lastly, let us define a measure which will be used for check-
ing whether any “child Gaussian” is closer to someone else’s parent
rather than its own parent:

ψ =

NGX
i=1

NGX
j=1

S
�
kM(~µ child

i , ~µ parent
i )−M(~µ child

i , ~µ parent
j )

�
−2NG (27)

wherek > 1 and

S(a) =

�
+1 if a > 0
−1 if a ≤ 0

(28)

k designates how close a “child Gaussian” can be to someone else’s
parent; ifk=2, then it is closer than two times the distance between
the parent in question and the parent’s true child.

To address the “wandering” problem we modify the EM algo-
rithm for MAP estimation (shown in Appendix B) by introducing an
early stopping criterion: from the second iteration onwards, we check
if ψ 6=−N2

G after each maximization step; if the condition is satisfied
we restore the parameters from the last iteration and deem that we
have converged. The check is enabled from the second iteration on-
wards since we wish at least for some adaptation to occur (otherwise
it would be possible for the “child UBM” to be the same as the “par-
ent UBM”). In this work we usek=2 (choice based on preliminary
experiments).

7.Augmenting Frontal Models
A composite model for clientC is created by augmenting the client’s
frontal model (λ0o

C ) as follows:

λaug
C = λ0o

C t λ+60o

C t λ+40o

C · · · t λ-40o

C t λ-60o

C

= ti∈Aλi
C (29)

where

A = { 0o, +60o, +40o, +25o, +15o, -15o, -25o, -40o, -60o } (30)

andt is an operator for joining GMM parameter sets. Let us suppose
we have two GMM parameter sets,λx andλy, comprised of param-
eters forNx,G andNy,G Gaussians, respectively. Thet operator is
defined as follows:

λz = λx t λy

= {αwx,i, ~µx,i, Σx,i}Nx,G

i=1 ∪ {βwy,i, ~µy,i, Σy,i}Ny,G

i=1 (31)

where: α = Nx,G/(Nx,G + Ny,G) (32)

β = 1− α (33)

Here the non-frontal models can be synthesized from the client’s
frontal model using the UBMdiff or LinReg techniques (Section 6).
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Fig. 3. Performance of PCA based system (trained on frontal faces)
for increasing dimensionality and the following angles: -60o, -40o,
-25o, -15o and0o (frontal).

8.Experiments and Discussion

8.1.PCA Based System

In the first experiment we studied how the dimensionality of the fea-
ture vectors used in the PCA system affects robustness to varying
pose. The higher the dimensionality, the more accurately the face
image is represented; we conjecture that as more accurately the face
is represented, the more the system will be affected by varying pose.
Client models were trained on frontal faces and tested on faces from
-60o to +60o views; impostor faces matched the testing view. Results
for -60o to 0o are shown in Fig. 3 (the results for0o to +60o, not
shown here, have very similar trends).

As can be observed, a dimensionality of 40 is required to achieve
perfect verification on frontal faces (this agrees with results presented
in [26]). For non-frontal faces at±60o and±40o, the error rate gen-
erally increases as the dimensionality is increased, saturating when
the dimensionality is about 15; hence there is somewhat of a trade-
off between the error rate on frontal faces and non-frontal faces, con-
trolled by the dimensionality. Since in this work we are pursuing
extensions to standard 2D approaches, the dimensionality has been
fixed at 40 for further experiments (using a lower dimensionality of,
say, 4, offers better (but still poor) performance for non-frontal faces,
however it comes at the a cost of an EER of about 10% on frontal
faces, which is unacceptable in real life applications).

In the second experiment we evaluated the performance of mod-
els synthesized using UBMdiff and LinReg techniques; The client
models were synthesized for a given test angle; this pre-supposes that
we know what the test angle isa priori, but is nevertheless useful
for comparing performance with augmented models. As can be seen
from the results presented in Fig. 4, both techniques perform bet-
ter than the standard system and the LinReg technique offers signif-
icantly better performance than UBMdiff. We conjecture the reason
for the betterness of the LinReg technique as follows: the UBMdiff
technique only utilizes the difference between two general models,
while the LinReg technique utilizes the differences between two sets
of models (90 models for a frontal view and 90 models for a non-
frontal view); in effect, the LinReg technique utilizes more informa-
tion than the UBMdiff technique (in the form of 180 mean vectors
instead of two) and is thus able to synthesize the non-frontal mod-
els more accurately. While the LinReg technique does not guarantee
that valid covariance matrices will be generated, for the case of the
PCA based system no such problem occurred; we conjecture that this
is due to the constrained training strategy (Section 5.2), where client
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Fig. 4. Performance of various PCA based systems: standard,
UBMdiff, LinReg and augmented; the standard system used origi-
nal frontal client models only; UBMdiff and LinReg systems used
client models synthesized specifically for a given test angle; the aug-
mented system used client models comprised of original frontal and
synthesized side models (via LinReg technique).
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Fig. 5. Performance of standard DCTmod2 based system trained and
tested on frontal faces, for varying degrees of overlap and number of
Gaussians.

models inherited their covariance matrix from the UBM; in effect the
LinReg technique uses information from two covariance matrices in-
stead of 180.

In the third experiment we augmented each client’s frontal model
with models (for the eight non-frontal views) synthesized by the
LinReg technique; since each frontal model was constrained to have
one Gaussian, each resulting augmented model had nine Gaussians.
From the results shown in Fig. 4, we can see that there is little differ-
ence between using client models specifically synthesized for a given
test angle and the augmented models, which cover all the test angles.
These results thus support the use of frontal models augmented with
synthesized models.

8.2.DCTmod2 Based System

In the first experiment we studied how the overlap setting in the
DCTmod2 feature extractor and number of Gaussians in the classi-
fier affects performance & robustness. Client models were trained on
frontal faces and tested on faces at0o and +40o views; impostor faces
matched the testing view. Results are shown in Figs. 5 and 6.

As we can see, when testing with frontal faces, the general trend
is that as the overlap increases more Gaussians are needed to decrease
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Fig. 6. Performance of standard DCTmod2 based system trained on
frontal faces and tested on +40o faces, for varying degrees of overlap
and number of Gaussians.

the error rate (which can be interpreted as follows: the smaller the
spatial area used by the features, the more Gaussians are required
to adequately model the face). When testing with non-frontal faces,
the general trend is that as the overlap increases, the lower the error
rate; there is also a less defined trend when the overlap is 4 pixels
or greater: the more Gaussians, the lower the error rate2. While not
shown here, the DCTmod2 based system obtained similar trends for
non-frontal views other than +40o.

The best performance for +40o faces is achieved with an overlap
of 7 pixels and 32 Gaussians, resulting in an EER close to 10%. This
is quite impressive. considering that the EER of the standard PCA
based system is around 35%; for the PCA system utilizing synthe-
sized models the EER is around 15%. The robustness of the standard
DCTmod2/GMM system can be attributed to two aspects:

1. The small spatial area (especially with an overlap of 7) used
by each feature vector, results in out-of-plane rotations having
a smaller effect on DCTmod2 features when compared to PCA
based features (which describe the entire face).

2. The loss of spatial relation between face characteristics (due
to use of the GMM classifier), resulting in the “movement”
of facial characteristics (due to out-of-plane rotations) having
relatively little effect.

For further experiments we have chosen the configuration of 7 pixel
overlap and 32 Gaussians. While this does not achieve perfect verifi-
cation rate on frontal faces, the EER is quite low at 1.67%; moreover,
as will be shown in the next experiment, the EER is close to zero
when the modified MAP estimation is used (described in Section 6.3).

In the second experiment we evaluated the effects of modified
MAP estimation. From the results presented in Fig. 7 we can see that
utilizing the modified training has no adverse effects on the perfor-
mance when compared to original MAP estimation.

In the third experiment we evaluated the performance of mod-
els synthesized via the UBMdiff technique, using both original and
modified training. In order to provide a fair comparison with the
LinReg technique in later experiments, synthesis of weights was not
done; instead, the weights for non-frontal models were copied from
the frontal model. As shown in Fig. 7, using original training causes
the UBMdiff technique to fall apart (the results are worse than the
standard approach); in contrast, using the UBMdiff technique with

2This is true up to a point: eventually the error rate will go up as there will
be too many Gaussians to train adequately with the limited amount of data.

−60 −40 −25 −15 0 15 25 40 60
0

5

10

15

20

25

30

35

40

ANGLE

EE
R

 (%
)

STANDARD, ORIGINAL TRAINING
STANDARD, MODIFIED TRAINING
UBMDIFF, ORIGINAL TRAINING
UBMDIFF, MODIFIED TRAINING

Fig. 7. Performance of various DCTmod2 based systems: standard
(using original & modified training) and UBMdiff (also using original
& modified training).

modified MAP estimation reduces the error rate in almost all cases.
These results thus suggest that the model correspondence problem
(described in Section 6.3) is effectively addressed via the modified
MAP estimation; the results also suggest that the UBMdiff technique
is useful for synthesizing models.

In the fourth experiment we evaluated the use of the LinReg tech-
nique for synthesizing models; results are presented in Fig. 8. It can
be seen that the performance is worse than the UBMdiff technique;
a possible cause of this has been alluded in Section 6.2: there is no
guarantee that valid covariance matrices will be generated. Indeed,
during model synthesis it was found that many elements of the co-
variance matrices had negative values, and were thus set to a small
positive value; this obviously has the effect of making any model less
precise, leading to worse performance.

In the fifth experiment we augmented each client’s frontal model
with models synthesized by the UBMdiff technique for the follow-
ing angles:±60o, ±40o and±25o. Synthesized models for±15o

were not used since they provided no performance benefit over the
0o model. Since each frontal model was set to have 32 Gaussians,
each resulting augmented model had 224 Gaussians. From the results
shown in Fig. 8, we can see that there is little difference between us-
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Fig. 8. Performance of various DCTmod2 based systems: UBMdiff,
LinReg and augmented; UBMdiff and LinReg systems used client
models synthesized specifically for a given test angle; the augmented
system used client models comprised of original frontal and synthe-
sized side models (via UBMdiff technique).



ing client models specifically synthesized for a given test angle and
the augmented models, which cover all the test angles. Like in the
case for the PCA based system, these results support the use of frontal
models augmented with synthesized models.

8.3.PCA/GMM vs DCTmod2/GMM
Since in this work we have evaluated two significantly different face
verification systems (PCA based and DCTmod2 based), it would be
interesting to compare their performance. The results shown in Fig. 9
(created by reusing results from previous experiments) suggest the
following:

1. The standard DCTmod2/GMM system (trained on frontal
faces) is less affected than the corresponding PCA/GMM sys-
tem.

2. In almost all cases, frontal model augmentation has beneficial
effects for both systems.

3. Except for the extreme views at±60o, the DCTmod2/GMM
system using augmented models is more robust than the cor-
responding PCA/GMM system.

9.Conclusions and Future Work
In this work we proposed to address the problem of non-frontal
face verification when only a frontal training image is available
(e.g. a passport photograph) by augmenting a client’s frontal face
model with artificially synthesized models for non-frontal views. In
the framework of a GMM based classifier, two techniques were pro-
posed for the synthesis: UBMdiff and LinReg. Both techniques rely
on a priori information and learn how face models for the frontal
view are related to face models at a non-frontal view. The synthe-
sis and augmentation approach was evaluated by applying it to two
face verification systems: PCA based and DCTmod2 based; the two
systems are a representation of holistic and non-holistic approaches,
respectively.

Experimental results suggest that in almost all cases, frontal
model augmentation has beneficial effects for both systems; they
also suggest that the LinReg technique (which is based on mul-
tivariate regression of classifier parameters) is more suited to the
PCA based system and that the UBMdiff technique (which is based
on differences between two general face models) is more suited to
the DCTmod2 based system. The results also support the view
that the standard DCTmod2/GMM system (trained on frontal faces)
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Fig. 9. Performance comparison of standard PCA, augmented PCA,
standard DCTmod2 and augmented DCTmod2.

is less affected by out-of-plane rotations than the corresponding
PCA/GMM system; moreover, except for the extreme views at±60o,
the DCTmod2/GMM system using augmented models is more robust
than the corresponding PCA/GMM system.

Currently in the DCTmod2/GMM approach each Gaussian often
models disjoint face areas that are similar in texture (see Appendix A
in [27]). This may not be optimal when dealing with out-of-plane
face rotations as different parts of face may very well undergo dif-
ferent transformations. Better performance may be obtained if the
Gaussians are constrained to model non-disjoint areas; to some ex-
tent this could be achieved by incorporating positional information in
each feature vector (i.e. augmenting each DCTmod2 vector with the
row and column of where it comes from); another possibility it to use
a 2D Hidden Markov Model (HMM) based classifier [10, 26] in place
of the GMM classifier.

Finally we note that, in the context of generative models (such as
the GMM), there are probably more principled ways (than UBMdiff
and LinReg) of utilizinga priori information; however, the tech-
niques presented here show that it’s possible to effectively utilize
a priori information directly in the model domain, rather than in the
image domain.

Appendix A. EM: Maximum Likelihood
Given a set of training vectors,X = {~xi}NV

i=1, the GMM parameters
(λ) are estimated using the Maximum Likelihood (ML) principle:

λ = arg max
λ̂

p(X|λ̂) (34)

The estimation problem can be solved using a form of the Expectation
Maximization (EM) algorithm [6, 9]. The EM algorithm for GMMs
is comprised of iterating two steps: theexpectationstep, followed by
themaximizationstep. GMM parameters generated by the previous
iteration (λold ) are used by the current iteration to generate a new set
of parameters (λnew ), such that:

p(X|λnew ) ≥ p(X|λold) (35)

The process is usually repeated until convergence (the parameters
have not changed from one iteration to the next), or until the in-
crease in the likelihood after each iteration falls below a pre-defined
threshold, or until the number of iterations is equal to a pre-defined
maximum. Reynolds [24] showed that the EM algorithm generally
converges in 10 to 15 iterations, with further iterations resulting in
only minor increases of the likelihoodp(X|λ); this has also been the
authors’ experience with various types of data. In our implementa-
tion we have therefore limited the number of iterations to 20. The
algorithm is summarized as follows:

Expectation step:
for k = 1, · · · , NG: for i = 1, · · · , NV :

lk,i =
wkN (~xi; ~µk,Σk)PNG

n=1 wnN (~xi; ~µn,Σn)
(36)

for k = 1, · · · , NG:

Lk =
XNV

i=1
lk,i (37)

ŵk = Lk/NV (38)

~̂µk =
1

Lk

XNV

i=1
~xi lk,i (39)

Σ̂k =
1

Lk

�XNV

i=1
~xi~x

T
i lk,i

�
− ~̂µk~̂µT

k (40)



Maximization step:

{wk, ~µk,Σk}NG
k=1 = {ŵk, ~̂µk, Σ̂k}NG

k=1 (41)

The initial estimate (i.e. the seed) is typically provided by the
k-means clustering algorithm [9]. It must be noted that the above
implementation of EM can also be interpreted as an unsupervised
probabilistic clustering procedure, withNG being the assumed num-
ber of clusters.

Appendix B. EM: MAP Estimation
The main difference between ML and MAP estimation is in the use
of a priori distribution (f(λ̂)) of the parameters to be estimated
[c.f. Eqn. (34)]:

λ = arg max
λ̂

p(X|λ̂) f(λ̂) (42)

The above estimation problem can be also solved using the EM
algorithm, albeit in a different form to the one described in Ap-
pendix A; this form is often referred to as maximuma posteriori
estimation [12, 25], and is summarized as follows.

Given UBM parametersλubm = {w̃k, ~̃µk, Σ̃k}NG
k=1 and a set of

training feature vectors for a specific client,X = {~xi}NV
i=1, the esti-

mated weights (̂wk), means (̂~µk), and covariances (̂Σk) are found as
per Eqns. (38)-(40). The maximization step (fork = 1, · · · , NG) is
then defined as:

wk = [αŵk + (1− α)w̃k] γ (43)

~µk = α~̂µk + (1− α)~̃µk (44)

Σk =
h
α
�
Σ̂k + ~̂µk~̂µT

k

�
+ (1−α)

�
Σ̃k + ~̃µk~̃µT

k )
�i
−~µk~µT

k (45)

where γ is a scale factor to make sure the weights sum to one.
α= Lk

Lk+r
is a data-dependent adaptation coefficient [Lk is found us-

ing Eqn. (37)], wherer is a fixed relevance factor [25]; in our exper-
iments we usedr=256 (choice based on preliminary experiments).

As can be seen, the new parameters are simply a weighted sum
of a priori statistics and new statistics. Here,α can be interpreted
as the amount of faith we have in the new statistics. The choice of
α= Lk

Lk+r
causes the adaptation of only the Gaussians for which there

is “sufficient” data; in other words, the MAP estimation approach
for finding GMM parameters should be robust to limited amount of
training data.

Since the ML EM algorithm for GMMs is a form of unsupervised
probabilistic clustering, the MAP EM algorithm is also a form of
unsupervised probabilistic clustering, albeit it is constrained.
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R. P. Würtz and W. Konen, “Distortion Invariant Object Recognition
in the Dynamic Link Architecture”,IEEE Trans. Computers, Vol. 42,
No. 3, 1993, pp. 300-311.

[17] M. W. Lee and S. Ranganath, “Pose-invariant face recognition using
a 3D deformable model”,Pattern Recognition, Vol. 36, No. 8, 2003,
pp. 1835-1846.

[18] T. Maurer and C. v.d. Malsburg, “Learning Feature Transformations to
Recognize Faces Rotated in Depth”,Proc. Int. Conf. Artificial Neural
Networks (ICANN), Paris, 1995, pp. 353-358.

[19] K. Messer et al., “Face Verification Competition on the XM2VTS
Database”,Proc. 4th Int. Conf. Audio- and Video-Based Biometric Per-
son Authentication (AVBPA), Guildford, 2003, pp. 964-974.

[20] B. Moghaddam and A. Pentland, “Probabilistic Visual Learning for Ob-
ject Representation”,IEEE Trans. Pattern Analysis and Machine Intel-
ligence, Vol. 19, No. 7, 1997, pp. 696-710.

[21] P. Niyogi, F. Girosi and T. Poggio, “Incorporating Prior Information in
Machine Learning by Creating Virtual Examples”,Proceedings of the
IEEE, Vol. 86, No. 11, 1998, pp. 2196-2209.

[22] A. Pentland, B. Moghaddam and T. Starner, “View-Based and Modular
Eigenspaces for Face Recognition”,Proc. Int. Conf. Computer Vision
and Pattern Recognition, Seattle, 1994, pp. 84-91.

[23] P. J. Phillips, H. Moon, S. A. Rizvi and P. J. Rauss, “The FERET Eval-
uation Methodology for Face-Recognition Algorithms”,IEEE Trans.
Pattern Analysis and Machine Intelligence, Vol. 22, No. 10, 2000,
pp. 1090-1104.

[24] D. A. Reynolds, “A Gaussian Mixture Modeling Approach to Text-
Independent Speaker Identification”,Technical Report 967, Lincoln
Laboratory, Massachusetts Institute of Technology, 1993.

[25] D. Reynolds, T. Quatieri and R. Dunn, “Speaker Verification Using
Adapted Gaussian Mixture Models”,Digital Signal Processing, Vol. 10,
No. 1-3, 2000, pp. 19-41.

[26] F. Samaria,Face Recognition Using Hidden Markov Models, PhD The-
sis, University of Cambridge, 1994.

[27] C. Sanderson, “Face Processing & Frontal Face Verification”,
IDIAP-RR 03-20, Martigny, Switzerland, 2003. (seewww.idiap.ch)

[28] C. Sanderson and S. Bengio, “Robust Features for Frontal Face Au-
thentication in Difficult Image Conditions”,Proc. 4th Int. Conf. Audio-
and Video-Based Biometric Person Authentication (AVBPA), Guildford,
2003, pp. 495-504.

[29] C. Sanderson and K. K. Paliwal, “Fast features for face authentica-
tion under illumination direction changes”,Pattern Recognition Letters,
Vol. 24, No. 14, 2003, pp. 2409-2419.

[30] M. Turk and A. Pentland, “Eigenfaces for Recognition”,J. Cognitive
Neuroscience, Vol. 3, No. 1, 1991, pp. 71-86.



Distortion -Tolerant Iris Recognition Using Advanced Correlation Filters 
 
 

B.V.K. Vijaya Kumar and Jason Thornton 
Dept. of ECE, Carnegie Mellon University, Pittsburgh, PA 15213 

kumar@ece.cmu.edu, jthornto@andrew.cmu.edu 
 
 

Abstract 
 

The iris is potentially a very distinct and useful 
biometric because of its intricate patterns.  One way to 
extract information about these patterns is through 
texture analysis using Gabor wavelets.  However, such 
analysis does not explicitly handle within-class variation 
among iris textures.  Correlation filters offer a different 
approach by working on the spatial frequency spectrum 
of an iris.  Correlation filters can be designed to give 
sharp peaks in response to authentic iris images and no 
such peaks in response to impostor iris images.  The 
spatial frequencies that make up a correlation filter can 
be optimally selected to maintain these peaks in the 
presence of within-class distortions.  This paper 
compares the iris recognition capability of the Gabor 
wavelet analysis method and the correlation filter method 
on an iris image set with a range of introduced 
distortions. 
 
1. Introduction 
 

Biometrics are useful in distinguishing between 
subjects for identity recognition purposes.  A good 
biometric should be present throughout the lifetime of an 
individual, be distinct enough to identify one individual 
from others with certainty, and be readily accessible to 
some kind of outside sensor.  The iris has these 
properties, and therefore has potential as a very effective 
biometric. 

The iris is the colored part of the eye that surrounds 
the pupil and dilates or constricts the pupil opening (see 
Fig. 1).  The visual patterns of the iris are set before birth, 
and empirical evidence suggests that they remain stable 
over a person’s lifetime.  The patterns are thought to be 
unique to each eye (right and left) of every individual, 
providing enough information to recognize someone with 
confidence.  In addition, an iris image can be recorded 
externally and without contact with a subject (in contrast 
to retinal scanning), although subject cooperation is 
generally necessary to get an image of good enough 
quality. 

An iris recognition system must take an eye image, 
separate the iris from the rest of the image, and extract 
information from the iris that can be used to identify it.  

Daugman has pioneered the use of Gabor wavelet 
analysis to characterize the local textures of an iris [1]. 

 

 
     Figure 1.  Example of iris image 
 
This method involves filtering the iris image with 2-D 
Gabor wavelets at different scales, orientations, and 
locations.  Only the phase values of the wavelet 
processing are kept as reliable information, and are 
quantized into two bits per phase value.  These bits taken 
together form the “iris code”, and can be stored as the 
representation of an iris.  Because an iris code is created 
from a series of local texture analysis computations, it is 
not completely corrupted when part of the iris is occluded 
or otherwise invalid.  In this sense, the iris code degrades 
gracefully with partial occlusion (like from an eyelid).  
However, this technique does assume that local textures 
remain highly consistent across within-class images, 
which can be problematic in the case of within-class 
distortions. 

The use of correlation filters [2] may offer an 
attractive alternative for the task of distortion-tolerant iris 
recognition.  Correlation filters are designed in the spatial 
frequency domain, one for each class.  When an input 
image belonging to the authentic class is filtered, a peak 
results in the correlation output; when the input image 
does not belong to the authentic class, filtering should 
produce no such peak.  Correlation filters offer several 
advantages.  First, they are naturally shift-invariant, so 
translation of the input image does not affect recognition.  



Thus, the input images do not have to be centered.  Also, 
they can be designed, using multiple within-class images, 
to handle within-class distortion.  In addition, the 
performance of correlation filters degrades gracefully in 
the presence of noise and occlusions.  This is because 
correlation is an integrative operation and thus no 
particular input image pixels are important by themselves.  
The authors have recently reported results from 
preliminary studies on iris recognition using correlation 
filters [13]. 

This paper focuses on the use of correlation filters 
(specifically the type of correlation filters that allow us to 
optimally trade-off correlation peak sharpness for noise 
tolerance) as an alternative to Gabor wavelet analysis in 
performing iris recognition.  Section 2 discusses the pre-
processing employed.  Section 3 explains our 
implementation of the Gabor wavelet analysis technique 
to produce the iris codes introduced by Daugman.  
Section 4 discusses distortion-invariant correlation filters 
and their design.  Section 5 presents our testing procedure 
and the results of both recognition algorithms; this 
includes verification (also known as 1:1 matching where 
the system compares the live biometric to a stored one 
and accepts or rejects the claimed identity) and 
identification (also known as 1:N  matching where the 
live biometric is compared to a database of biometrics to 
determine the identity of the subject).  Section 6 provides 
a summary. 
 
2. Iris image preprocessing 
 

In order to use only the texture information from the 
iris patterns and to avoid unreliable information from 
uninteresting regions in the eye image (such as the pupil), 
the iris must be separated from the rest of the eye.  It is 
important to segment all irises into a normalized form in 
order to make analysis consistent.  

Segmentation and normalization are required 
preprocessing for the iris code method.  On the other 
hand, correlation filters are shift-invariant and so are 
capable of operating on entire eye images without 
explicitly defining the iris region.  However, the 
preprocessing described in this section does improve 
correlation filter performance for two reasons.  If 
correlation filters are designed to recognize entire eye 
images, they may emphasize information that is not 
specific to the iris and therefore not a stable characteristic 
(such as the contour of the eyelid or the presence of 
eyelashes).  In addition, the correlation filters applied in 
this paper are not designed to handle scale changes.  The 
normalization of the iris assures that scale changes will 
not affect performance.  For these reasons, all iris images 
used by either algorithm are preprocessed as follows. 
 

 
 
 
2.1. Detecting iris boundaries 

 
Both the inner and outer iris boundaries can be 

modeled as circles with a fair amount of accuracy.  This 
simplifying assumption helps to make the segmentation 
process computationally manageable.  However, the two 
circular boundaries need not be concentric.  The location 
of the boundaries are indicated by a sudden change in 
image intensity from darker (inside the circular boundary) 
to lighter (outside the boundary), and can be found using 
some form of radial gradient operator.  This approach 
towards locating the iris boundaries is very effective and 
has been described by Daugman in his earlier work [3]. 

However, finding the boundaries within a reasonable 
computation time is tricky.  This is because for each 
boundary, the algorithm must find the center location that 
yields the highest radial gradient.  This is not a trivial 
search.  In order to find the maximum radial gradient, the 
algorithm must approximate circular integration of the 
image for every possible combination of center and radius 
values.  The standard way to accomplish this is to 
perform a polar transform around every possible center, 
and project each transform onto its radial axis.  But the 
interpolation involved with a discrete polar transform is 
computationally costly, even at coarse scales. 

Instead, our algorithm relies on cross-correlation to 
approximate circular integration.  Take an image that 
contains only a single circle of radius ρ against a zero-
valued background, and compute its inner product with 
an iris image; the result can be considered an 
approximation to integrating the iris image along a 
circular contour with radius ρ.  If the cross-correlation is 
computed, it gives a set of shifted inner products.  So the 
result is an approximation of circular integration at radius 
ρ across all center locations.  If the iris image is cross-
correlated with a set of circles of every possible radius (as 
shown in Fig. 2), all the necessary circular integrations 
have been approximated. 

Computing a series of cross-correlations is more 
efficient than computing a series of polar transform 
interpolations.  This is because cross-correlation can be 
computed in the frequency domain via a simple conjugate 
multiplication, and the Fast Fourier Transform algorithm 
offers an efficient way to transform in to and out of the 
frequency domain. 

Our algorithm first downsamples an iris image to 100 
by 100 pixels.  Then it computes the cross-correlation 
between the coarse image and a bank of 100 circles of 
different radii.  A gradient operator is applied to the 
resulting circular integrations to find the maximum radial 



gradients, one for the inner boundary and one for the 
outer boundary. 

 
Figure 2. Computing circular integrations using 
cross-correlations  

 
 

2.2. Normalized segmentation 
 

When the iris boundaries have been selected, the final 
step is to segment the iris.  The goal is to project the iris 
onto an unwrapped polar coordinate system with a 
uniform radius.  At each discrete angle in the image, there 
is a radial line from the center of the pupil that crosses the 
inner and outer boundaries of the iris.  The length of the 
line segment that intersects the iris varies with angle, 
because the two boundaries are not concentric.  For radial 
normalization, the same number of intensity samples are 
taken along every radial line, equally distributed.  The 
resulting unwrapped and segmented iris has a uniform 
radius across all angles, as depicted in Fig. 3. 

This iris segmentation method automatically takes care 
of translation because the iris region is located by 
boundary detection.  It also takes care of scale changes 
because the radius is normalized.  All irises are projected 
onto the same rectangular area, which makes analysis and 
comparison between irises possible. 

 
 
Figure 3.  Example of iris segmentation 
The top image displays the detected inner and outer iris 
boundaries, which have different centers.  The grid 
covering the area between the boundaries shows some of 
the radial lines that are sampled (at a resolution that 
normalizes their length).  The bottom image shows the 
resulting unwrapped iris, with uniform normalized radius. 

 
 
3. Using Gabor wavelets to create iris codes 
 

Daugman has popularized the use of Gabor wavelet 
decomposition to characterize the local textures of an iris 
[3].    “Iris codes” can be created by quantizing the results 
of this texture analysis.  We implemented an algorithm 
that uses Gabor wavelet texture analysis to produce a 
version of iris codes, in order to compare this approach to 
our correlation filter approach.  Our implementation is 
outlined below. 

We created a complex-valued, 2-D Gabor wavelet for 
the polar coordinate system of the unwrapped irises 
defined over angle Φ and radius ρ: 
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where ω controls modulation, and any constant amplitude 
terms are unimportant.  This is considered the mother 
wavelet, and from it we generated a self-similar family of 
wavelets at 8 different orientations and 4 different scales.  
These 32 wavelets are placed at different locations in the 
segmented iris plane to compute the complex projection 
of local parts of the iris onto the wavelets, as given by: 
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where ( ),I φ ρ represents the segmented iris plane, with 

φ0 and ρ0 determining the spatial location of the wavelet 
in that plane.    During analysis, wavelets of different 
scales are placed at different locations across the iris 
plane, with smaller wavelets at dense distributions and 
larger wavelets at sparse distributions.  In total, slightly 
over 1000 wavelet projections are calculated. 

Each projection yields one complex number, and the 
phase of this complex number is the important part [3].  
As suggested by Daugman, we quantize each projection’s 
phase into two bits based on the complex-plane quadrant 
it occupies.  The array of 2118 bits that results from  
quantized Gabor wavelet projections represent our 
version of the iris code.  In this approach to iris 
recognition, the iris code is meant to be a complete and 
unique representation of each iris. 

Checking for degree of match between two iris codes 
is simple.  The metric used is based on the Hamming 
distance, the number of corresponding bits that differ 
between the codes.  The match metric m is computed as 

 

 
Hamming Distance1

Total Number of Bits
m = −  

 
 
and ranges from approximately 0.5 when the codes are 
statistically independent to 1 when the codes are a perfect 
match. 

An iris code is generated from a single iris image.  If 
multiple reference images of the same iris are available, 
an iris code can be generated for each reference image.  
When dealing with a set of training images, we create and 
store an iris code for every reference image.  Then during 
iris recognition, all the codes stored for one iris class are 
compared against the input test iris code to check for the 
closest match. 
 
 
 
 
 

4. Using correlation filters for iris recognition 
 
Correlation filters are based on the concept that 

filtering images in their spatial frequency domain is an 
effective way to recognize specific patterns.  Their use for 
biometric recognition has been previously explored by 
Kumar et al [4].  Correlation filters are applied as shown 
in Fig. 4.  The input image is first decomposed into its 
spatial frequencies by a Discrete Fourier Transform.  This 
is accomplished using the computationally efficient Fast 
Fourier Transform (FFT) algorithm.  The transformed 
image is multiplied by the complex conjugate of the 
correlation filter (note that conjugate multiplication in this 
domain equates to cross-correlation in the original spatial 
domain).  Then it is transformed back to the original 
domain through an Inverse Fast Fourier Transform 
(IFFT).  The result is referred to as the correlation plane.   
 

 
                 
Figure 4.  The application of a correlation filter to an 
iris image.  The resulting correlation output 
produces a peak for authentic and no such peak for 
impostors. 
 

If the input image is authentic (i.e., it contains the 
target pattern that the correlation filter was designed to 
recognize), the correlation plane should show a distinct 
correlation peak.  An ideal correlation peak approximates 
a 2-D delta function.  If the input image is an imposter 
(does not contain the target pattern), no distinct 
correlation peak should exist.  The sharpness of the peak 
in the correlation plane is measured with the peak-to-
sidelobe (PSR) ratio.  The PSR metric takes several 
different forms, but for the purpose of this paper it is 
defined as  
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High PSR in the correlation plane is considered an 

indication of match, while low PSR indicates no match.  
One natural advantage of correlation filters is their shift 
invariance.  A shift in the input causes a corresponding 
shift in the correlation plane, but the peak values as well 
as mean and standard deviation values do not change and 
so the peak-to-sidelobe ratio remains the same. 

 
4.1. Composite correlation filters 

 
The simplest type of correlation filter is the Matched 

Filter [5], which is optimal for detecting an exact target 
pattern in additive white noise.  However, this type of 
filter does not perform well in the presence of any kind of 
distortion.  Casasent and Hester established the concept of 
composite correlation filters as a way to handle detection 
of multiple images belonging to the same class [6].  The 
goal is to design a filter that gives good recognition peaks 
for all reference images of the same class in a training set. 

One effective version of a composite correlation filter 
is the Minimum Average Correlation Energy (MACE) 
filter [7].  The MACE filter is designed to give a specified 
peak value in the correlation plane for every reference 
image in the training set, while minimizing the average 
energy of the correlation plane.  This minimization has a 
closed-form solution, making the filter design process 
straightforward. The result is that the recognition peaks 
are very sharp, giving high PSR scores for each of the 
reference images from the authentic class. 

The MACE filter exhibits great discrimination 
performance for the reference images used to design it, 
but does not take into account within-class noise.  
However, the filter design can be adjusted to 
accommodate noisy versions of authentic images.  
Minimum Variance Synthetic Discriminant Function 
(MVSDF) filters are designed to perform optimally in the 
presence of noise [8]. Unfortunately, MVSDF filters do 
not offer good discrimination although they exhibit 
excellent distortion tolerance. MVSDF and MACE filters 
exhibit opposing attributes in that the former emphasizes 
low spatial frequencies whereas the latter emphasizes 
high spatial frequencies. Refregier showed that the two 
performance criteria, discrimination ability and noise 
tolerance, can be traded off optimally [9].  This led to the 
design of the Optimal Trade-off Synthetic Discriminant 
Function (OTSDF) filter [10], which we use in this 
application. 
 
 
 
 

4.2. OTSDF filter design 
 
Let α represent a trade-off parameter ranging from 0 to 

1, determining the relative importance of noise tolerance 
to discrimination ability over the reference set.  Then the 
design of the OTSDF filter is given by the closed-form 
solution: 
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where D is a diagonal matrix containing the average 
power spectrum of the reference images along its 
diagonal, m is the mean of the DFTs of the reference 
images, in the shape of a column vector, and C is the 
power spectral density of the expected within-class noise.  
If it is assumed that the noise is white, as we do here, the 
formula simplifies to 
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with I being the identity matrix.  We set the trade-off 
parameter α to 0.5 when creating our filters for this 
application. 

The OTSDF correlation filter is designed to recognize 
multiple images of the same iris, and to degrade 
gracefully in the presence of noise.   This makes it well-
suited to the task of recognizing an entire class of image 
patterns (in this case, iris patterns belonging to the same 
iris) while discriminating against imposter images.  The 
filter does especially well if the reference images used to 
train it reflect an accurate range of within-class 
distortions.  Also, an iris image with in-plane rotation 
shows up as a cyclical shift in the segmented iris.  
Correlation filters are shift-invariant, so they should be 
more capable of recognizing rotated irises. 
 
 5. Experimental results 
 
The purpose of our numerical experiments was to test the 
two iris recognition methods across a range of within-
class distortions.  However, rigorous evaluation with iris 
images is difficult because there are no publicly available 
iris databases.  For our tests, we created a data set of iris 
images by artificially introducing four different types of 
possible distortion.  The iris segmentation process already 
takes care of scale changes and translation, so we selected 
distortions other than these that can make iris recognition 
difficult.  They are listed below: 
 
Rotation of eye:  This can occur with tilting of the 
subject’s head or the camera. 



Partial occlusion by eyelid:  This is modeled by placing 
a rectangle in the upper or lower portion of the eye image 
to obstruct part of the iris. 
Random noise:  Gaussian noise added to achieve a 
specific Signal-to-noise Ratio (SNR) 
Nonlinear contortion:  A slightly nonlinear stretching of 
the iris along the radial axis to simulate contortion caused 
by pupil movement 

 
Fig. 5 shows examples of these individual distortions on 
one iris image.  We used varying levels of each type of 
distortion to create separate images for the same iris.  In 
addition, we used every pair-wise combination of 
distortions to create more images.  The different 
distortion types and levels that were applied for every iris 
class are listed below: 
 
Rotation only:   6 levels 
Occlusion only:   8 levels 
Gaussian noise only:  3 levels 
Contortion only:   6 levels 
Rotation and Occlusion:  30 combinations 
Rotation and Gaussian noise: 10 combinations 
Rotation and Contortion:  20 combinations 
Occlusion and Gaussian noise: 12 combinations 
Occlusion and Contortion:  24 combinations 
Gaussian noise and Contortion: 8   combinations 
 
So each iris class in our dataset consists of a total of 128 
images (including the original), all distorted versions of 
the same iris.  We created 45 iris classes for the dataset, 
based on high resolution iris images provided by Miles 
Research Lab [11]. 

Seven images from each class, representing the range 
of distortions, were set aside as training images.  These 
images were used to create the iris codes and correlation 
filter used to characterize each iris class.  This left 121 
images in each class for testing purposes. 

In testing, every image was compared to the iris codes 
and correlation filters stored for all 45 classes (considered 
an authentic to the class which it belonged, an imposter to 
all other classes).  This generated a total of 5,445 
authentic comparisons and a total of 239,580 imposter 
comparisons.  Every comparison was scored by the 
respective match metrics of each algorithm (Hamming 
distance metric for iris codes, PSR for correlation filters).  
 
5.1. Verification results 

 
When iris recognition is used for verification, the 

subject claims an identity to be verified.  The algorithm 
has to give a yes/no decision based on the match score, 
and therefore has to use some threshold value that 
separates authentics from imposters.  This threshold value 
is universal and not specific to each class.  We evaluated 

each algorithm in the context of verification by 
calculating the Equal Error Rate (EER).  When a 
threshold value is selected that gives the same rate of 
false acceptances and false rejections, this error rate is the 
EER.  We separated the test data based on type of 
distortion, and calculated the EER for each type.  The 
results are shown in Table 1.  Clearly, rotated irises were 
the largest challenge and affected performance the most.  
The other distortions had little or no impact on 
verification. Also, correlation filters performed much 
better than our version of iris code for rotation distortions 
in iris images. 

 

 
 
Figure 5.  Examples of single distortions 
From top to bottom: original (no distortion), rotation, partial 
occlusion, Gaussian noise, and nonlinear contortion 
outward along radial axis 
 
 
5.2. Identification results 
 

When iris recognition is used for identification, the 
algorithm has a different task.  Instead of confirming the 
subject’s identity, it has to search for the identity among 
all stored classes.  Identification is only successful if the 
match score returned for the authentic comparison is 
higher than the match scores returned for all other 



comparisons.  We measured the identification ability of 
the algorithms with Cumulative Match Characteristic 
curves (CMC).  This curve plots the ratio of test images 
that are correctly identified in top k match scores, as a 
function of k.  If the identification algorithm performs 
well, a large ratio of test images will be correctly 
identified by the single greatest match score; this means 
the CMC curve will start very high and approach 1 
quickly.  As identification performance degrades, the area 
under the CMC curve decreases.   
 

Table 1.  Equal Error Rates 
 

 
 
Fig. 6 shows the CMC curves for both algorithms, 

calculated across all test images.  The curve for 
correlation filters starts higher because 94.8% of test 
images are correctly identified by the top match score, as 
opposed to 52.6 % for iris codes based on Gabor wavelet 
analysis.   

As with verification, it is the distorted images with 
rotation that prove difficult to identify.  In fact, if all test 
images with some degree of rotation are disregarded 
(leaving only combinations of the other three distortion 
types), both algorithms give perfect identification with the 
top match score.  So the identification results on non-
rotated images are actually better than the verification 
results on those same images (because verification error is 
not always zero).  This suggests that, excluding rotation, 
all classes have good separation between authentic and 
imposter match scores, although the threshold of 
separation varies between classes. 
 

6. Conclusions 
 

Both iris code and correlation filter algorithms give 
fairly good verification and identification performance on 
three of four distortion types, but rotation degrades 
performance significantly.  The iris code method does not 
do well under rotation because it is based on local texture 
analysis.  Rotating the iris causes local textures to shift to 
new spatial regions, rearranging the bits that make up an 
iris code.  One possible way to overcome this problem is 
to store iris codes for rotated versions of the same iris 
image.  In fact, one of the reference images from each 
class in our experiment was rotated, but it did not seem to 
help iris code performance much. The problem is that the 
reference image and the test image must be rotated by 
almost the same degree to get good recognition.  The 
correlation filter showed better performance on rotated 
images because of its shift invariance.  If the interpolation 
involved in segmenting the iris allowed for exact shifts 
among the discrete-valued iris patterns, the error rates of 
correlation filters on these images would approach zero. 

 

 
 
Figure 6.  CMC curves for each algorithm 
The horizontal axis is the number of top match scores that 
are considered, from 1 to all 45 scores.  The vertical axis is 
the ratio of all test images which have their authentic score 
among the scores considered. Solid  line shows the results 
for the correlation filters and dashed lines show the results 
for our implementation of the iris code method. 
 

 
Overall, the OTSDF correlation filter demonstrated 

better verification and identification.  This can be 
attributed to the design approach, which seeks good 
discrimination across the range of within-class distortion.  
It does not assume within-class consistency, as local 
texture analysis does.  Instead, the reference images are 
used to determine which parts of the frequency spectrum 



are consistent enough to be useful for recognition.  It 
remains to be seen if this approach scales effectively to a 
large, comprehensive database of iris images.  We are in 
the process of creating our own database using iris 
camera equipment. 

As a final note on algorithm design, the iris code 
method uses a level of phase quantization that is meant to 
simplify storage and computation for practical 
implementation.  This paper does not focus on issues of 
practical implementation.  But the effect of quantization 
on the design and use of correlation filters has been 
studied recently [12]. 

This research is supported in part by by the Army 
Research Office (ARO) through its support to the Center 
for Communications and Computer Security (C3S) at 
Carnegie Mellon University. 
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Abstract

In this paper, we propose a new spatio-temporal gait rep-
resentation, called Gait Energy Image (GEI), to character-
ize human walking properties for individual recognition by
gait. To address the problem of the lack of training tem-
plates, we generate a series of new GEI templates by an-
alyzing the human silhouette distortion under various con-
ditions. Principal component analysis followed by multiple
discriminant analysis are used for learning features from
the expanded GEI training templates. Recognition is car-
ried out based on the learned features. Experimental results
show that the proposed GEI is an effective and efficient gait
representation for individual recognition, and the proposed
approach achieves highly competitive performance with re-
spect to current gait recognition approaches.

1. Introduction

Current human recognition methods, such as finger-
prints, face or iris biometrics, generally require a coopera-
tive subject, views from certain aspects and physical contact
or close proximity. These methods can not reliably recog-
nize non-cooperating individuals at a distance in real-world
changing environmental conditions. Moreover, in various
applications of personal identification, many established
biometrics can be obscured. Gait, which concerns recogniz-
ing individuals by the way they walk, has been an important
biometric without the above-mentioned disadvantages.

In this paper, we propose a new spatio-temporal gait rep-
resentation, Gait Energy Image (GEI), for individual recog-
nition. Unlike other gait representations [8, 4] which con-
sider gait as a sequence of templates (poses), GEI represents
human motion sequence in a single image while preserving
some temporal information. We also propose a statistical
approach to learn and recognize individual gait properties
from the limited training GEI templates.

In the next section, we introduce related work of human

recognition by gait. The representation of GEI is introduced
in Section 3. In Section 4, we propose two approaches for
human recognition using GEI: direct GEI matching, and
statistical GEI feature matching. In Section 5, we analyze
the experimental results of the proposed human recognition
approaches and compare them with the existing techniques.
Section 6 concludes the paper.

2. Related Work

In recent years, various approaches have been proposed
for human recognition by gait. These approaches can be
divided into two categories: model-based approaches and
model-free approaches.

2.1. Model-based Approaches

When people observe human walking patterns, they not
only observe the global motion properties, but also inter-
pret the structure of the human body and detect the motion
patterns of local body parts. The structure of the human
body is generally interpreted based on their prior knowl-
edge. Model-based gait recognition approaches focus on
recovering a structural model of human motion, and the gait
patterns are then generated from the model parameters for
recognition.

Niyogi and Adelson [14] make an initial attempt in a
spatiotemporal (XYT) volume. They first find the bound-
ing contours of the walker, and then fit a simplified stick
model on them. A characteristic gait pattern in XYT is gen-
erated from the model parameters for recognition. Yoo et al.
[19] estimate hip and knee angles from the body contour by
linear regression analysis. Then trigonometric-polynomial
interpolant functions are fitted to the angle sequences, and
the parameters so-obtained are used for recognition. In Lee
and Grimson’s work [11], human silhouette is divided into
local regions corresponding to different human body parts,
and ellipses are fitted to each region to represent the hu-
man structure. Spatial and spectral features are extracted



from these local regions for recognition and classification.
Bhanu and Han [3] propose a kinematic-based approach to
recognize individuals by gait. The 3D human walking pa-
rameters are estimated by performing a least squares fit of
the 3D kinematic model to the 2D silhouette extracted from
a monocular image sequence. Human gait signatures are
generated by selecting features from the estimated parame-
ters.

In these model-based approaches, the accuracy of human
model reconstruction strongly depends on the quality of the
extracted human silhouette. In the presence of noise, the
estimated parameters may not be reliable. To obtain more
reliable estimates, Tanawongsuwan and Bobick [17] recon-
struct the human structure by tracking 3D sensors attached
on fixed joint positions. However, their approach needs
lots of human interaction which is not applicable in most
surveillance applications.

2.2. Model-free Approaches

Model-free approaches make no attempt to recover a
structural model of human motion. The features used for
gait representation includes: moments of shape, height and
stride/width, and other image/shape templates.

Moments of shape is one of the most commonly used
gait features. Little and Boyd [12] describe the shape of hu-
man motion with a set of features derived from moments of
a dense flow distribution. Shutler et al. [16] include velocity
into the traditional moments to obtain the so-called velocity
moments (VMs). A human motion image sequence can be
represented as a single VM value with respect to a specific
moment order instead of a sequence of traditional moment
values for each frame. He and Debrunner’s [7] approach
detects a sequence of feature vectors based on Hu’s mo-
ments of each motion segmented frame, and the individual
is recognized from the feature vector sequence using hidden
Markov models (HMMs).

BenAbdelkader et al. [2] use height, stride and cadence
as features for human identification. Kale et al. [10] choose
the width vector from the extracted silhouette as the rep-
resentation of gait. Continuous HMMs are trained for each
person and then used for gait recognition. In their later work
[9], different gait features are further derived from the width
vector and recognition is performed by a direct matching al-
gorithm.

To avoid the feature extraction process which may re-
duce the reliability, Murase and Sakai [13] propose a tem-
plate matching method to calculate the spatio-temporal cor-
relation in a parametric eigenspace representation for gait
recognition. Huang et al. [8] extend this approach by
combining transformation based on canonical analysis, with
eigenspace transformation for feature selection. BenAb-
delkader et al. [1] compute the self-similarity plot by cor-

relating each pair of aligned and scaled human silhouette in
an image sequence. Normalized features are then generated
from the similarity plots and used for gait recognition via
eigenspace transformation.

As a direct template matching approach, Phillips et al.
[15] measure the similarity between the gallery sequence
and the probe sequence by computing the correlation of cor-
responding time-normalized frame pairs. Similarly, Collins
et al. [5] first extract key frames from a sequence, and the
similarity between two sequences is computed from nor-
malized correlation. Tolliver and Collins [18] cluster human
silhouettes/poses of each training sequence into� prototyp-
ical shapes. In the recognition procedure, the silhouettes
in a testing sequence are also classified into� prototypical
shapes which are compared to prototypical shapes of each
training sequence for similarity measurement.

3. Gait Energy Image (GEI) Representation

In this paper, we only consider individual recognition by
activity-specific human motion, i.e., regular human walk-
ing, which is used in most current approaches of individual
recognition by gait.

3.1. Motivation

Regular human walking can be considered as cyclic mo-
tion where human motion repeats at a stable frequency.
Some gait recognition approaches extract features from the
correlation of all the frames in a walking sequence without
considering their order [1, 8, 13]. Other approaches extract
features from each frame and compose a feature sequence
for the human walking sequence [2, 5, 7, 10, 9, 12, 15, 16,
18]. During the recognition procedure, they either match
the extracted statistics from the feature sequence, or match
the features between the corresponding pairs of frames in
two sequences that are time-normalized with respect to their
cycle lengths, respectively. The assumption here is that the
order of poses in human walking cycles is the same, i.e., the
limbs (arms and legs) move forward and backward in a sim-
ilar way among normal people. The difference exists in the
phase of poses in a walking cycle, the extend of limbs, and
the shape of the torso, etc. As the order of poses in regular
human walking is generally not considered in gait recogni-
tion approaches, it is possible to compose a spatio-temporal
template in a single image instead of a ordered image se-
quences as usual.

3.2. Representation Construction

We use a silhouette extraction procedure and begin with
the extracted binary silhouette sequences. The preprocess-



Figure 1. Examples of normalized and aligned silhouette fra mes in different human walking se-
quences. The rightmost image in each row is the average silho uette image over the whole sequence
- Gait Energy Image (GEI).

ing procedure includes size normalization – fitting the sil-
houette height to the fixed image height, and sequential hor-
izontal alignment – centering the upper half silhouette part
with respect to the horizontal centroid. Figure 1 shows ex-
amples of preprocessed silhouette frames in different hu-
man walking sequences. The rightmost image in each row
is the average silhouette image over the whole sequence.
As expected, the average silhouette image reflects the ma-
jor shapes of the human silhouettes and their changes over
the sequence. A pixel with higher intensity value means
that human body occurs more frequently at this position.
Therefore, we refer to this average silhouette image as Gait
Energy Image (GEI).

Given a size-normalized and horizontal-aligned human
walking binary silhouette sequence� �� � � � ��, the grey-
level GEI� �� � � � is defined as follows

� �� � � � �
	



��

�� � �� � � � �� � (1)

where



is the number of frames in complete cycles of the
sequence,� is the frame number of the sequence,� and�
are values in the 2D image coordinate.

3.3. Representation Justification

GEI has several advantages over the representation of
binary silhouette sequence. As an average template, GEI
is not sensitive to incidental silhouette errors in individual
frames. The robustness could be further improved if we
discard those pixels with the energy values lower than a
threshold. Moreover, with such a 2D template, we do not
need to divide the silhouette sequence into cycles and per-
form time normalization with respect to the cycle length.
Therefore, the errors occuring in these procedures can be
therefore avoid.

Compared with binary silhouette sequence, the informa-
tion loss of GEI is obvious. For a specific pixel in GEI,
we only know its intensity value, i.e., the frequency with
which the human silhouette occurs at this position over the
whole sequence. However, we might partly reconstruct the
original silhouette sequence from the GEI according to the
knowledge of regular human walking. For example, for a
pixel near the outline of the leg area, it GEI value shows
that silhouette occurs at this location in 20 frames out of
100 frames. Using the common sense, we know that 20
frames should be those frames where human stride instead
of standing straight, if noise is not considered. Similarly,
we can allocate the GEI values to most other leg/arm ar-
eas to corresponding frames in the silhouette sequence. In



general, the energy changes in the torso and head area can
be considered as noise. Although the knowledge is not
enough to accurately allocate the GEI value of each pixel
(i.e., the original silhouette sequence cannot be completely
reconstructed), GEI still keeps the major shapes of human
walking and reflects the major shape changes during walk-
ing. Actually, it is difficult to analyze how and in what de-
gree the information loss affects the discriminating power
of GEI as a template for individual recognition. We will
evaluate this issue in the section of experimental results by
comparing the recognition performance between GEI and
binary silhouette sequence representations.

3.4. Relationship with MEI and MHI

Bobick and Davis [4] propose motion-energy image
(MEI) and motion-history image (MHI) for human move-
ment recognition. Both MEI and MHI are vector-image
where the vector value at each pixel is a function of the
motion properties at this location in an image sequence.

MEI is a binary image which represents where motion
has occured in an image sequence:

�� �� � � � �� � �� ����� � �� � � � � � �� � (2)

where� �� � � � �� is a binary sequence indicating regions of
motion,	 is the duration of time,� is the moment of time,�
and� are values of 2D image coordinate. To represent a reg-
ular human walking sequence, if� �� � � � �� is normalized
and aligned as� �� � � � �� in Equation (1), MEI

�� �� � � � 
 �
is the binary version of GEI� �� � � �.

MHI is a grey-level image which represents how motion
in the image is moving:


� �� � � � �� � � 	 � if � �� � � � �� � 	 �
 �� �� �
� �� � � � � � 	� � 	� � otherwise�
(3)

In general, both MEI and MHI are different motion rep-
resentations compared to GEI. As regular human walking
is a cyclic and highly self-occluded motion with a specific
style, MEI and MHI are not suitable to represent regular
human walking for individual recognition.

4. Human Recognition Using GEI Templates

Human walking sequences for training are limited in real
surveillance applications. Because each sequence is repre-
sented as one GEI template, the training/gallery GEIs for
each individual might limited to several or even one tem-
plate(s). In this paper, we develop two approaches to recog-
nize individuals from the limited templates.

4.1. Direct GEI Matching

One possible approach is recognizing individuals by
measuring the similarity between the gallery (training) and
probe (testing) templates. Given GEIs of two gait se-
quences,� � �� � � � and�� �� � � �, their distance can be mea-
sured by calculating their normalized matching error:

� �� � � �� � � ���� �� � �� � � � � �� �� � � � ��
�� �� � � �� � � � ���� �� �� � � � � (4)

where���� �� � �� � � � � �� �� � � � � is the matching error be-
tween two GEIs,���� � � �� � � � and���� �� �� � � � are to-
tal energy in two GEIs, respectively.

This direct GEI matching approach is sensitive to distor-
tion in silhouettes generated from image sequences that are
recorded under different conditions. Recognition by learn-
ing may recover the inherent properties in training templates
from an individual and therefore insensitive to such silhou-
ette distortion. However, with one GEI template per indi-
vidual, learning cannot be performed. Even with several
templates per individual, if they are from similar conditions,
the learned features may be overfit to the training templates.

4.2. Statistical GEI Feature Matching

In this section, we propose a statistical GEI feature
matching approach for individual recognition from limited
GEI templates. First, we generate new templates from the
limited training templates according to a distortion analy-
sis. Next, statistical features are learned from the expanded
training templates by principal component analysis (PCA)
to reduce the dimension of the template and multiple dis-
criminant analysis (MDA) to achieve better class seperata-
bility. The individual is recognized by the learned features.
The system diagram of training and recognition procedure
is shown in Figure 2.

4.2.1 Generating New Templates from Limited Train-
ing Templates

Various factors have effect on silhouettes extracted from the
same person: shoe and clothing, walking surface, camera
view, and shadow, etc. Shoe, surface and shadow affect the
foot area of the silhouette. In addition, shoe and surface
also change the human walking style. Clothing affects the
shape of the silhouette. If the camera view changes slightly,
there will be slight changes in silhouettes; if the camera
view changes a lot, the extracted silhouettes may be totally
different which may cause recognition to fail.

Among these factors, slight camera view changes may be
neglected. The silhouette shape distortion incurred by the
difference of clothing is irregular distortion, which occurs
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Figure 2. System diagram of individual recog-
nition using the proposed statistical GEI fea-
ture matching approach.

in the upper body, lower body or both, and make body parts
fatter or thinner. Thus, it is difficult to model this irregular
distortion. Similarly, different shoes and walking surfaces
incur global silhouette distortions which are also difficult to
model. Now we consider the common distortion incurred
by the difference of shoe, surface and shadow which gen-
erally occurs in the foot area of the silhouette. These dis-
tortions are local distortions which make the bottom part of
the silhouette and GEI unreliable. If we generate new tem-
plates which are insensitive to the distortion in their bottom
parts, the learned template properties will be insensitiveto
this kind of distortion.

The new GEI templates are generated as illustrated in
Fig 3. First, we determine the range of the distortion area,
e.g.,� rows from the bottom row of the original GEI. Then,
we cut a portion of the area from the bottom, and fit it to
the original GEI size to obtain a new template. By repeat-
ing this step until reaching the upper row of the distortion
area, we will obtain a series of new templates. The training
templates expanded from the same original GEI have the
same global shape properties but different bottom parts and
different scales. Therefore, the learned features from the
expanded training templates are insensitive to the common
distortion by shadow, shoe and surface which occurs in the
bottom part of GEI templates.

4.2.2 Learning Templates by Component Analysis and
Discriminants

Once we obtain a series of training GEI templates for each
individual, the problem of their excessive dimensionality
occurs. To reduce their dimensionality, there are two classi-
cal approaches of finding effective linear transformationsby
combing features - Principal Component Analysis (PCA)
and Multiple Discriminant Analysis (MDA). As described
in [6], PCA seeks a projection that best represents the data
in a least square sense, while MDA seeks a projection that
best separates the data in a least-square sense. Huang et al.
[8] combine PCA and MDA to achieve the best data repre-
sentation and the best class separability simultaneously.In
this paper, the learning procedure follows this combination
approach.

Given � �
-dimensional training templates�� � ��� � ������ �, PCA minimizes the criterion function

��� �
��

��� ���	 

��
�
��� �� �� � � � �� ��

�
� (5)

where
�
 � �

, 	 � �� �
���� �� , and�� � � �� � ���� ��� � are

a set of unit vectors.
���

is minimized when� �, �� , ..., and��� are the
�


eigenvectors of the scatter matrix� having the
largest eigenvalues, where

� �
��

����
�� � 	 � ��� � 	 �� � (6)

The
�


-dimensional principal component vector�� is ob-
tained from the

�
-dimensional GEI template�� by multi-

plying the transformation matrix�� � � ���� ��� �:
�� � �� � � ���� ��� �� � �� � � ���� ��� �� � � � � � 	� ����� � (7)

where� is the number of the expanded GEI templates from
all people in the training dataset.

Although PCA finds components that are useful for rep-
resenting data, there is no reason to assume that these com-
ponents must be useful for discriminating between data in
different classes because PCA does not consider the class
label of training templates. Multiple discriminant analysis
(MDA) seeks a projection that are efficient for discrimina-
tion. Suppose that the� �


-dimensional transformed train-
ing templates�� � ��� � ������ � belong to� classes. MDA
seeks a transformation matrix� that in some sense max-
imizes the ratio of the between-class scatter�� to the
within-class scatter�� :

� �� � � �
��� ��
��� �

� �� � �� � ��� � �� � � � (8)

The within-class scatter�� is defined as

�� �
��

��� � � � (9)



Figure 3. Examples of new GEI templates generated from the or iginal template. The leftmost template
is the original template, other templates are sequentially generated by cutting the bottom portion (2
rows in this example) of the previous template and fitting it t o the original template size.

where
� � � �

� �� � �� � 	 �� �� � 	 ��� (10)

and

	 � � 	
� �

�
� �� � � � (11)

where
� � is the training template set that belongs to the�th

class and� � is the number of templates in
� �. The within-

class scatter�� is defined as

�� �
��

��� � � �	 � � 	 � �	 � � 	 �� � (12)

where

	 �
	
�

�
� �� � � (13)

and
�

is the whole training template set.
� �� � is maxi-

mized when the columns of� are the generalized eigen-
vectors that correspond to the largest eigenvalues in

��� � � � ��� � � � (14)

There are no more than� � 	
nonzero eigenvalues, and the

corresponding eigenvectors� �,...,� ��� form transformation
matrix. The�� � 	�-dimensional multiple discriminant vec-
tor �� is obtained from the

�

-dimensional principal com-

ponent vector�� by multiplying the transformation matrix
�� � � ����� ��� �:

	� � �� � � ����� ��� �� � � � � � 	� ����� � (15)

The obtained multiple discriminant vectors compose the
feature database for individual recognition.

4.2.3 Individual Recognition

Given the GEI template
�� of a query gait sequence, a set of

� 
 templates� �� � � ���� ��� � � are generated according to the
procedure described in Section 4.2.1. After the principal
component transformation and multiple discriminant trans-
formation, we obtain a set of feature vectors��� � � ���� ��� � �

for this test gait sequence. The feature distance between the
query gait sequence and each class in the feature database
can be given by the minimum distance between query and
training feature vector pairs as follows

� ������
 � � 
 ��� �� �
� �
 �����

����
��� ���� � � �� �� � � 	� ���� � �

(16)
After the distances for all classes are obtained, they are
ranked in an ascending order where the class with the small-
est distance is the best match of the query gait sequence.

5. Experimental Results

Our experiments are carried out on the USF HumanID
May-2001 gait database. This database consists of 452 se-
quences from 74 persons walking in elliptical paths in front
of the cameras. For each person, there are up to 5 covari-
ates: viewpoints - Left/Right, shoe types - A/B, surface
types - grass/concrete, carrying conditions - with/without a
briefcase, and time and clothing. Seven experiments are de-
signed for individual recognition as shown in Table 1. The
gallery set contains 71 sequences. No sequence belongs to
the same person in each individual data set.

Phillips et al. [15] proposed a baseline approach
to extract human silhouettes and recognize individuals
in this database. For comparison, they provide ex-
tracted silhouette data which can be found at the web-
site http://marathon.csee.usf.edu/GaitBaseline/. Our exper-
iments begin with these extracted binary silhouette data
(parameterized version 1.7). The experimental results are
shown in Table 2 and 3 as well as comparison with other ap-
proaches of individual recognition by gait. In these tables,
rank1 means that only the first subject in the retrieval rank
list is recognized as the same subject as the query subject,
and rank5 means that the first five subjects are all recog-
nized as the same subject as the query subject. The perfor-
mance in these tables is the recognition rate under these two
definitions.



Table 1. Seven experiments designed for indi-
vidual recognition in USF HumanID database.

Experiment Size of Difference between
Label Probe Set Gallery and Probe Sets

A 71 View
B 41 Shoe
C 41 View and Shoe
D 70 Surface
E 44 Surface and Shoe
F 70 Surface and View
G 44 Surface, Shoe and View

Table 2. Comparison of recognition perfor-
mance of Rank 1 among different approaches
on silhouette sequence version 1.7. (Leg-
ends: USF - direct frame shape matching [15];
DGEI - direct GEI matching, this paper; CMU
- key frame shape matching [5]; SPS1/SPS2 -
clustered frame shape matching with two cri-
teria [18]; SGEI - statistical GEI feature match-
ing, this paper.)

USF DGEI CMU SPS1 SPS2 SGEI
A 79% 99% 87% 82% 85% 90%
B 66% 83% 81% 66% 81% 90%
C 56% 73% 66% 54% 60% 73%
D 29% 18% 21% 20% 23% 41%
E 24% 14% 19% 18% 17% 40%
F 30% 11% 27% 21% 25% 27%
G 10% 10% 23% 21% 21% 38%

5.1. Recognition Results by Direct GEI Matching

To evaluate the effectiveness of GEI as a gait represen-
tation, we carry out experiments of individual recognition
by direct matching between GEI templates according to the
distance metric give by Equation (4). As we mentioned in
Section 2.2, Phillips et al. [15] measure the similarity be-
tween the gallery sequence and the probe sequence by com-
puting the correlation of corresponding time-normalized
frame pairs. This approach can be viewed as a typical di-
rect matching approach between regular gait silhouette se-
quences. We compare the recognition performance between
their approach (USF) and our direct GEI matching approach
(DGEI) as shown in Table 2 and 3.

The left part of Table 2 and 3 shows the recognition per-
formance of USF and DGEI approaches. It is shown that
our DEGI approach achieves much better results in exper-

Table 3. Comparison of recognition perfor-
mance of Rank 5 among different approaches
on silhouette sequence version 1.7. (Same
legend as in Table 2)

USF DGEI CMU SPS1 SPS2 SGEI
A 96% 100% 100% 98% 90% 99%
B 80% 93% 90% 90% 87% 93%
C 76% 93% 83% 81% 80% 93%
D 61% 55% 59% 46% 52% 68%
E 52% 52% 50% 43% 43% 69%
F 45% 47% 53% 46% 48% 58%
G 33% 52% 43% 43% 44% 60%

iments A-C. In these experiments, the difference between
gallery and probe data exists in view, shoe or both, which
incur little distortion in extracted silhouette. This means
that GEI is less sensitive to this kind of distortion than reg-
ular gait silhouette sequence.

Although the rank1 performance of DGEI and USF are
both not good in experiments D-G, our DEGI is worse than
that of USF (See Table 2). The probe sets in experiments
D-G have the common difference of surface with respect
to the gallery set. As we discussed previously, the distor-
tion incurred by surface difference is relatively high. For
example, if the same person walks at different surface, the
extracted silhouettes may have different shadows. In addi-
tion, the silhouette from a walking sequence on the grass
surface may miss the bottom part of the feet because they
could be covered by the grass. In this case, silhouette height
normalization errors occur, and the silhouette so-obtained
may have different scale with respect to the silhouette on
other surfaces. It is shown that the GEI is sensitive to this
kind of distortion with respect to the regular silhouette se-
quence. However, the rank5 performance of our DGEI is
similar to that of USF in experiments D-G (See Table 3).
This shows that GEI is competitive with regular silhouette
sequence because the rank1 results are not reliable and more
ranked subjects should be considered in these experiments.
Another reason of the rank1 worse performance of DGEI
(See Table 3) is that silhouettes of version 1.7 are not well-
aligned.

5.2. Recognition Results by Statistical GEI Feature
Matching

Table 2 and 3 show that our individual recognition ap-
proach by statistical GEI feature matching (SGEI) achieves
better recognition results than DGEI in the experiments
with large silhouette distortion, i.e., D-G. In other experi-



ments with small silhouette distortion, the performance of
SGEI is better than that of DGEI in experiments B and C,
but slightly worse in experiments A. Thus SGEI slightly
sacrifices the performance in experiments with small silhou-
ette distortion while improving the performance in experi-
ments with large silhouette distortion with respect to DGEI.

We also compare the performance of SGEI with other
approaches published in [15, 5, 18] in Table 2 and 3. It is
shown that SGEI achieves better or equivalent recognition
performance than other approaches in all experiments.

6. Conclusions

In this paper, a new spatio-temporal gait representation,
called Gait Energy Image (GEI), is proposed for individual
recognition by gait. Unlike other gait representation which
considers gait as a sequence of templates (poses), GEI rep-
resents a human motion sequence in a single image while
preserving temporal information. To overcome the limita-
tion of training templates, we generate a series of new GEI
templates by analyzing the human silhouette distortion un-
der various conditions. Principal component analysis and
multiple discriminant analysis are used for learning features
from the expanded GEI training templates. Recognition is
then carried out based on the learned features. Experimen-
tal results show that (a) GEI is an effective and efficient gait
representation which is insensitive to incidental silhouette
errors in individual frames, and (b) the proposed recognition
approach achieves highly competitive performance with re-
spect to the published gait recognition approaches.
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Abstract 

We present a model-based approach to gait extraction 
that is capable of reliable operation on real-world 
imagery. Hierarchies of shape and motion are employed 
to yield relatively modest computational demands, 
avoiding the high-dimensional search spaces associated 
with complex models. Anatomical data is used to generate 
shape models consistent with normal human body 
proportions. Mean gait data is used to create prototype 
gait motion models, which are adapted to fit individual 
subjects. 

Accuracy is evaluated on subjects filmed from a 
fronto-parallel view in controlled laboratory conditions, 
for which some gait parameters are known. We further 
show that comparable performance is attained in outdoor 
conditions. As such, we describe a new approach to 
enrolment for gait recognition technologies, allowing 
reliable subject gait extraction in real-world imagery. 
 
1. Introduction 
 

Gait may be defined as the individual pattern of 
movement produced as a person walks. This pattern is 
sufficiently unique for each individual to be employed as 
a biometric [Winter91, Nixon99]. Gait analysis is usable 
from a distance and does not require the subject to be 
aware of or cooperate with its use, making it particularly 
valuable in surveillance, or other applications where non-
contact operation is required. 

This field is currently dominated by face recognition, 
supported by the role of facial features in the human 
recognition process. However, gait is more difficult to 
obscure or disguise, and can be measured from a much 
wider range of viewpoints. Gait is also more robust with 
respect to occlusion and variations in illumination, as a 
gait signature is spatio-temporal rather than a purely 
spatial measure. 

Gait may be best employed in combination with other 
biometrics, with facial features being an obvious choice. 
Most approaches to face recognition require a relatively 
constrained frontal viewpoint, and gait could be employed 
as a back-up strategy when the subject’s face is not 
visible. Alternatively, multiple cameras could be 
employed to combine face and gait features, improving 
overall recognition performance [Shakhnarovich01]. 

However, enrolment is a more difficult problem for 
gait, particularly when enrolment conditions cannot be 
controlled (for example, when enrolling a subject from 
CCTV footage). Gait enrolment requires the extraction of 
limb dynamics over a period of time, ideally capturing at 
least one full gait cycle. In uncontrolled capture 
conditions, it is likely that other objects will interfere with 
and occlude the subject; in addition gait is partially self-
occluding, as one leg passes in front of the other. To 
successfully resolve this problem, extraction 
methodologies must be highly robust to noise and 
occlusions. 

Many existing approaches to gait enrolment are data-
driven, typically using the person’s silhouette or features 
derived features from it as a basis for recognition 
[BenAbdelkader02, Collins02, Huang99, Johnson01, 
Kale03, Lee02, Phillips02]. This methodology has many 
advantages, chiefly of speed and simplicity, but has the 
disadvantage that silhouette dynamics are only indirectly 
linked to gait dynamics. Noise, occlusions and variations 
in clothing will all affect silhouette dynamics; it is unclear 
how a silhouette-based feature set could be normalised for 
these factors. 

Model-based approaches overcome these weaknesses 
by incorporating knowledge of the shape and dynamics of 
human gait into the extraction process [Cunado03, 
Meyer98, Yam02]. The use of a model ensures that only 
image data corresponding to allowable human shape and 
motion is extracted, reducing the impact of noise. It also 
means that gait dynamics are extracted directly by 
determining joint positions, rather than inferring dynamics 
from other measures. A model-based approach also has 
the potential for more general applications, such as 
animation, user interfaces or model-based coding 
[Gavrila99]. 

However, the use of a parametric model introduces its 
own problems. Success in recognition is dependent on the 
gait signature being sufficiently complex to incorporate 
individual variation across the subject population, so that 
a given subject can be distinguished from all the other 
subjects under test. As gait is dependent on a large 
number of parameters (such as joint angles and body 
segment sizes), this requirement leads to complex models 
with many free parameters. Finding the best fitting model 
for the subject thereby necessitates searching a high-



dimensional parameter space, with correspondingly high 
computational requirements. 

Most early approaches dealt with this problem by 
severely limiting model complexity; later solutions have 
improved on this situation somewhat. [Nash 98] employs 
a genetic algorithm to cope with the high computational 
demands, but due to its reliance on stochastic processes 
this strategy cannot guarantee an optimal model fit. 
[Lappas02] introduces the dynamic velocity Hough 
transform, which applies dynamic programming to find an 
optimal object trajectory using structural evidence and 
smoothness of motion constraints. However, under this 
formulation it is difficult to apply parametric motion 
constraints (such as pendular limb motion). 

To reduce the computational requirements of a model-
based approach, we employ a model hierarchy composed 
of shape and motion components. 

A velocity filtering algorithm is employed to determine 
the bulk motion of the person independently of shape 
parameters. Using this motion information we form a 
global temporal accumulation describing the person’s 
average shape over the gait sequence. This accumulation 
is used to robustly estimate the size and shape of the 
person’s body segments, using ellipses for the head and 
torso and two pairs of lines for each leg, applying 
anatomical constraints to reduce matching errors. Using 
this initialisation we can estimate the dominant gait 
frequency via a measurement of edge strength about the 
lower leg region over time. Leg motion is estimated by 
fitting prototype gait curves collected from a clinical gait 
study, stretched or compressed to fit the subject’s gait 
frequency and hip rotational amplitude. 

Our approach currently assumes a single subject 
moving at a constant speed, fronto-parallel against a 
cluttered background. However, this approach could be 
generalised to an arbitrary viewpoint. 

We show that this methodology provides a good initial 
model fit suitable for further adaptation, and is capable of 
performance in noisy real-world conditions similar to that 
in controlled laboratory conditions. 
 
2. Gait Signature Extraction 
 
2.1. Bulk Motion Estimation 

We may consider the motion of a person in normal gait 
to be composed of many separate motion components, 
forming a hierarchy according to the total pixel 
displacement they are responsible for. At the top of this 
hierarchy is the person’s velocity in the horizontal plane, 
as a person will move with approximately constant 
velocity during normal gait (changes in velocity may also 
distort their gait signature, further justifying this 
assumption). The second level of the hierarchy is 
articulated motion; we may consider a third level to be 
object deformations (for example due to clothing or 

camera distortion), but this level of detail is considered 
unnecessary for our current purposes. 

Image data is pre-processed (Figure 1a) using a 
Gaussian averaging filter for noise suppression, followed 
by Sobel edge detection and background subtraction (the 
background is computed by a temporal median of 
neighbouring frames). This removes all static objects, 
leaving only edges belonging to moving objects. The 
extraction process does not require binary edge data, 
which means that error-prone thresholding can be 
avoided. 

Using a velocity filtering algorithm it is possible to 
determine object motion independently of shape. This 
algorithm effectively performs the same global temporal 
accumulation as the velocity Hough transform [Nash97], 
but without shape specificity: 
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where Av is the accumulation for velocity v (in pixels per 
frame), In is the image intensity function at frame n, i and 
j are coordinate indices and N is the number of frames in 
the gait sequence. 

This algorithm sorts objects in the scene according to 
their velocity and starting position, producing an 
accumulation for each possible object velocity. Each 
object’s contribution to an accumulation is dependent on 
its edge strength, the number of frames it is in view of the 
camera and how close its velocity is to the accumulation 
velocity. This global averaging process means that objects 
in each accumulation are relatively unaffected by other 
objects, greatly reducing the problems associated with 
objects merging and splitting. At the correct accumulation 
velocity for an object, edges from each frame will 
accumulate to a single area, producing an average shape 
outline (Figure 1b). 

 
(a) Section of pre-processed 

image data 

 
(b) Global temporal 

accumulation 
Figure 1: Motion estimation by temporal accumulation 

 
Each moving object in the scene appears as a peak in a 

plot of maximal accumulation intensity against velocity. 
Assuming that the person is the most significant moving 
object in the scene, their velocity can be inferred by 



selecting the highest peak in this plot (this assumption 
holds true for most current gait databases). If there are 
other more significant objects within the scene moving at 
a similar velocity, we must apply some knowledge of the 
person’s shape to distinguish them from the other objects. 

Noting that Equation 1 simply shifts and accumulates 
each frame, we can improve computational efficiency by 
first run-length encoding the input data. This 
representation is shift-invariant, and as runs of zero 
magnitude edge strength can simply be discarded, this 
reduces the order of the algorithm to O(V⋅E⋅N), where V is 
the number of possible velocities, E is the mean number 
of edge points in each frame and N is the number of 
frames in the gait sequence. Further performance 
improvement can be accrued by downsampling input 
frames and applying a coarse-to-fine velocity search 
strategy. 
 
2.2. Shape Estimation 

The temporal accumulation computed during the bulk 
motion estimation stage forms an average global view of 
the person’s shape. Parameters that do not change over 
the course of the gait cycle can therefore be determined 
from the temporal accumulation; as it is robust with 
respect to noise and occlusion, static parameters can be 
estimated with confidence. 

The size and proportions of the person are estimated in 
a hierarchical fashion using anatomical constraints, 
derived from data published in [Winter90]. A region-
growing algorithm is first applied to find all edges 
belonging to the person. This algorithm is initialised at the 
peak point in the accumulation, and an aspect-ratio 
constrained rectangular region is expanded about the point 
until all significant edges have been encompassed (Figure 
2a). 
 

 
(a) Region 
expansion 

 
(b) Coarse 

segmentation 
(c) Final shape 

estimate 
Figure 2: Shape extraction hierarchy 

 
Using this initialisation the approximate height of the 

person is estimated, using a fixed body segmentation 
based on mean anatomical proportions (Figure 2b). The 
final shape model (Figure 2c) consists of two ellipses for 
the head and torso, two rectangles for the feet and two 
pairs of lines for each leg. The parameters describing the 

head and torso are determined by template matching 
within the locality of the initial segmentation, constrained 
by mean anatomical proportions. The leg and foot shape 
parameters are computed as a fixed proportion of the 
subject’s height and torso width, again based on mean 
anatomical data. 

Note that although all shape dynamics are lost in the 
accumulation process, it is still possible to estimate the 
amplitude of hip rotation, which may be used to aid 
articulated motion estimation. 
 
2.3. Articulated Motion Estimation 

The motion of the leg during normal gait is periodic, 
and may be approximately modelled by a single sinusoid 
[Cunado03]. Applying this assumption, we can estimate a 
person’s gait cycle frequency by measuring edge strength 
within the outer region of their legs, throughout the gait 
sequence (Figure 3). 

 

  
Figure 3: Gait cycle frequency estimation using within-

region edge strength measurements 
 

These measurements form a signal with approximately 
sinusoidal shape, distorted and contaminated by noise due 
to varying illumination, occlusion and motion estimation 
errors. Figure 4a depicts this signal for an example 
outdoor sequence: 
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(a) Measured signal 
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(b) Normalised data and 
sinusoidal fit 

Figure 4: Gait cycle frequency estimation 
 
Signal distortions are corrected by using low-order 

polynomials to model variation in the mean level of the 
sinusoid (numerator of Equation 2), and local variations in 
sinusoid magnitude (denominator of Equation 2): 
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This comparison suggests that the mean rotation 
models for the hip and knee match well to a typical 
subject. Ankle rotation is not such a good match, as the 
subjects in the clinical study were barefoot, as opposed to 
a typical subject who will be wearing shoes. However, the 
mean ankle rotation model still provides a better basis 
than a simple sinusoidal model would. The motion of the 
pelvis is not modelled at this point; the positions of the 
hip joints are assumed to coincide, remaining at the same 
level throughout the gait sequence. 

where Sn is the normalised signal, S is the original signal 
and p(x) denotes the best 2nd-order polynomial fit to signal 
x, computed by least-squares regression. 

Frequency estimation is performed by fitting a fixed-
amplitude sinusoid to the data, selecting the frequency 
and phase that minimises squared error (Figure 4b). 

This frequency information can be applied directly 
using sinusoidal joint rotation models [Cunado03, 
Yam02]. A single sinusoid is adequate to approximately 
model the rotation of the hip and knee joints: 

( ) hhhh wtAt ψϕθ ++= sin)(   (3) 

The discrete Fourier transform (DFT) of each model is 
computed, creating continuous representations of the 
shape of the models. To match the subject’s gait, the DFT 
models are scaled to match the subject’s estimated gait 
cycle frequency and hip amplitude. Cycle phase is 
estimated by temporally matching leg templates to edge 
strength over the whole sequence, selecting the phase that 
maximises template correlation. Matching globally in this 
fashion increases resistance to noise, and can be 
performed quickly when only one search parameter is 
required. 

( ) kkhkk wtAt ψϕϕθ +++= sin)(   (4) 
where θh(t) and θk(t) are the respective hip and knee joint 
rotations (measured relative to the vertical axis) at time t, 
Ah and Ak are the joint rotational amplitudes, w is the gait 
cycle frequency (in radians per frame), φh is the starting 
hip joint phase, φk is a constant phase offset, ψh and ψk are 
constant amplitude offsets. Finally, the vertical oscillation of the subject’s upper 

body is modelled by a single sinusoid with parameters 
proportional to the subject’s height and gait motion: 

However, accuracy can be improved by more closely 
modelling human gait. Clinical gait studies have 
quantitatively measured the pattern of movement 
produced as people walk, by attaching markers to each 
joint. Mean gait patterns from [Winter91] were used to 
produce prototypical rotation models for the hip, knee and 
ankle joints. Figure 5 shows these models, together with 
joint angles manually extracted from a sequence in the 
Southampton HiD database [Shutler02]. Note that by 
clinical convention rotations are measured in degrees of 
motion, as opposed to rotation relative to the vertical axis. 

( ) yhy wtAtY ψπϕ +++= 82sin)(  (5) 

where Y(t) is the y-coordinate of the torso at time t, Ay is 
the amplitude of oscillation, w is the gait cycle frequency, 
φh is the starting hip joint phase and ψy is the centre of 
oscillation. 

The joint positions extracted by this process only 
approximate the true joint positions (the estimation 
process effectively assumes average gait motion, or no 
individuality). However, these positions form a strong 
basis for further model adaptation, which would make 
recognition possible. 
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(a) Hip rotation 

0 10 20 30 40 50 60 70 80 90 100
-10

0

10

20

30

40

50

60

70

80

Percentage of gait cycle

D
eg

re
es

 o
f m

ot
io

n

Mean (Winter)
1 SD (Winter)
Manually labelled

(b) Knee rotation 
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   (c) Ankle Rotation 

 
3. Results 
 

The performance of the gait extraction process was 
evaluated on sequences of two subjects from the 
Southampton HiD database [Shutler02]. Each subject was 
filmed from a fronto-parallel viewpoint, in controlled 
laboratory conditions and in noisy outdoor conditions, 
allowing the noise-resistance to be tested in isolation from 
other variables. The database is encoded in Digital Video 
(DV) format at a resolution of 720x576 pixels, recorded at 
a rate of 25 frames per second. Each sequence typically 
consists of 80-100 frames, or around 3 full gait cycles. 

The extraction process is fast, with approximately 75% 
of the total processing time taken up by pre-processing. A 
2.4GHz Pentium 4-based PC was used for all testing, 
requiring approximately 30 seconds processing time for 
each sequence. Figures 6 and 7 give some examples of the 
extraction process, showing good overall performance, 
especially on the outdoor data. Note that there is some 

Figure 5: Mean joint rotation patterns 
 



error evident in shape estimation, and also some error 
caused by the assumption that the left and right hip joints 
coincide. 
 

 
(a) Indoor (frame 68) 

 
(b) Indoor (frame 77) 

 
(c) Outdoor (frame 39) 

 
(d) Outdoor (frame 47) 

Figure 6: Sample extraction results for subject 013 
 

 
(a) Indoor (frame 65) 

 
(b) Indoor (frame 72) 

 
(c) Outdoor (frame 49) 

 
(d) Outdoor (frame 56) 

Figure 7: Sample extraction results for subject 014 
 

The set-up of the indoor data allows an approximation 
to ground truth to be made by chroma-key extraction of 
the subject’s silhouette [Shutler02]. From this silhouette 
data the frame numbers at which the subject’s heel strikes 
the floor are recorded, so that a comparison can be made 
with the automatically extracted result. The heel-strike 
frames were estimated from the automatic extraction by 
finding the knee rotation minima over the sequence. 

Although this does not yield an exact measure of the 
extraction performance, this evaluation can be performed 
automatically on a large number of sequences. Table 1 

shows the results of this evaluation for 56 indoor test 
sequences split equally over four subjects: 

 
Table 1: Extraction performance under controlled 

conditions – RMS error in predicted heel-strike frames 
 

Subject Mean Standard Deviation 
013 (M) 0.933 0.236 
014 (M) 0.954 0.458 
033 (F) 0.741 0.209 
037 (F) 0.979 0.363 

 
The mean error in estimating the point of heel-strikes 

is around ±1 frame for both subjects, comparable to 
typical human labelling error. This is an encouraging 
result, demonstrating that we can successfully track the 
motion of the subject’s legs in relatively clean indoor 
conditions. To demonstrate robustness, the extraction 
process was repeated on outdoor data, totalling 64 
sequences of the same four subjects. As no ground truth 
data is available for the outdoor dataset, extraction 
performance is estimated by comparing the gait cycle 
period extracted from the outdoor data to that of the 
indoor data (Figures 8 and 9): 
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Figure 8: Period extraction for indoor data 
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Figure 9: Period extraction for outdoor data 

 
The extracted period is generally consistent between 

different gait sequences for each subject. Some of the 
subjects exhibit a reduced gait period on the outdoor 
dataset, indicating increased cadence. This may be due to 
the walking surface, or possibly because the subjects do 



not have a limited walking track in the outdoor dataset. 
However, even with only one gait parameter most of the 
subjects can be distinguished from one another. 

For a more detailed view of performance, one indoor 
and one outdoor sequence was manually labelled for each 
test subject. The positions of the hip, knee and ankle 
joints were recorded, for comparison against the 
automatically extracted joint positions. The error is 
measured by a Euclidean distance metric, normalised to a 
percentage of the height of the subject. This error is given 
for a mean gait cycle, averaged over the sequence. 

Figure 10 shows the errors measured at each joint 
position for subject 013 from the Southampton HiD 
database. Note that some error is expected of the human 
labelling, estimated at around 1% of subject height (the 
height of a subject is typically around 300 pixels on the 
indoor data or 200 pixels on the outdoor data). 

This comparison shows that the additional increase in 
error when moving from controlled laboratory conditions 
to outdoor conditions is relatively small. It also shows that 
the additional complexity imposed by the use of mean gait 
rotation models is justified, resulting in a significant 
reduction in error over the sinusoidal models (Equations 3 
and 4). The motion produced by these models is 
noticeably more natural in appearance to the human 
observer, suggesting that further improvement in 
performance is possible. 
 
4. Conclusions 
 

We have presented a new model-based gait enrolment 
technique to allow the use of gait analysis on real-world 
imagery. A model hierarchy of shape and motion keep the 
computational requirements of this approach to a 
minimum, while retaining the well-known robustness of a 
model-based approach. 

Anatomical data and mean gait data is applied to 
produce shape and motion models adhering to known 
human proportions and gait dynamics, minimising the 
modelling error in this approach. 

We have shown that we can reliably locate joint 
positions for the purposes of gait analysis in real-world 
imagery, with only a small loss in accuracy compared to 
controlled laboratory conditions. Future work will extend 
this approach by adapting the mean gait models to match 
each individual, so that recognition may be performed on 
the gait parameterisation thus obtained. 
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(a) Hip position (laboratory conditions) 
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(b) Hip position (outdoor conditions) 
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(c) Knee position (laboratory conditions) 
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(d) Knee position (outdoor conditions) 
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(e) Ankle position (laboratory conditions) 
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(f) Ankle position (outdoor conditions) 

Figure 10: Error in automatically extracted joint positions from manually labelled positions (subject 013). 
Solid line – mean gait models Dotted line – sinusoid model 
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Abstract 
 

We elaborate the application of elastic deformation 
theory to fingerprint recognition. We propose the 
analytic model of elastic fingerprint deformations and 
its application to real fingerprint images. Also we 
carry out the statistical analysis of deformations of 
fingerprint images appearing in real applications.  
 
1. Introduction 
 

At the moment increasing power of computers 
facilitates the replacement of laborious manual 
fingerprint classification and matching methods by 
automatic fingerprint identification systems (AFIS) and 
automatic fingerprint authentication systems (AFAS). 

AFIS [1],[2],[3] are most widely used (mainly for 
criminal search and related tasks) and usually have a 
fingerprint as an input data and the output is the list of 
identities of persons that could have the fingerprint 
given and a score for each identity indicating the 
similarity between two fingerprints. Such systems 
compare an input image with multiple of records in 
database. 

AFAS [4], also referred as verification systems, are 
used in biometrics (detection of human identity by 
biological features) for access control and other civil 
applications. The input data in such systems are an 
identity and a fingerprint image, the output is an 
answer of Yes or No indicating whether the input 
image belongs to the person whose identity is 
provided. 

In these applications there are four possible 
outcomes: 

(1) an authorized person is accepted, 
(2) an authorized person is rejected, 
(3) an unauthorized person is accepted, 
(4) an unauthorized person is rejected. 
The rates of cases 2 and 4, which are called False 

Rejection Rate (FRR or FNMR, what means false non-

match rate) and False Acceptance Rate (FAR or FMR, 
false match rate), are standardized metrics of 
identification accuracy of biometric systems [5]. The 
theoretical limits of FAR for different biometrics could 
be found in [6],[7]. 

Recently there appeared a scope of problems 
concerning the submission of a certain ID document 
(passport, driver license etc.) to one and only one 
particular person, thus a number of so called “civil ID” 
systems were created [8],[9],[10]. Usually such 
systems are required to have very little FAR.  

There are a number of factors sufficiently raising 
the level of FAR. They can be divided into two major 
parts: poor quality of fingerprint images and human 
factor (improper applications). Quality of fingerprints 
can be sufficiently improved by different kind of 
filtering procedures. Improper applications often lead 
to full lost of information or to appearance of different 
distortions and deformations that have nothing in 
common with random noises and cannot be filtered 
(example of moderately deformed fingerprint images is 
presented in figures 1 and 2). In spite of existence of 
developed theory of elastic deformations, it is rarely 
applied to the real-time systems due to computational 
complexity. 

There are different approaches to registration of 
elastic deformations. The way suggested by A.M. 
Bazen and S.H. Gerez [11] is based on the thin-plate 
spline (TPS) models, firstly applied to biological 
objects by F.L. Bookstein [12]. This method requires 
determining correspondent points in two compared 
images (matching point) and it suffers from the lack of 
precision in case of few matching points. Modifications 
of TPS (approximate thin-plate splines and radial based 
function splines) were introduced by M. Fornefett, K. 
Rohr and H. Stiehl [13],[14]. They consider 
deformations of biological tissues. But this way also 
requires many matching points (more then 100) what is 
virtually impossible in fingerprint applications, because 
number of minutiae in fingerprint image rarely exceeds 



50. This fact makes TPS and its variants hardly 
applicable to fingerprint deformations registration. 

 
Figure 1. Pair of moderately deformed images 

 

 
Figure 2. a – minutiae of the first image, b – 
minutiae of the second image, c – comparison of two 
minutiae configuration after rigid transformation, 
bars – points that are closer then 2 pixels, dark 
circles – positions of minutiae in the first image, 
blank circles – in the second image 
 

The absolutely different approach was suggested by 
R. Cappelli, D. Maio and D. Maltoni [15]. They 
developed analytical model of fingerprint deformation. 
But it has sufficient shortcomings, for example, 
irreversibility even of small deformations. 

Our article is mainly devoted to the registration of 
deformations. We propose an algorithm of restoration 
of deformations knowing correspondent points in two 
images. As far as fingerprints have regular structure 
consisting of ridges and valleys, often it is virtually 
impossible to find more then 50 matching points. 
Apparently, only minutiae can be considered as 
matching points, all other ways of finding 
correspondences used in pattern recognition (points of 
maximal and minimal curvature etc.) are unstable in 
respect to elastic deformations. In examples minutiae 
were matched manually, during statistical analysis of 
deformation, algorithm of automatic finding of 
correspondences is applied. 
 

2. Model of Elastic Deformation 
 

In general the dynamics of a small elastic 
deformation is considered to satisfy the Navier linear 
elastic PDE: 

),,(),,,( zyxftzyxLu −= ,  (1) 
where L is the following differential operator: 
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u is the vector of displacement; f is the external force. 
Coefficients λ  and µ  are the Lame’s elasticity 
constants. These parameters can be interpreted in the 
terms of Young’s modulus E and Poisson’s ratio ν  
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In fact a fingerprint image is captured when finger 
is immobile, it means that the partial derivative 
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t
u =

∂
∂ρ . Such solutions are called steady state and 

they do not depend on time t, i.e. 
),,(),,,( zyxutzyxu = . In this case the Navier 

PDE has the following form: 

0fuu2 =+∇++∇ div)( µλµ .  (5) 
Unlike plastic materials solution of equation (1) for 

elastic material depends only on current force 
distribution and does not depend on previous 
configurations (“history”). 

Investigating properties of fingerprint deformations, 
it is possible to neglect 3D structure of finger and to 
consider 2D model for area of contact of finger and 
scanner surface. In fact this area carries the main 
information available for further processing. 

Obviously in the 2D model all displacements of 
tissue are located in the plane of contact. Such 
restriction is called plain strain. The different sort of 
2D elastic problem is plane stress, when the material is 
plane and pressure is orthogonal to this plane. The 
plane stress restrictions are normal for studying of 
dynamics of metal plates and exact solution can be 
found using the TPS. So the TPS is the solution of 
problem that is absolutely different from registration of 
elastic deformation of soft tissues. It is one of the 
possible reasons why the TPS are hardly applicable to 
studying of fingerprint deformations. 

As was mentioned above, in case of elastic material, 
deformation depends only on current configuration, so 
a fingerprint deformation can be fully described by the 
function of displacement: 



2RXf →: .    (6) 
Let us define the vector )),(),,(( yxvyxu of 

displacement at the point ),( yx : 
),(),(),( yxyxfvu −= .   (7) 

The strain tensor ε~  is defined by the next formula: 
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The linear approximation of (8) is the following 
tensor: 
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Let us assume that the material reveals linear 
dependence between pressure and strain (what is 
almost true for small deformations of biological 
tissues). In that case the pressure tensor σ  can be 
calculated using the following formula: 
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Vector of involved forces is 
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The overall energy 0E  and energy dE  of 
deformation are determined by the following formula: 
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In case of linear isotropic material the energy of 
deformation is homogeneous quadratic form that 
depends only on the strain tensor elements. Also it is 
natural to assume that the form is invariant with respect 
to orthogonal transformation. 
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Apparently, the coefficients must satisfy the 
following conditions: 
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The two independent coefficients 1c  and 4c  are 
determined by the internal properties of material 
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As is known [16] solution of Navier elastic PDE (5) 
minimizes the energy (12). There is no idea how 
determine operating forces in the automatic verification 
systems. One of the approaches is minimizing the 
function dE  of deformation energy. Without any 

additional constrains the function dE  is minimized by 
zero function of displacement. In our case additional 
restrictions are correspondent points of two images: 

iiii qpvpup =+ ))(),(( , 

where { }ip  is the set of points in the first image and 

{ }iq  is the correspondent set in the second image. 
Let us consider the following functional that reflects 

deformation: 
),(),(),( vuSvuEvuW d λ+= , (17) 

where dE  is deformation energy and  
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reflects the measure of approximation. Coefficient λ  
shows the importance of the approximation 
component. 

The minimum of W can be found numerically using 
finite elements method (FEM). The displacement is 
defined on rectangular lattice and interpolated to the 
entire image with for example bilinear splines. 
 
3. Implementation 
 

The elastic model of fingerprint deformations is 
applied to the pair of deformed fingerprints (with 
manual positioning of correspondent minutiae) and 
three sets of fingerprints: 

1. Subset of the BioLink Database (100 sets of 3 
images of each fingerprint) 

2. FVC2002 DB1 (100 sets of 8 images of each 
fingerprint) [17],[18] 

3. Set of strongly deformed fingerprints (123 
images of 10 fingerprints) 

The correspondent points of images in all three 
databases are found using BioLink algorithm [19]. 

Young’s modulus and Poisson’s ratio for human 
skin have some variations. Young’s (or E-) modulus 
depends on age and usually changes from 6 to 11 



kg/mm2. As is clear from (9), (10) and (13) E does 
change the solution of equation, it changes only 
absolute value of energy. In fact, the value of Young’s 
modulus can be included into coefficient λ . Poisson’s 
ratio ν  for human skin is considered to vary 
approximately around 0,33. For the purposes of 
numerical calculation the mean values are taken, 
E=9[kg/mm2], ν =0,33. The input images are 
processed to the 300x400 size (500dpi) and are divided 
into 120 elements of size 10x10. 

 
Figure 3. Direct overlapping of two images within 
the region of minutiae correspondence: a – without 
registration of deformation; b – with registration of 
deformation; c – filtered without registration of 
deformation; d – filtered with registration of 
deformation. 
 

The binary correlation can be used as measure of 
identity of two deformed images. In the figure 3 picture 
a shows the direct overlapping of images after rigid 
transformation, picture b – after registration of elastic 
deformation. The results show that binary correlation 
of two images sufficiently increases inside the convex 
hull of correspondent points. At the same time after 
registration of deformation correspondent minutiae of 
two images become virtually congruent. 

 
Figure 4. BioLink Database. a – distributions of 
energy of deformation, b – distributions of overall 
energy, I – entire database, II – strongly deformed 
images. 

 
During automatic analysis of large sets of deformed 

images the binary correlation is less suitable for 
performance evaluation then in case of the manual 
demonstration, because it suffers from the following 
factors: 

1. Different quality of images caused by 
different conditions of application 
(temperature, humidity etc.). 

2. Different input devices. 
3. Minutiae extraction precision. If 

correspondent points are determined with 2-3 
pixels precision, the algorithms that compare 
minutiae structure work well. At the same 
time, binary correlation of entire image can 
sufficiently decrease because of improper 
estimation of both the rigid transformation and 
the deformation. 

As far as the main task of the current work is 
evaluation of the measure of deformations appearing in 
the real applications, integral characteristics (overall 
energy and deformation energy) are calculated. These 
values are calculated for genuine matches of Database1 
(BioLink’s one) and Database3 (set of strongly 
deformed images). The distributions of energies are 
represented in the figure 4. As is clear from charts in 
real applications only small share (about 4 percent) of 
fingerprints have real deformation. Ignoring these 
applications it is possible to use algorithms with 
extremely low FAR. 



 
Figure 5. Number of correspondent minutiae, a –
genuine matches, b – impostor matches. 

 

 
Figure 6. BioLink Database. a – distribution of 
deformation energy, b – distribution of overall 
energy, I – genuine matches, II – impostor matches. 
 

At the same time formal evaluation of deformation 
can be used as the measure of similarity of minutiae 
configurations. In genuine matches it is more or less 
clear how correspondent points can be found. The 
same techniques are applicable to impostor matches as 
well. In the situation when the storing of entire image 
(or even parts) in database is prohibited what is natural 
for AFAS, analysis of minutiae configurations may be 
used. 

 
Figure 7. FVC2002 DB1. a – distribution of 
deformation energy, b – distribution of overall 
energy, I – genuine matches, II – impostor matches. 
 

In this case the template might store the coordinates 
of points, number of characteristics of points (such as 
direction angle), distances between some points 
(measured for examples in ridges). If quality of input 
fingerprints is low due to hardware imperfectness 
many of parameters mentioned above are unstable. 
Even some points cannot be detected. 

Deformation energy can be used as one of the 
measure of correspondence of minutiae structures. 
Formally, values of overall and deformation energies 
can be calculated even for impostor application if we 
have two sets of points which seem to be 
correspondent. Besides energies the important output is 
the number of correspondent minutiae (figure 5). 
Distributions of energies are represented in figures 6 
(BioLink Database) and 7 (FVC2002 DB1). From FVC 
Database some genuine applications (about 15%) were 
removed because of small area of intersection (less 
then 4 minutiae in intersection). If intersection of two 
images is small there is no sense in studying 
deformations because small parts of images usually 
have relatively small deformations. 

As is clear from figures, overall energy is much less 
informative parameter then pure energy of 
deformation. In fact the value of deformation energy of 
minutiae configurations can be used as auxiliary score 
parameter in matching algorithms. Sole energy of 
deformation provides Equal Error Rate (EER) equal 
approximately to 1% on BioLink Database (more 



precise EER can be confidently defined because of 
small number of tests). On FVC2002 DB1 EER is 
about 1,5%. Removing of 15% of genuine matches can 
only lower EER because these matches certainly have 
deformation energy much less then threshold. The 
values of energy for those matches were not calculated 
because it demands sufficient modification of 
procedure to the case of small number of correspondent 
points.  
 
4. Conclusion 
 

The conducted testing of the model of elastic 
deformations shows good correspondence to the real 
fingerprint deformations.  

In natural input conditions only relatively small 
share of fingerprints are deformed (4%, Figure 4). In 
this case deformations do not lower system 
performance sufficiently.  It means that bounds of 
possible deformations are not unlimited and can be 
calculated precisely. And, therefore, the complete 
deformational invariance is not a necessary condition 
for the most of biometric applications. 

The energy of deformation can be used as auxiliary 
score in matching algorithms. It might bring quite good 
performance improvement. On the other hand, the 
proposed model and the estimation for  p.d.f. of 
deformation energy allow to predict the performance of 
any matching algorithm. 
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Abstract 
 

Fingerprint-based verification systems are used 
commonly in the field of biometrics. Especially, a small-
sized sensor makes possible use in embedded systems, but 
it does not provide sufficient information for high 
accuracy user verification. In this paper, to obtain a wide 
region of fingerprint, the new fingerprint enrolling 
scheme which includes rolling method as well as sliding 
on a small-sized sensor is proposed and a block matching 
algorithm for estimating an alignment parameter is also 
proposed. After aligning the two images, the next image is 
warped in order to compensate for deformation using a 
two-pass mesh warping algorithm. Our experiments show 
that the number of minutiae is increased against methods 
to integrate multiple impressions. 

Keywords – fingerprint fusion, rolling, block-matching, 
warping, deformation, coherence 
 
1. Introduction 
 

Fingerprint-based verification systems are provided 
widely since they are convenient to use and relatively 
superior to other biometrics systems in terms of price and 
performance. Especially, a small-sized sensor(e.g., solid-
state sensors) has the advantage that it can be used in 
many application fields(e.g., laptops, cellular phones). 
However, a limited amount of information about the 
fingerprint is available due to the small physical size of 
the sensing area (Fig.1). Therefore the relatively amount 
of small overlap between the template and query 
impressions results in degraded performance, like a 
higher rate of false rejects and/or false accepts. To 
overcome this problem, some researchers proposed 
algorithms to integrate multiple impressions from the 
same finger, but this method has little effect on 
impressions sensed from the similar portion of a specific 
finger. Furthermore, it is very hard to integrate 
impressions sensed from very different portions of a 
specific finger. 

To overcome the problem, we use a method in which 
the user rolls his or her finger on the sensing area (the 
axis of rolling is not moved) to obtain images sensed form 
which subsequently diffused portion of the fingerprint 

used for enrollment (Fig.2). That is to say, the user rolls 
his or her finger from one edge to the other edge, 
simultaneously. A key factor is that this sliding must not 
exceed the boundaries of a small-sized sensor area. We 
can obtain a sequence of partial fingerprint images using 
this method and attain one template image from fusing 
them. 
 

       
 
 (a)                                     (b) 

Figure 1. Fingerprint images obtained from sensors that 
have large sensing area and small sensing area: (a) large 
fingerprint image.  (b) small fingerprint images. 
 

This enrollment method using rolling included with 
sliding has the following advantages:  

(a) It can obtain a wide area of fingerprint more stably 
than existing general fusing method from multiple 
impressions.  

(b) Two temporally adjacent images are highly 
correlated which makes easy to align the images using 
their correlation ratio. 

The conventional fusion methods used currently in our 
field of study are summarized as follows: Jain et al. 
proposed an alignment algorithm using ICP to construct a 
composite fingerprint template while using multiple 
impressions[1]. Ramsor et al. proposed an alignment 
algorithm using the RANSAC method and a combination 
method of the minutiae information[2]. Qun et al. 
proposed an alignment algorithm using a Clique Graph 
and an information fusion method, utilizing a clustering 
algorithm[3]. Lee et al. proposed an alignment algorithm 
using a Distance Map derived form ridge information [4]. 



 
Figure 2. The finger rolls on the sensing area without 
moving the rolling axis. 
 

Above fusion methods are entirely based on minutiae 
when aligning two images. Despite of large overlapped 
images, however, the minutiae based-alignment algorithm 
may compromises misaligning due to the insufficient 
corresponding minutiae pairs. Local deformation (e.g., by 
the movement) will also result in erroneous error without 
compensating for deformation. In this paper, sequential 
fingerprints enrolled with rolling and sliding are aligned 
using a block matching scheme instead of minutiae-based 
matching. Local deformation is compensated and then 
minutiae are extracted. In this case, the misalignment by 
insufficient minutiae does not occur. Furthermore, it is 
more time efficient method since it does not extract 
feature from each impression. 
 

Our paper is organized as follows. In Section 2, we 
describe the alignment procedure using block matching 
scheme. In Section 3, we describe the deformation 
compensation procedure using image warping. In Section 
4, we describe the image fusion process. The 
experimental results are shown in Section 5. Finally, 
Section 6 contains our conclusions. 
 
2. Alignment 
 

A fingerprint being translated and rotated changes its 
appearance while sequential images are captured. 
Therefore the process that aligns coordinate systems of 
impressions is absolutely necessary in order to integrate 
the sequential fingerprint images used for enrollment.  

When aligning a sequence of images at the enrollment 
step, we can utilize both minutiae and intensity image 
while we can only use minutiae at matching step. Using 
additional intensity information of fingerprints can 
increase aligning accuracy. An exact alignment is very 
important since to fuse sequential fingerprints is a 
significant part of procedure that template for matching is 
made and an inexact template can cause a higher false 
reject rate. In this paper, sequential images of a 
fingerprint are aligned at the raw data level by using a 
block matching algorithm. 
 
2.1. Block Matching 
 

Each pair of adjacent images in sequential fingerprints 
has a high mutual similarity because of a short difference 

in time, and this similarity enables us to utilize the 
correlation between them at the alignment step. 

To obtain a correlation between two fingerprints based 
on the entire image is quite a time-consuming 
computation process. For this reason, it is preferable to 
divide the image into blocks and prosecute block 
matching to estimate the most adequate alignment 
parameters. These blocks are sensitive to local 
deformation, but this sensitivity of block can be applied 
to compensate for the local deformation of fingerprints. 
 

 
Figure 3. Two-dimensional illustration of the block 
matching scheme. 
 

When two images P and Q are aligned, respectively, P 
is divided into blocks. Each block of P matches image Q 
in pixel-wised block. That is, each block is translated and 
rotated into several positions within the searching 
window, and then compared to the corresponding block 
of Q (Fig. 3). Normalized cross-correlation can be used as 
a similarity measure. At each position, an intensity 
correlation coefficient score, CC, between the block and 
the corresponding block is computed as [5]: 
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As mentioned earlier, each pair of adjacent images has 
only small translation and, especially, rotation, which 
make it possible to apply a full search within the available 
searching area. In order to determine coefficients of a 
alignment transform Q from P, each block computes CC 
scores for all available transformations. If CC score is 
higher than a certain threshold, we can consider such 
parameters as the candidate coefficient of a true transform. 

Each block has locally small deformation thanks to the 
small amounts of translation and rotation. In this case, it 
makes sense to assume that the all candidates are 
distributed in the given translation domain and this 
distribution is centered at a global transform. 
Consequently, the pdf(probability density function) of a 
transform parameter can be gained using the Parzen 
density estimation. It is peaked at true parameters of an 
alignment transform. 
 



2.2. Parzen Windows 
 

The formula used to estimate pdf is as following [6]:  
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where, n is the number of samples and ( )ϕ u  is the 
kernel function of the Parzen window. The symbol hn is 
the parameter concerning window width. Eq.(2) can be 
modified to make it suitable for use in this paper. It 
follows that: 
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and candidates of the ith block, and n is number of block 
and x is a transform parameter. Subsequently, xi,k is a 
transform vector of the kth candidate at the ith block. It is 
available for weight correlation of the window function 
since a higher correlation ratio means a higher probability 
when that candidate is equal to the global transform. It 
follows that: 
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where, CCi,k is the correlation value of the kth candidate at 
the ith block. The symbol N and hN can be negligible 
because it has the same value against all x. The global 
transform consists of the parameter which shows 
maximum probability. 
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where, xglobal is the global alignment parameter. 
 

 
Figure 4. PDF of transform parameter. 
 
 
 

3. Compensation for local deformation 
 

Since the alignment transform is not a simple linear 
transform, one global transform does not represent the 
local deformation. Therefore, to compensate for local 
deformation is followed after the global alignment is 
completed.  
 
3.1. Regularization of block transforms 
 

It is possible to regard a local deformation as the 
difference between the global transform and a block 
transform. Therefore it is necessary to identify individual 
block transforms. However, for each block, the maximum 
similarity score does not necessarily correspond to the 
best transform, partly because of noise and the 
deformation in each block. A regularization step is 
necessary and this is achieved by taking into account the 
influence of the transform of the neighbor blocks. The 
Parzen density estimation can be used for a regularization 
method. Our paper also uses a hierarchical approach to 
identify the local block transform (Fig.5). 
 

 
Figure 5. Hierarchical structure in order to identify the 
local block transform. 
 

First of all, all blocks are divided four partitions. And 
then, transform parameter ( )

,
n

i jx  of each partition can be 
estimated using Parzen window with candidates of blocks 
included or adjoined the partition. This transform should 
be close to the transform ( 1)

/ 2 , / 2
n
i j
−

      
x at higher level. 

Hence, the parameter having maximum probability in 
near at the partition's transform at higher level regars as 
the partition's transform at current level. Such process 
repeats until the number of block included partition is less 
than or equal to four. Each block transform is finally 
estimated with its candidates and eight neighbor blocks' 
candidates. 
 



 
3.2. Image warping 
 

After block transforms are estimated, local 
deformations are compensated using point-based warping 
technique. Every center points of each block are 
considered as corresponding points when warp image Q’, 
that is, points derived from global transform are utilized 
as destination points while source points are defined as 
translated points by block transforms (Fig.6). 
 

 
Figure 6. Illustration of the warping scheme. 
 

This paper use two-pass mesh warping based on an 
algorithm represented in [7]. This algorithm uses Fant's 
resampling algorithm and cublic spline as the 
interpolation method. 
 
4. Image fusion 
 

After the subsequent fingerprint images are aligned as 
described in section 2 and compensated for as explained 
in section 3, the warped image Q’ is transformed into the 
coordinate system of P by global transform. An intensity 
value at each pixel in the fusion image is computed using 
the weighted sum of corresponding pair. Since coherence 
of ridge orientation can reflect the quality of an individual 
image, it is possible to use of coherence as weights [8]. 
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where IF(x,y), IP(x,y), and IQ’(x,y) is intensity values at 
pixel of fusion image, image P, warped image Q' in (x,y). 
And coherence is compute as : 
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where, Gx  and Gy is x and y element of the gradient 
vector in the Cartesian coordinate. And the symbol W is 
the window size.  

Finally, a single template image is obtained by re-
integrating the fused images. 
 
5. Experimental results 
 

A set of fingerprint images using rolling scheme is 
acquired through solid-state fingerprint sensor 
manufactured by AuthenTec. This sensor is acquired 
about 6.5 images per second. The size of the image is 
192x192 pixels with the resolution of 500 dpi and 72 
rolling sequences are used in experiment. All rolling 
sequences are consisted of 2095 fingerprint images and 
each sequence is consisted of avg. 29.1 fingerprint images. 
This paper uses time-sampled 7 images from each 
sequence since integrating many images make fusion 
image blur. 
 

  
(a)   (b) 

 
(c) 

Figure 7. Sample fused images :  
(a) two images without compensating for deformation  
(b) two images with compensating for deformation 
(c) sequential images 

 
The proposed paper uses image normalization as 

preprocessing before the alignment. In the alignment, the 
16x16 sized blocks is used to find candidates and 
alignment transform is calculated using Gaussian Parzen 
window which is sized 3. The transform is formed one 
parameter vector, and it is insufficient to show relation 
between two sequent images. Therefore, this paper 
estimates block transforms and warp the second image 



using them. In this stage, this paper uses 3-level 
hierarchical regularization method and 2-pass mesh 
warping algorithm. Finally, two images are fused one 
using the coherence which is calculated in the 16x16 
sized windows. A sample fused image is shown in Figure 
7.  

The following table lists a few statistics about the 
fusion image generated using the block matching scheme. 
The number of minutiae per fingerprint increases from 
14.1 for one impression to 32.8 for fused fingerprints. 
 
Table 1. Result of the fusion 
 

 Avg. no. of minutiae

Impression 14.1 

Composite image from a sequence 32.8 

Composite image from 7 impressions 30.0 
 
6. Conclusion 
 

We have described a new enrollment scheme using 
rolling in fingerprint-based verification system and a 
nonminutiae-based fusion method for the sequential 
fingerprint images. Experimental results show that this 
method extract more minutiae than methods to integrate 
the multiple impressions. It means a wider area of finger 
is obtained by rolling than by other methods and the 
amount of overlap between the template and query 
impressions increase.Future work involves studying the 
coarse alignment before the alignment step in order to 
decrease of processing time. The coarse alignment makes 
possible a small search window for block matching. We 
are also attempting to normalize the ridge density at a 
final fused image since rolling scheme makes ridge 
density change because of the friction between a finger 
and a sensor.  
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Abstract 
 

This paper presents the on-line signature verification 
method based on the Discrete Wavelet Transform (DWT) 
and the adaptive signal processing. Time-varying pen-
position signals of the on-line signature are decomposed 
into sub-band signals by using the DWT. Individual 
features are extracted as high frequency signals in sub-
bands. This makes difference between a genuine signature 
and its forgery remarkable. However, there is fluctuation 
in number of strokes even in the genuine signature. In this 
paper, we introduce the Dynamic Programming (DP) 
matching method to suppress the fluctuation. Verification 
is achieved by whether the adaptive weight converges on 
one. However, its convergence characteristics depend on 
the step size parameter of the adaptive algorithm. 
Therefore, the normalized step size parameter by the 
signal power of the input signature is introduced to 
guarantee the convergence. Results of verification show 
that the verification rate of 95% is accomplished even 
though a writer is not permitted to refer to his/her own 
signature and a forgery can trace the genuine signature. 
 
 
1. Introduction 
 

As the information service over internet such as the 
Electronic Commerce and the Electronic Data 
Interchange come to be used widely, the user 
authentication technology becomes quite important. Until 
now, the memory such as password, and the belongings 
including a key and a magnetic card have been used for 
the user authentication. However, they have danger of 
losing and forgetting. Thus, the biometrics has attracted 
attention [1]. 

The biometrics is divided roughly into two types. The 
fingerprint, the iris and the retina are included in static 
biometrics. They achieve high verification rate while they 
require special detective devices. Therefore, the use of 
them is limited to the financial institution or the special 
facilities where secret information is defended. The voice-
print and the signature are of dynamic biometrics. The 
user authentication by the voice-print is effective 
especially on the service with a telephone but it requires 

counter measures to such problems as recorded voice and 
surrounding noise. 

The user authentication by the signature consists of two 
types. The off-line type has been researched as a target of 
the pattern matching, in which the shapes of written 
signature are compared. On the other hand, the on-line 
type classifies the signature by such time-varying signals 
as the pen-position, the pen-pressure, the pen-inclination 
and so on [2-5]. These contain more individual features as 
habits than the off-line type. Especially, the imitation of 
the pen-pressure or the pen-inclination is difficult for 
others while the pen-position can be easily traced if the 
shape of the signature is known. In addition, the 
electronic pen-tablet which is used to digitize the on-line 
parameters is a standard input device of the computer; 
therefore, the on-line type is suitable for the user 
authentication in the service on computer networks. 

In this paper, we authenticate the user by only the pen-
position parameter which is utilized for the hand-written 
input or the pointing even in the Personal Digital 
Assistants (PDA). However, if the signature is traced by a 
forger, the difference between a genuine signature and its 
forgery is not clear in the time-domain signal of the pen-
position parameter. We have proposed to decompose such 
the time-varying signal into sub-band signals by the 
discrete wavelet transform (DWT) [6]. Moreover, we 
proposed to introduce the adaptive signal processing into 
the verification of signatures. In the adaptive signal 
processing, an adaptive weight is updated to reduce an 
error between an input signal and a desired one [7]. If the 
input signal is close to the desired one, the error becomes 
small and then the adaptive weight is sure to converge on 
one. Therefore, when both the signals are of the genuine 
signature, the adaptive weight is expected to converge on 
one. By using the convergence of the adaptive weight, we 
can verify whether an input signature is genuine or 
forged. In addition, even in genuine signatures, there is 
fluctuation in the number of strokes and then it degrades 
the performance of verification; therefore, we introduce 
the robust stroke matching by using the DP matching 
method into the verification. 

This paper is organized as follows. In Sec.2, we explain 
to extract time-varying signals of the on-line signature, 
especially the pen-position parameter and make it clear 



that discriminating between the genuine signature and the 
forgery is difficult in the time-domain signals. In Sec.3, 
we introduce the sub-band decomposition by the DWT 
and show that differences between the genuine signature 
and the forgery become clear in the sub-band signal. In 
Sec.4, we explain the verification method based on the 
adaptive signal processing and the robust stroke matching 
by using the DP matching method. In Sec.5, the 
effectiveness of the proposed system is examined through 
experimental results. Finally, Sec.6 presents conclusions 
and future works. 

Actually, the pen-position parameter consists of 
discrete time-varying signals x*(n’) and y*(n’) of x and y 
components, respectively. n’ (= 0~Nmax) is a sampled time 
index and Nmax shows its maximum value. Let us consider 
variations of the parameter. Even if the same person signs 
twice, quite the same signature parameter is not obtained 
because the signature is dynamic biometrics. Different 
writing time results in different number of data. To 
suppress the influence of the variation, each sampled time 
n’ is normalized by Nmax. 

max

'
N

nn =                                      (1) 
 

where n (=0~1) is a normalized sampled time index, 
which has real number value. 

2. On-line Signature 
 

Next, in order to reduce differences of writing place 
and size of the signature, it is also required to normalize 
the amplitudes of x*(n) and y*(n). As a result, we define 
the normalized pen-position parameters as 

2.1   Extraction of signature parameter 
 
An on-line signature is digitized with a pen-tablet. The 
specification of the pen-tablet used in this paper is 
presented in Table 1.  

      ( ) ( ) ( )( )maxmin
minmax

min ** xnxx
xx
xnxnx x ≤≤⋅

−
−

= α       (2)  
Table 1. Specification of pen-tablet 
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= α        (3) Model WACOM Cintiq C-1500X 
Method Electromagnetic Induction 
Active Area 304.1×228.1 mm 
Resolution 0.05 mm 
Accuracy ±0.5 mm 
Report Rate 185 point/sec 
Reading Height 5 mm 
Pen Pressure 512 levels 

where subscripts max and min indicate maximum and 
minimum values of parameters, respectively. αx and αy 
are scaling factors for expansion of the dynamic range. 
The normalized signal is decomposed into sub-band 
signals by the DWT and then the signal power is 
distributed to each band. For avoiding the under flow in 
calculation at each band, the dynamic range of the 
normalized signal must be spread in advance. These 
factors are set 100 experimentally in this paper. 

 
Figure 1 shows the definition of the on-line parameters. 

In this pen-tablet, parameters of the pen-position and the 
pen-pressure are obtained as discrete time-varying signals. 
Especially, the pen-position parameter is at least provided 
in portable devices such as the PDA for the handwriting 
input and the pointing. In this paper, we identify 
signatures by using only the pen-position parameter. 

 
2.2   Genuine signature and the forgery 
 
The pen-position parameter depends on the shape of the 
signature. Thus, it can be easily imitated if a forger traces 
a genuine signature. Figure 2 shows an example of them. 
Especially, the forgery was obtained by tracing the 
genuine signature. It is impossible to distinguish between 
the genuine signature and the forgery in comparison of 
signature shape. 

Position 

Pen

X component

Y component

O (0,0)

Tablet

Pressure

Position 

Pen

X component

Y component

O (0,0)

Tablet

Pressure  
(a) Genuine signature 

 
(b) Forgery 

Figure 1. On-line signature parameters Figure 2. Examples of Signatures  
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Figure 4. Parallel structure of sub-band 

decomposition by DWT 
 
3.1   DWT Sub-band decomposition  
  In the following, x(n) and y(n) are represented as v(n) 
for convenience. The DWT of the normalized pen-
position component is v(n) defined as 

     (a) x component 
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where k is a frequency (level) index. ψk,m(n) is the wavelet 
function and  denotes its conjugate. It is well known 
that the DWT corresponds to the octave-band filter bank. 
The DWT pair is expressed by a parallel structure as 
depicted in Fig.4. (↓2m) and (↑2m) denote the down-
sampling and the up-sampling, respectively. When H0(z) 
and F0(z) are transfer functions of the LPF (low pass 
filter), and H1(z) and F1(z) are those of the HPF (high pass 
filter), the synthesis filters Ak(z) (k=1~M) and the analysis 
filters Sk(z) (k=1~M) are defined as 
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zHzHzHzHzAM LFigure 3 shows time-varying signals of the normalized 

pen-position parameters x(n) and y(n) of the above 
signatures. Solid lines are of the genuine signature and 
dashed lines are of the forgery. These comparisons 
indicate that it is quite difficult to discriminate between 
the genuine signature and the forgery in the time-domain. 
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zFzFzFzFzSM L3. Enhancement of signature feature by 

DWT sub-band decomposition At each sub-band level, an input frequency band is 
decomposed into a low frequency band and a high 
frequency one. The signal in the high frequency band is 
called “Detail” and that in the low frequency band is 
“Approximation”. The octave-band decomposition is 
accomplished by applying such decomposition to the 
lower frequency band repeatedly. As a result, in M level 
decomposition, we obtain M Details vk(n) (k=1~M) in 

 
The wavelet transform gives us a time-frequency 

analysis, which is effective for the non-stationary signal. 
In this section, we show that the sub-band decomposition 
by the Discrete Wavelet Transform (DWT) [6] makes 
difference between the genuine signature and the forgery 
more remarkable.  



parallel as shown in Fig.4. Its frequency characteristic is 
described in Fig. 5.  Registration Phase
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Figure 5. Octave-band decomposition  

 
3.2  Enhancement of signature feature 
 

The Detail contains differences between signals; 
therefore, we consider it as the enhanced feature of the 
on-line signature parameter. For instance, the Details at 
level M in the genuine signature and the forgery are 
shown in Fig.6 when each time-varying signal of x 
component in Fig.3 (a) is decomposed into M level 
signals by the Daubechies8 filters in the DWT. 
Comparing these two Details, we can confirm that the 
difference between the genuine signature and the forgery 
become remarkable by the sub-band decomposition while 
it is unremarkable in time-domain comparison.  

 
Figure 7.   Flow of proposed signature 

verification 
 

4. Verification method 
 

The reason why the sub-band decomposition enhances 
the difference between signatures is as follows. In the 
case of forged signatures, the variation of writing time is 
relatively large because the writing time is not imitable. 
While the normalization of the writing time decreases the 
difference between signatures, it leads to a different 
sampling time in each signature. This means that an actual 
frequency is different from each other as shown in Fig.6 
even at the same decomposition level. In genuine 
signatures, the variation of writing time is small, so that 
the actual frequency is also equivalent with each other at 
the same level. 

Next, we explain about our verification method. It is 
unique that the adaptive signal processing [7] is adopted 
to discriminate between signatures at each decomposition 
level. In addition, the total decision of verification is 
achieved by considering results of x and y components at 
some levels, so that it is expected to be robust. Moreover, 
we introduce the dynamic programming (DP) matching 
method into the verification for robustness against 
variation of the number of strokes.  
 
4.1  Flow of verification 
 

 Our signature verification method consists of two 
phases as shown in Fig.7. One is a registration phase and 
the other is a verification one. Before the verification 
phase, the registration phase must be accomplished. In the 
registration phase, five genuine signatures are 
decomposed into sub-band signals by the DWT. Five 
Details at the same level are averaged and then its results 
is registered as a template at each level in the data base. In 
the verifivation phase, an input signature is also 
decomposed into Details. By the way, the number of 
strokes is not neccesarily equal to that of the template 
even in the genuine signature because the on-line 
signature is dynamical. This causes degradation of 
verification  performance. Therefore, the DP matching 
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Figure 6. Example of decomposed signals  



method is introduced to match the stroke of the input 
signature with that of the template. After stroke matching, 
the Detail of the input is compared with that of the 
template using the adaptive signal processing. Finally, the 
total decision of verification is accomplished by 
examining results at some decomposition levels.  
 
4.2  Detection of stroke 
 

For stroke matching, it is necessary to detect strokes. 
Each stroke consists of an intra-stroke and an inter-stroke 
which correspond to a pen-down condition and a pen-up 
one, respectively. In this paper, the stroke is detected by 
using the quantized pen-pressure parameter P(n) as 
follows.  
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where P*(n) is the pen-pressure parameter. If P*(n) is 
nonzero, it corresponds to the pen-down condition and so 
the P(n) is set to 1. On the other hand, when P*(n) is zero, 
it indicates the pen-up condition, and P(n)  is also zero. 
Thus, each stroke can be detected as a pair of P(n) =1 and 
P(n) =0. While we utilize the pen-pressure parameter for 
convenience, our proposed method does not need the pen-
pressure parameter essentially. The pen up/down 
condition can be detected by using a pen-point switch. 
 
4.3  Making of template 
 

Before the verification, the template must be prepared. 
Concretely, five genuine signatures which have equal 
number of strokes are decomposed into sub-band signals 
by the DWT. Decomposition level M is decided after 
examining those genuine signatures. Extracted five 
Details at the same level are averaged and then the result 
is registered as a template at each level in the data base. 
Incidentally, for taking an average, the number of 
sampled data should be equal in five signatures. However, 
each number of sampled data may be different from the 
others even in the genuine signature. To solve this 
problem, five signatures are averaged every intra-stroke 
or inter-stroke (intra/inter-stroke) in our verification 
system. 

First, we determine the number of data in the template. 
Let ni (i=1~5) be data numbers of five intra/inter-strokes, 
the number of data in the template nA is given by  
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where [x] is the greatest integer not greater than x. 
Next, the normalized sampling period in a template 

stroke is given by 1/(nA-1), and those in five Details are 
1/(ni-1) (i=1~5), too. These are illustrated in Fig.8. Five 

Detail data of which normalized sampled time r/(ni-1) 
(i=1~5, r=1~ni)  is the nearest to that in the template 
m/(nA-1) (m=0~nA-1) are selected as described by arrows 
in the figure and averaged every normalized sampled time 
in the template. As a result, we obtain nA data in each 
intra/inter-strokes. By applying this operation to all 
intra/inter-strokes at all level, all template data are 
obtained and they are registered in the database. 
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Figure 8.   Making of Template 

 
4.4  Determination of decomposition level 
 

Next, we discuss the verification phase. The DWT 
corresponds to the octave-band decomposition; therefore, 
the decomposable level depends on the number of 
sampled data in an input signature. In this paper, we 
determine the decomposition level M of the input 
signature based on that in the template as given by 

 
21 22 ++ <≤ MM N                                     (15) 

 
where N is total number of the template data.  
 
4.5  Stroke matching 
 

If the number of strokes in an input signature is 
different from that in a template, the input signature 
should be considered as a forgery. However, not all 
genuine signatures have the same number of strokes. In 
fact, we confirmed that there was the stroke difference 
within ±2 even in the genuine signature through some 
experimences. Immidiately rejection of the input signature 
with different number of strokes causes degradation of 
verification performance. In this paper, we allow the input 
signature with the stroke difference within ±2. However, 
our verification is done every intra/inter-stroke and so the 
number of strokes in the input signature should be equal 
to that in the template. Therefore, we adopt the dynamic 
programming (DP) matching method to identify the 
number of strokes in the input signature and the template. 



where Iq and Jq are the number of samples in qth stroke of 
Ψ and Φ, respectively.  

The difference number of strokes γ  between the input 
signature and the template is calculated by using the pen 
up/down information P(n). If 0<γ<2, either of more 
strokes is decreased by coupling strokes. Figure 9 shows a 
case of γ=1. Assuming the number of strokes in Ψ is Q+1 
and that in Φ is Q, two strokes (for instance qth and q+1th ) 
in Ψ should be coupled to one (qth) to equalize both 
numbers.  

 Such DP distance is calculated in all stroke pairs in Ψ 
and as a result a stroke pair with the shortest DP distance 
is chosen as the coupled stroke. In the case of γ=2, two 
couplings or a coupling of three strokes is examined 
similarly. Of course, in the case of γ=0, the stroke 
matching is not needed. If γ>2, the input signature is 
immediately decided as the forgery.  
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4.6  Adaptive signal processing for verification  
 

After stroke matching, the verification is processed by 
using an adaptive signal processing. A block diagram of 
the proposed verification method by using the adaptive 
signal processing is shown in Fig.10. In this paper, we 
utilize Details at only k=M∼M-3. Details at lower levels 
correspond to higher frequency elements and so their 
variation is too large. They are not suitable for 
verification. Input signals x  and  are 
respectively the Details of x and y components at level k 
in an input signature. In the following, the signals of x 
and y components are represented as (x, y∈v) for 

convenience. A desired signal t  is the Detail of the 
template.  is an adaptive weight and updated to 
reduce the error signal e  based on the adaptive 
algorithm (A.A.). 
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Figure 9.   Stroke matching  

 
It becomes important how to choose such strokes which 

should be coupled. Thus, we introduce the DP matching 
method, which is generally used for evaluating similarity 
between two patterns. In the following, we explain the DP 
matching method briefly.  
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The distance dq(i,j) between ith sample of coupled qth 
stroke in Ψ and jth sample of qth stroke in Φ  is define as 
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qqq ΦΨ −=,                          (16) 

where (i) and t (j) are normalized sampling times 

which are obtained by dividing whole writing time by 
total number of samples and different from those used in 
making of the template.  

q
tΨ qΦ

Next, the DP distance D(Ψq,Φq) between Ψ and Φ in 
qth stroke is calculated as follows. 
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Figure 10.   Adaptive signal processing for 

Verification  
    For  i=1 to Iq−1,  j=1 to Jq−1 
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By the way, the purpose of the adaptive signal 

processing is to reduce the error between the input signal 
and the desired signal sample by sample. However, if 
these signals have different number of sampled data, the 
error does not fully decrease. In general, the number of 
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data in the input signature does not necessarily agree with 
that in the template. In order to match these numbers of 
data, we utilize the normalized sampling time every 
intra/inter-stroke as described in 4.3. The nearest input 
data to the normalized sampled time in the template is 
only referred in the adaptive algorithm. Thus, the number 
of the input data is always guaranteed to agree with that in 
the template. Such time index according to the normalized 
sampled time is represented as r. 

The adaptive algorithm for updating the weight is given 
by  
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where L is the number of sampled data in the input Detail. 
µ0 is a positive constant and set to 0.0001, which is 
confirmed to be independent of the signature. µ is the step 
size parameter which controls the convergence in the 
adaptive algorithm. The step size parameter is normalized 
by the Detail power as shown in Eqs.(23) and (24), so that 
the convergence is always guaranteed. This algorithm is a 
kind of the steepest descent algorithm [7].   

When the input signal is of the genuine signature, the 
error between the input and the template becomes small;  
therefore, the adaptive weight converges close on 1. 
Inversly, if the input signature is of the forgery, the 
weight converges far from 1. In this way, the verification 
can be achieved by examining whether the converged 
value is nealy 1 or not.  

After enough iterations for convergence, the total 
convergence value TC is calculated by averaging eight 
converged values of the adaptive weights. 
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Finally, Total decision of verification is achieved by 
whether TC is larger than a threshold value. To consider 
multiple results leads robustness to our verification 
method.  
 
5. Experiment and result  
 

In order to confirm effectiveness of our proposed 
verification method, we carried out experiments of the 
signature verification. Conditions of the experiment are as 
follows. Four subjects were requested to sign their own 
alphabetic signature 25 times each and to counterfeit other 

two signatures 50 times each. Then, after excluding 
unusable signatures, 98 genuine signatures and 200 
forgeries were used in this experiment. Before signing, 
subjects were called upon to practice using the pen tablet 
for becoming skilled. Also, when the subjects signed 
genuine signatures, they were not able to refer to their 
already written signatures. On the other hand, forgers 
were permitted to trace the genuine signature by putting 
the paper to which the signature was written over it. This 
assumed that the signature shape was easily imitated. In 
order to obtain fully convergence of the adaptive weight, 
the number of iterations was set to 100 thousands. In 
initial N iterations, the adaptive weights were fixed to 
zero and not updated since data for the average in Eq.(22) 
were uncompleted. In more than N iterations, the same 
input signal and template were used repeatedly. 

Figure 11 shows an example of convergence 
characteristics of the adaptive weight of x component at 
level M. When the input signature was the genuine one, 
the adaptive weight converged nearer on 1 than that in the 
forgery. This result shows that it is possible to verify the 
signatures by using the adaptive signal processing.  
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Figure 11. An example of convergence 
characteristics 

 
Figure12 shows the false rejection rate (FRR) and the 

false acceptance rate (FAR) versus a threshold value. In 
general, verification performance is estimated by the 
equal error rate (EER) where the FRR and the FAR are 
the same. The EER was about 5% when the threshold 
value was set to about 0.3. This result means that the 
verification rate is 95% by using only the pen-position 
parameter even though a forger traces a genuine 
signature.  

The reason why the FAR was not 100% even when 
the threshold value was set small enough was that about 
20% forgeries had more than two stroke differences and 
so they were immediately rejected without verification. 



On the other hand, the stroke difference of all genuine 
signatures was within ±2, so that the FRR became 100% 
as the threshold value was increased. The FRR did not 
become 0% even when the threshold was about 0 because 
the subjects were not permitted to refer to own signatures, 
and it enlarged variation in signature parameters. Some 
method for reducing the FRR is required to improve the 
verification rate.    

 
Figure 12.   Verification results 

 
6. Conclusion  
 

We had proposed a new text-dependent on-line 
signature verification method. Our method emphasized 
individual features by decomposing the time-varying 
signal of the pen-position parameter into sub-band signals 
by the DWT. In addition, we proposed the verification 
method based on the adaptive signal processing, in which 
the normalized step size parameter was introduced to 
guarantee the convergence of the adaptive weight. 
Moreover, we adopted the DP matching method for stroke 
matching before the verification because stroke difference 
between signatures degraded verification performance.  

Experimental results showed that the verification rate 
of 95% was achieved by using only the pen-position 
parameter under a very severe condition, that is, subjects 
were not able to refer to the genuine signatures and 
forgers were permitted to trace the genuine signatures. By 
using our proposed method, high verification rate can be 
achieved even in the portable device such as the PDA. 

In the proposed method, the computational complexity 
is surely increased for the sub-band decomposition by the 

DWT, the adaptive signal processing for verification, and 
the DP matching method for stroke matching. In 
computational complexity, it is important to examine the 
number of multiplications and divisions. The DP 
matching is basically a repetition of addition and 
comparison as in Eq.(18); therefore, the increase of 
computational complexity is considered as not large. The 
adaptive signal processing is also based on iteration, and 
two multiplications and two divisions are required every 
iteration as in Eqs.(20), (21), (23) and (24). Eq.(22) 
denotes the moving average with window length N, and N 
multiplications, N-1 additions and one division are needed 
every iteration. However, N-1 data in accumulation are 
overlapped between a present window and a past window 
since the window is shifted sample by sample. By adding 
a present data to the accumulation and subtracting a past 
data from the accumulation, N multiplications can be 
reduced to one. As a result, three multiplications and three 
divisions are required every iteration. The increase of the 
computational complexity is not also large.  
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In this paper, converged values of adaptive weights are 
simply averaged to obtain the total convergence value. To 
adjust weighting of the converged value should be 
introduced for improving verification performance. For 
reducing the FRR, it is to also studied in future to cope 
with variation in the genuine signature. 
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Abstract 
 

Many nonacoustic sensors are now available to aug-
ment user authentication.  Devices such as the GEMS 
(glottal electromagnetic micro-power sensor), the EGG 
(electroglottograph), and the P-mic (physiological mic) 
all have distinct methods of measuring physical processes 
associated with speech production.  A potential exciting 
aspect of the application of these sensors is that they are 
less influenced by acoustic noise than a microphone.  A 
drawback of having many sensors available is the need to 
develop features and classification technologies appro-
priate to each sensor.  We therefore learn feature extrac-
tion based on data.  State of the art classification with 
Gaussian Mixture Models and Support Vector Machines 
is then applied for multimodal authentication.  We apply 
our techniques to two databases—the Lawrence Liver-
more GEMS corpus and the DARPA Advanced Speech 
Encoding Pilot corpus.  We show the potential of nona-
coustic sensors to increase authentication accuracy in 
realistic situations. 
 
1. Introduction 
 
Speaker authentication is a rich area for exploration of 
multimodality.  Many facets of the speech production 
process are measurable through a variety of sensors.  Tra-
ditionally, visual lip reading has been used to supplement 
speaker authentication and speech recognition [15,26].  
These methods rely upon tracking the lip contour over 
time and then using the sequence of movements to sup-
plement standard audio-only verification.  These methods 
have been quite successful, leading to large gains in accu-
racy in high noise conditions.   
 
Other methods of monitoring speech production are also 
available.  Non-invasive sensors that are attached in the 
throat area have been available for many years; we call 
these nonacoustic sensors.  These sensors nominally 
measure aspects of the speech production process related 
to the speech excitation.  Typical sensors that we have 
explored in this study are the EGG (electroglottograph), 

the GEMS (glottal electromagnetic micro-power sensor), 
and the P-mic (physiological mic).  Since traditional 
methods of verification [18] rely upon features designed 
to capture vocal tract information—e.g., mel-frequency 
cepstral coefficients—we would expect that multimodal 
fusing of excitation and vocal tract features would benefit 
recognition in both quiet and noisy conditions.  An added 
benefit of nonacoustic sensors is that they are less influ-
enced by acoustic noise.  For the case of the EGG and the 
GEMS, the throat is exposed to RF signals; for the case of 
the P-mic, the sensor output is dominated by the vibra-
tions sensed on the throat.  These modes of measurement 
do not directly monitor air pressure in the ambient envi-
ronment. 
 
There has been several prior works on the use of glottal 
waveforms for recognition.  Gable [8] used waveforms 
from the GEMS system for speaker verification; his work 
focused on using methods such as dynamic time warping 
for text-dependent verification.  Plumpe [16] used inverse 
filtering techniques on the acoustic waveform to derive 
glottal waveform signals; speaker recognition was then 
performed.  Both throat microphones [9] and the P-mic 
[1] have been used for automatic speech recognition.  Our 
work is distinct in several aspects: 1) we consider both 
simulated and actual noise conditions, 2) we do not as-
sume models for the glottal waveforms but instead use a 
learning approach, 3) we use late integration to combine 
several nonacoustic sensors, and 4) we consider integra-
tion accuracy of multiple nonacoustic sensors in low-
noise conditions. 
 
We attack the problem of authentication using nonacous-
tic sensors with a data-driven learning approach.  We 
have chosen the data-driven approach as a baseline to 
future knowledge-based analysis.  Sensor outputs can 
vary dramatically based on placement, sensor tuning, im-
pedance matching, sensor design, etc.  This variation can 
be captured easily with data-driven methods.  Towards 
this end, we use standard feature transformation methods 
to find features which describe the speaker specific at-
tributes of the different signals.  We use various normali-



zations based upon signal characteristics to improve accu-
racy. 
 
After obtaining features for authentication, we use both 
Gaussian Mixture Models [18] and Support Vector Ma-
chines (SVM’s) [25] for multimodal authentication.  We 
combine the outputs of these different classification sys-
tems using late integration to achieve the final score.  For 
the corpora explored in this paper, we consider only 
closed-set speaker identification.  That is, given an utter-
ance, identify an individual from a list of known indi-
viduals.  Because of the limited number of speakers avail-
able in current corpora, other scenarios such as verifica-
tion or open-set ID were impossible because of the lack 
of an adequate “background” population. 
 
The outline of the paper is as follows.  In Section 2, we 
discuss the sensors in detail and describe their basic op-
eration.  In Section 3, we discuss our feature extraction 
methodology.  Section 4 outlines the classifiers and fu-
sion strategy used.  Section 5 gives details on the corpora 
used and experiments.  These corpora allow us to explore 
both the GEMS in quiet environments and multiple nona-
coustic sensors in high noise (>110 dBC) situations.  We 
show that our authentication strategy leads to gains in this 
challenging scenario.  A complimentary method for 
achieving authentication accuracy gains is speech en-
hancement [27]. 
 
2. Nonacoustic sensors 
 
We survey three nonacoustic sensors used for experi-
ments—GEMS, EGG, and P-mic.  These sensors have 
distinct methods of measuring speech production phe-
nomena.  Other sensors  which would be of interest, but 
were not included due to corpus size and project focus, 
are accelerometers, “bone phones,” in-ear microphones, 
video, etc. 
 
2.1. GEMS 
 
The GEMS (glottal electromagnetic micro-power sensor) 
is a novel sensor based upon transmitting electromagnetic 
(EM) waves into the glottal region.  Two GEMS designs 
were used in the corpora in this paper.  An earlier version 
was used in the LLNL Corpus [8], and Revision B, Ver-
sion 1 created by Aliph Corporation 
(http://www.aliph.com) was used in the ASE Corpus of 
Section 5.  The GEMS is also referred to as the “General 
Electromagnetic Movement Sensor” by Aliph Corpora-
tion. 
 
During operation of the GEMS, a small antenna is placed 
on or near the throat at the level of the glottis.  From this 
antenna is transmitted a 2.3 or 2.4 GHz low power 

(<1 mW) EM wave.  Using these frequencies allows for 
EM waves to penetrate into the body and reflect back to 
the sensor with good signal levels.  The receiver circuitry 
detects the reflected EM waves using a homodyne tech-
nique.  Nominally, the sensor measures phenomena re-
lated to the opening and closing of the glottis [2].  Multi-
ple theories have emerged on the exact phenomena occur-
ring that generates the waveform—changing air-tissue 
interfaces as the glottis changes, vibration of the tracheal 
wall, and propagation along the vocal fold contact area, 
see [11, 21].  Although inferring the exact process that the 
GEMS is monitoring is challenging, the waveforms gen-
erated do provide speaker specific information which is 
related to the speech excitation. 
 
2.2. EGG 
The EGG (electroglottograph) is a device designed to 
measure contact between the vocal folds.  The specific 
implementation used for this study was from Glottal En-
terprises.  This EGG is a multi-channel EGG device [19]; 
the multichannel feature allows for more precise place-
ment on the neck to achieve higher signal to noise ratio. 
 
The EGG nominally measures the vocal fold contact area 
(VFCA).  This process is performed by using electrical 
signals in the MHz region.  Two electrodes are placed on 
the subject’s neck at the level of the thyroid cartilage.  
VFCA is measured by observing the variation in imped-
ance over time.  Since the EGG measures vocal fold con-
tact, the sensor does not necessarily allow one to observe 
interesting phenomena during the open phase of the glot-
tis.  Note that the EGG is not an exact indicator of VFCA.  
For example, during transition to the open phase of the 
glottis, mucus can “short out” the device indicating that 
the glottis is closed when this is apparently not the case 
(the mucus bridging effect [4]). 
 
2.3. P-mic 
The P-mic (physiological microphone) is a non-invasive 
contact sensor for measuring sound [20].  The P-mic con-
sists of a gel pad to provide acoustic impedance matching, 
a conical focusing aperture, and a piezoelectric element.  
Use of a gel pad minimizes interference from ambient 
noise. 
 
The P-mic is typically placed in the throat area below the 
glottis.  This placement insures that the P-mic signal can 
be simultaneously recorded with the GEMS and EGG 
signal.  In our experiments, we found that the P-mic was 
most sensitive to ambient noise among nonacoustic sen-
sors; presumably this is due to “leakage” of the ambient 
noise into the sensor element. 
 
 

http://www.aliph.com/


 2.4. Comparison of the sensors 
 3. Feature extraction 
Figure 1 shows an example output from four sensors re-
corded simultaneously.  In the figure, the top signal is a 
microphone recording of the /ao/ in “dog.”  The second 
signal represents the EGG signal (highpass filtered with a 
linear phase filter with a transition band from 64-80 Hz).  
We note that the EGG gives a very “smooth” waveform.  
The third waveform from the top is the P-mic signal.  In 
this signal, we see more evidence of “leakage” of vocal 
tract information into the signal (as evidenced by ripple in 
the waveform).  Finally, the fourth waveform is the 
GEMS signal.  We can see this waveform has many of the 
same general characteristics as the EGG, but that there is 
additional structure in the waveform.  Listening to the 
GEMS signal reveals little vocal tract information; there-
fore, this fine structured seems to represent supplemen-
tary excitation information not captured by the EGG. 

 
Our framework for feature extraction is shown in Figure 
2.  Our goal was to create a flexible architecture that in-
corporated linear matrix transformation for feature extrac-
tion.  In the figure, the input signal is processed into 
frames creating a sequence of vectors.  Each frame corre-
sponds to a 30 ms time window with an overlap of 20 ms 
between consecutive frames.  Since our sampling rate is 8 
kHz, we obtain a sequence of vectors of dimension 240 
(100 vectors per second).   
 

 

 
 
Figure 1. Comparison of different sensor waveforms for 
the /ao/ in “dog.”  From top to bottom—audio, EGG, P-
mic, and GEMS.  The length of time shown is approxi-
mately 30 ms. 
 
 

 
We then applied several normalizations to the data; these 
normalizations are intended to provide invariances in the 
feature extraction to certain transforms—e.g., increasing 
the gain.  We first remove the mean on a per frame basis; 
we then normalize the amplitude of the signal variance to 
1.  Finally, we introduce a transform to reduce a framing 
artifact; namely, a shift of the input should not matter in 
recognition.  For this normalization, we calculate the dis-
crete Fourier transform (DFT) of each frame, eliminate 
the phase of each component, and then calculate the in-
verse DFT.  All of these normalizations are intended to 
throw out unnecessary signal information; potentially, 
they are too aggressive and could be modified. For exam-
ple, the mean of the EGG signal carries information about 
the position of the larynx.  In spite of drawbacks, these 
normalizations increased accuracy for all linear trans-
forms we tried. 
 
After appropriate normalization, the sequence of frames 
was used to calculate delta parameters [17].  This linear 
transform resulted in a sequence of vectors of dimension 
480.  We then wanted to design a linear transform to re-
duce this 480 component vector to a more reasonable 
dimension.  There are multiple reasons for dimension 
reduction—obtaining compact representations of speaker 
specific features, avoiding excessively complex classifi-
ers, discarding “uninformative” directions in feature 
space, and minimizing the “curse of dimensionality.”  For 
this paper, we explored several unsupervised methods of 
designing a linear transform—principal component analy-

Input 
Waveform 

Vector Data

Convert to 
Frames Normalizations 

Output FeaturesLinear Trans-
forms (to classifier) 

Figure 2. Framework for feature transformation.



sis (PCA) [7], random dimension reduction [6], and inde-
pendent component analysis (ICA) [12]. 

All of our reported experiments use late integration for 
fusion [3].  Fusion is accomplished by using a linear com-
bination of scores from each of the classifiers applied to 
the different modalities.  Methods involving construction 
of new SVM kernels based upon sums of kernels for each 
of the modalities were also tried, but these did not 
perform as well as late integration. 

 
Random dimension reduction (i.e., generating the analysis 
matrix using random independent components) was used 
for multiple purposes.  We preprocessed all of the nor-
malized outputs (with delta components) from dimension 
480 down to dimension 100 using random dimension 
reduction.  As shown in [6], random dimension reduction 
tends to preserve distances and make clusters of data 
more spherical which improves problem conditioning.  
We found that for both PCA and ICA that this improved 
accuracy.  Random dimension reduction also reduces the 
size of the problem making methods such as ICA and 
PCA more practical for large problems.  Finally, random 
dimension reduction was also used as an analysis method 
to compare to other unsupervised methods. 

 
5. Corpora and experiments 
 
5.1. LLNL GEMS corpus and experimental setup 
 
The first corpus used for experiments was the Lawrence 
Livermore National Lab GEMS corpus collected by 
G. Burnett and T. Gable [8].  This corpus consists of 15 
male speakers with up to 4 sessions per speaker.  Both 
sentences from TIMIT and number/letter/{Yes,No,Zero} 
sequences were recorded.  For the purposes of our ex-
periments, we focused on the number/letter/short-word 
sequences.  Typical utterances were a combination of 10 
items; e.g., “T 60 YES 3 U R E 8 W P.”   

 
We note that our feature transformation method is very 
similar to the standard filter bank approach for generating 
mel-cepstral coefficients.  In a coarse sense, our approach 
could be thought of as applying a filter bank “tuned” to 
the glottal response.   

 
We used the initial session of 20 utterances as enrollment.  
The remaining 3 sessions of 20 utterances each were used 
for speaker identification.  This resulted in 15*60=900 
tests for speaker identification.  Both audio and GEMS 
data were originally sampled at 10 kHz.  We resampled to 
8 kHz and then bandlimited the speech to 200-4000 Hz. 

 
4. Classification and fusion 
 
Gaussian mixture models have been very successful for 
the speaker recognition task [18].  We use Gaussian mix-
ture models to model the speaker specific distribution 
only (i.e., no background modeling is performed since our 
task is closed-set identification).  For each speaker, we 
create a mixture model 

 
Noise was electronically added to the audio signal with 
noises from the NOISEX database [23].  (In Section 5.3 
and 5.4, we consider a corpus where the noise environ-
ment is not electrically added.)  The NOISEX noise sig-
nals were resampled to 8 kHz and also bandlimited to 
200-4000 Hz.  This insured that SNR was measured only 
in the band containing speech.  All 24 NOISEX noises 
were used.  When adding speech to noise, we generated a 
random offset into the noise file and then extracted a 
segment of noise the same length as the speech file.  The 
resulting output signal was x=xspeech+c*xnoise, where 
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where gi is a single Gaussian.  Training is accomplished 
using the EM algorithm with a small number of compo-
nents—typically less that 256.    
 
We also use support vector machines (SVM’s) for classi-
fication [25].  Support vector machines are discrimina-
tively trained classifiers and thus give excellent perform-
ance on closed set tasks.  For our experiments, we use a 
polynomial basis of monomials in our SVM kernel up to 
and including a certain degree—typically degree 2 or 3, 
see [25].  Our SVM kernel is based upon comparing se-
quences of data and providing an inner product in a large 
dimensional space which captures speaker specific infor-
mation.  One interesting aspect of using support vector 
machines for our work is that it is possible to bypass the 
feature transformation process and perform classification 
directly in high dimensions.  Although this is computa-
tionally intense, it gives a baseline for feature transformed 
classification systems which work in lower dimensions. 
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and the standard deviations are calculated over non-
silence regions. 
 
5.2. LLNL corpus results 
 
Our first set of experiments compared feature transforma-
tion methods.  As indicated in Section 4, we explored 
random dimension reduction, PCA, and ICA.  We ini-
tially considered closed-set speaker identification accu-
racy based upon the GEMS signal only.  Each feature 
vector was reduced from dimension 480 to 100 using  
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Table 1.  Comparison of accuracy of feature transforma-
tion methods for GEMS-only closed-set speaker identifi-
cation on the LLNL database. 

Feature Extraction 
Method 

Speaker 
Identification Accuracy (%) 

Random Projection 62.7 % 
PCA 59.7 % 
ICA 51.9 % 
None 64.3 % 
  
0
0 5 10 15 20 25 30 35

SNR (dB)

I 0.7 audio, 0.3 GEMS
0.8 audio, 0.2 GEMS

 
Figure 3. Comparison of speaker identification accuracy 
across noise type 3 (white noise) for different late integra-
tion strategies and random dimension reduction. 

random dimension reduction.  A linear transform was 
then designed and applied to reduce the dimension from 
100 to 32 for input to the classifier.  Dimension 32 was 
chosen since the accuracy typically plateaued at this di-
mension.  A SVM classifier with a degree 2 polynomial 
kernel (full covariance) was used, see [25].   
 
Table 1 compares accuracies for the different methods.  
Also included in the table is the case of no dimension 
reduction (with a diagonal covariance SVM kernel) which 
provides a baseline for reduced dimension methods.  As 
can be seen from the table, random projection works as 
well as other transformation methods.  Potentially, this is 
due to multiple factors.  The classifier may be better 
matched to this feature extraction technique.  Also, there 
could be spurious directions in the feature space data 
which are not relevant to speaker identification.  One way 
to mitigate this problem (which we do not explore here) is 
to use supervised feature transformation methods, e.g. 
[22]. 
 
After using linear transform feature extraction methods 
for speaker identification, we investigated the use of 
fundamental frequency (F0) to augment the recognition 
process.  The Entropic pitch extractor in Wavesurfer 
(http://www.speech.kth.se/wavesurfer) was used.  A 
GMM was trained with 32 components to model each 
speaker from the F0 data.  The resulting error rate for 
GEMS only recognition was 50.6%.  Note that a similar 
rate of accuracy was also observed for the audio data us-
ing F0 only—49.1%. 
 
We then fused (with equal weights) the GEMS F0 classi-
fier scores with the linear transform feature extraction 
scores (random dimension reduction) to obtain a GEMS-
only accuracy of 64.0%.  The use of F0 information dem-
onstrated two items.  First, since F0-only classification 
accuracy is significantly below that of linear transform 
feature extraction accuracy, we are obtaining additional 
non-F0 information from our linear transform technique.  

Second, because the accuracy improved from the fusion, 
there is complementary information in the two scores. 
 
Finally, we considered the effect of late integration upon 
speaker identification in noise.  We implemented an au-
dio-only speaker recognition system using the system in 
[25] with a degree 3, diagonal covariance model; input 
features were 12 LP cepstral coefficients plus deltas.  In 
addition, the MELPe noise preprocessor [24] was applied 
to the audio input signal.  Figure 3 shows the performance 
of a late integration system which fuses an audio-based 
system with the GEMS-based system (both pitch and lin-
ear feature transformation were used).  In the figure, at 
low SNR (0-10 dB) and for NOISEX white noise (noise 
type 3), significant increases in accuracy are obtained by 
late integration—greater than 50% in some cases. 
 
We then considered the effect of late integration with a 
fixed weighting, 0.5*GEMS + 0.5*audio, as the type of 
noise varied for a fixed SNR (specific information on the 
noise types can be found in the NOISEX corpus docu-
mentation).  The results for 0 dB SNR are shown in Fig-
ure 4.  As can be seen from the figure, significant in-
creases in accuracy over an audio-only system are 
achieved—greater than 25% average improvement.  The 
best performing environments were NOISEX types 3 
(white noise), 16 (machine gun), 18 (STI test signal), 19 
(voice babble), and 21 (factory).  The worst performing 
environments were NOISEX types 1 (sinusoid), 5 (col-
ored, -12 dB/octave), 9 (Leopard 2), 23 (Car) and 24 
(Car). 
 

http://www.speech.kth.se/wavesurfer


 
5.3. ASE corpus and experimental setup 

 
The Advanced Speech Encoding Pilot Corpus (ASE Pilot 
Corpus) is a multisensor corpus collected for the purpose 
of studying viability of multiple sensors for speech en-
hancement, speech coding, and speaker characterization.  
Sensors recorded simultaneously include a resident mi-
crophone (the microphone typically used in the environ-
ment), two channels of a GEMS device, an EGG, a high 
quality reference microphone (B&K), and P-mics posi-
tioned on the forehead and the throat region. The corpus 
was collected in two sessions (on two different days). 
Speakers were exposed to a variety of noise environ-
ments—-quiet, office (56 dBC), MCE (mobile command 
enclosure, 79 dBC), M2 Bradley Fighting Vehicle (74 
dBC and 114 dBC), MOUT (military operations in urban 
terrain, 73 dBC and 113 dBC), and a Blackhawk helicop-
ter (70 dBC and 110 dBC).  We call these environments 
(with L indicating low noise and H indicating high noise) 
quiet, office, MCE, M2L, M2H, MOUTL, MOUTH, 
BHL and BHH, respectively. To protect our subjects and 
realistically simulate Lombard effects, all talkers used the 
hearing protection systems typical of each environment. 
This normally consisted of a communication headset with 
approximately 20 dB noise attenuation.  Human subject 
testing procedures were followed carefully and noise 
exposure was monitored. 
 
For speaker identification experiments, we partitioned the 
corpus by session.  The initial sessions—quiet, office, and 
MCE—were used for enrollment.  Identification was then 
performed using the data from the remaining sessions; we 

grouped these into low noise—M2L, MOUTL, BHL—
and high noise—M2H, MOUTH, BHH—conditions.  The 
corpus had phrases in both sessions drawn from a variety 
of material—conversations, DRT lists, vowels, Harvard 
phonetically balanced sentences, and CVC nonsense 
words.  Typical utterance lengths ranged from 1-5 min-
utes.  A total of 20 speakers were available, 10 males and 
10 females.  The total number of enrollment utterance 
available per speaker was 12.  The total number of tests 
for identification performance was 360 per noise condi-
tion (low, high).  Cross-gender testing was allowed since 
it was not clear if the nonacoustic sensors would distin-
guish this well; cross-gender tests do not bias identifica-
tion accuracy (as they would in speaker verification). 
 
5.4. ASE corpus results 
 
The feature extraction methods from Section 3 were ap-
plied to the ASE pilot corpus.  As for the experiments in 
Section 5.2, we used a SVM with diagonal covariance 
and degree 3 polynomials for the audio modality.  For the 
nonacoustic modalities, we used a full covariance SVM 
of degree 2 with random dimension reduction.  Both the 
MELPe noise preprocessor and high-pass filtering above 
200 Hz were applied to the audio signal.  The MELPe 
noise preprocessor was applied to the non-acoustic mo-
dalities, since noise from the ambient environment did 
effect the sensor outputs (possibly through tissue vibra-
tion).  The EGG was highpass filtered with a linear phase 
filter with transition band from 64-80 Hz.  Results are 
shown in Table 2. 
 
Since the P-mic has some vocal tract information (as evi-
denced by listening), we also applied a standard LP cep-
stral coefficient front end to the data; i.e., we applied the 
audio recognition system to all sensors.  Results for this 
set of experiments are shown in Table 3.  As can be seen 
from the table, accuracy results for both the EGG and 
GEMS are generally lower for LP cepstral coefficients 
than with data driven methods shown in Table 2.  For the 
P-mic, the identification accuracy is higher for LPCC’s; 
this illustrates that standard methods are tuned to extract-
ing vocal tract information. 
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Figure 4. Improvement in speaker identification ac-
curacy of a late-integration fusion system over an au-
dio-only system by noise type (NOISEX database) at 
0 dB SNR. 

Table 2.  Identification accuracy in both low and high 
noise situations for multiple modalities using random 
dimension reduction. 
Modality Low Noise 

Accuracy 
High Noise  
Accuracy 

EGG 73.0 % 43.3 % 
GEMS 64.7 % 43.6 % 
P-mic 66.7 % 41.4 % 



 

Table 4.  Identification accuracy in both low and high 
noise situations for late integration fusion. 
Modalities Fused Low Noise 

Accuracy 
High Noise 
Accuracy 

Audio (Resident Mic) 89.4 % 81.9 % 
0.8*Audio+0.2*EGG 93.1 % 86.7 % 
0.8*Audio+0.2*GEMS 92.5 % 85.8 % 
0.5*Audio+0.5*P-mic 95.8 % 87.2 % 
All 95.8 % 89.4 % 

Table 3.  Identification accuracy in both low and high 
noise situations for multiple modalities using LP cep-
stral coefficients. 
Modality Low Noise 

Accuracy 
High Noise  
Accuracy 

Resident Mic 89.4 % 81.9 % 
EGG 61.1 % 38.0 % 
GEMS 50.3 % 43.6 % 
P-mic 77.5 % 55.0 % 

As indicated in Table 4, we obtain substantial gains of 
7.5% in speaker identification accuracy in noise, over the 
resident-microphone-only case by combining nonacoustic 
and acoustic scores.  This result shows the potential of 
these methods for noise robust speaker authentication. 
 
6. Conclusions 
 
We have demonstrated the use of nonacoustic sensors for 
speaker authentication.  A data-driven approach was used 
to derive features of different modalities.  Powerful clas-
sification techniques such as support vector machines and 
Gaussian mixture models were then applied.  Results in 
both simulated and actual noisy conditions showed the 
success of the techniques for dramatically improving 
speaker authentication in noise.  Future work should ex-
plore methods on statistically-significant larger speaker 
populations to further validate results. 
 
Acknowledgements Two items should be noted about the results in Tables 2 

and 3.  First, the accuracy of the resident microphone is 
somewhat low in low noise situations.  This result is 
probably due to mismatch in microphones between train-
ing and testing.  Second, high-noise accuracy of the resi-
dent microphone is quite good.  The MELPe noise pre-
processor and associated processing is fairly robust to 
noise.   

 
We thank John Tardelli and Paul Gatewood of ARCON 
Corporation for their excellent work in collecting the 
ASE multisensor corpus used for experiments in this pa-
per.  We thank Kevin Brady of MIT Lincoln Laboratory 
for his extensive support in this corpus collection.  We 
thank Doug Reynolds for consultation on speaker recog-
nition.  
 Another observation from Tables 2 and 3 is the degrada-

tion of nonacoustic sensors in noise.  For the GEMS mod-
eling in Section 5.2, we assumed the ideal case of no 
degradation due to noise.  It is well known in the litera-
ture [5], that even if acoustic noise is not present in the 
sensor data, a human speaker responds to the environ-
ment, e.g. Lombard effect [13].  This response to stress 
will cause degradation in the speaker identification per-
formance of the nonacoustic modalities.  An open re-
search question is how to compensate for the effects of 
stress in the excitation parameterization.  Although we do 
not explore methods here, the ASE pilot corpus provides 
a realistic scenario for studying methods of noise com-
pensation of the speech excitation waveform.  
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Abstract  
 
Traditionally speaker recognition techniques have 

focused on using short-term, low-level acoustic 
information such as cepstra features extracted over 20-30 
ms windows of speech. But speech is a complex behavior 
conveying more information about the speaker than 
merely the sounds that are characteristic of his vocal 
apparatus. This higher-level information includes 
speaker-specific prosodics, pronunciations, word usage 
and conversational style. In this paper, we review some of 
the techniques to extract and apply these sources of high-
level information with results from the NIST 2003 
Extended Data Task. 

 

1. Introduction 
 
Standard approaches to automatic speaker recognition 

have relied on using short-term acoustic features, such as 
cepstra, which convey information about the shape of a 
person’s vocal apparatus. While these approaches have 
shown success, speech is the product of a complex 
behavior conveying many other person-specific traits that 
are potential sources of complementary information. 
Roughly we can categorize information in speech into a 
hierarchy running from low-level information, such as the 
sound of a person’s voice, which is related to physical 
traits of the vocal apparatus, to high-level information, 
such as particular word usage (idiolect), conversational 
patterns and even topics of conversations, which is related 
to learned habits and style (see ).  Figure 1

Figure 1 Pictorial depiction of levels of information 
conveyed in speech 

With the continual improvement of phoneme and 
speech recognition systems, which can reliably extract 
features for high-level characterization, the widespread 
availability of the computational resources needed to train 

and run them, and finally with the increased focus on 
applications (like audio mining) allowing for relatively 
large amounts of speech from a speaker to learn speaking 
habits, the availability of large development corpora and 
plentiful computational resources, the time is right for a 
deeper exploration into using these underutilized high-
level information sources. These new sources of 
information hold the promise not only for improvement in 
basic recognition accuracy by adding complementary 
knowledge, but also the possibility for robustness to 
acoustic degradations from channel and noise effects, to 
which low-level features are highly susceptible. Over the 
last few years, work examining the exploitation of high-
level information sources, such as the SuperSID Project 
[1]i, has provided strong evidence that gains are possible. 
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/S/ /oU/ /m/ /i:/ /D/ /&/ /m/ /Λ/ /n/ /i:/ …

<s>how shall i say this<e> <s> yeah i know …

/S/ /oU/ /m/ /i:/ /D/ /&/ /m/ /Λ/ /n/ /i:/ …

<s>how shall i say this<e> <s> yeah i know …

 

                                                           

                                                          

To support exploration and development of techniques 
that can exploit large amounts of training data to learn 
speaker habits, an Extended Data Task (EDT) has been 

 This work was sponsored by the Department of Defense under Air Force 
contract F19628-00-C-0002. Opinions, interpretations, conclusions, and 
recommendations are those of the authors and are not necessarily 
endorsed by the United States Government. After first author, 
subsequent authors are listed alphabetically. 

 
iMore references available at the SuperSID Project website 
http://www.clsp.jhu.edu/ws2002/groups/supersid/ 



included in the annual NIST Speaker Recognition 
evaluations since 2001. In this paper, we review some of 
the techniques to extract and apply these sources of high-
level information with results from the NIST 2003 
Extended Data Task. In the next section, we describe the 
corpus of the extended data task. This is followed in 
Section 3 by an outline of the different features and 
systems applied. Section 4 presents results of the systems 
on the 2003 EDT showing how they can be fused to 
improve overall performance. 

 

2. The 2003 NIST Extended Data Task 
 
The focus of the NIST SRE is on text-independent 

speaker detection (verification) using telephone speech. 
The primary evaluation has generally been using two 
minutes of training data and 15-45 seconds of test data. In 
2001 the extended data task was introduced to allow 
exploration and development of techniques that can 
exploit significantly more training and testing data. 
Speaker models are trained using 1, 2, 4, 8, and 16 
complete conversation sides (where a conversation side 
nominally contains 2.5 minutes of speech). A complete 
conversation side was used for testing. The 2003 
Extended Data Task used the combined Switchboard-II 
phase-2 and phase-3 conversational telephone speech 
corpora.  

To supply a large number of target and nontarget trials 
and speaker models trained with up to 16 conversations of 
training speech (~40 minutes), the evaluation used a 
jackknife processing of the entire corpus. The corpus was 
divided into 10 partitions of ~106 speakers each. All trials 
within a partition involved models and test segments from 
within that partition, only; data from the other 9 partitions 
were available for background model building, 
normalization, etc. The task consists of 1065 speakers 
with 10,933 target models (a speaker had multiple models 
for different amounts of training data) and ~160,000 trials 
(36% target trials and 64% nontarget trials) for the testing 
phase, containing matched and mismatched handset trials 
and some cross-sex trials. The experiments were driven 
by NIST’s speaker model training lists and index files 
indicating which models were to be scored against which 
conversation sides for each partition.   

To help facilitate research into using new features, 
supplemental information contributed by various sites 
was made available by NIST. This includes automatically 
generated word level transcripts, phone level transcripts 
from five different language phone sets, handset-
microphone labels, pitch track estimates, speech activity 
detection labels, baseline GMM-UBM acoustic scores, 
and word-level language model scores. The official NIST 
evaluation plan and lists can be found at the NIST SRE 
page http://www.nist.gov/speech/tests/spk/2003. 

Scores from each partition are pooled and a detection 
error tradeoff (DET) curve is plotted to show system 
results at all operating points. The equal error rate (EER), 
where the false acceptance rate equals the missed 
detection rate, is used as a summary performance measure 
for comparing systems. Each approach formed a 
likelihood ratio detector by creating a speaker model 
using training data and a single speaker-independent 
background model using data from the held-out splits. For 
some systems, a set of individual background speaker 
models from the held-out set was used as cohort models. 
During recognition, a test utterance is scored against the 
speaker and background model(s) and the ratio (or 
difference in the log domain) is reported as the detection 
score for DET plotting and for fusing. 

 

3.  Features and Classifiers  
 
In this section, we review some approaches to exploit 

high-level speaker information. The reader should consult 
the referenced papers for more details on the systems. 
 

3.1 Spectral  
 
The first set of features and classifiers are those based 

on spectral features. Three systems were applied: standard 
Gaussian Mixture Modeling with a Universal Background 
Model (GMM-UBM) system, a new Support Vector 
Machine (SVM) classifier, and a GMM-UBM system 
using only a selected subset of vocabulary words.  

 
GMM-UBM cepstral features. [2] The basic system 

used is a likelihood ratio detector with target and 
alternative probability distributions modeled by GMM. A 
Universal Background Model GMM is used as the 
alternative hypothesis model and target models are 
derived using Bayesian adaptation (also known as 
Maximum A-Posteriori (MAP) training). Feature 
mapping [3] was used for channel compensation and T-
norm [4] for score normalization. 

SVM cepstral features. [5] The Spectral SVM system 
uses a novel sequence kernel that compares entire 
utterances using a generalized linear discriminant. The 
Generalized Linear Discriminant Sequence (GLDS) 
kernel starts with 18 LPCC and 18 delta-LPCC features 
vectors that are expanded into a feature space using a 
monomial basis. All monomials up to degree 3 were used, 
resulting in a feature space expansion of dimension 9139. 
We used a diagonal approximation to the kernel inner 
product matrix. 

Text-constrained GMM-UBM. [6] This system is 
similar to the GMM-UBM baseline system but only 
speech from a subset of 17 words is used for all training 
and testing. The idea is to convert the task from text-



independent to text-dependent recognition. The words 
were selected from a set of 80 of the most occurring 
words based on the minimum decision cost function value 
on held out data sets. The 17 words used are:  (yeah, and, 
I, you, really, so, like, that, uh-huh, know, but, to, the, 
right, oh, my, just). Feature mapping and T-norm were 
also applied. 

 
3.2 Prosodic  
 
The second set of features is based on prosodic 

measurements, such as pitch, energy and durations. The 
aim here is to capture information about speaking style 
and cadence.  

 
Pitch and Energy Distributions. [7] To capture the 

characteristic distributions of a speaker’s pitch and energy 
values a simple GMM-UBM classifier was used with a 
feature vector consisting of per-frame log pitch, log 
energy and their first derivatives. Voice/unvoiced 
boundaries were respected when computing delta 
parameters.  

Pitch and Energy Track Dynamics. [7] To model pitch 
gestures (joint pitch and energy dynamics), we converted 
the pitch and energy contours into a sequence of tokens 
reflecting the joint state of the contours (rising or falling) 
and then applied simple n-gram tools to model and 
classify distinctive token patterns from token sequences. 
In addition to the direction of the contour, the duration of 
the segment can also be integrated into the symbol 
sequence to provide a better characterization of the 
speaking style of the speaker, i.e., how long the speaker 
maintains certain dynamic configurations. Since we are 
using n-grams to model the sequence, we quantized the 
segment durations into 2 levels: Short and Long. Such 
quantization is performed separately for voice and 
unvoiced segments. We set the quantization levels using 
the mean of segment durations from held-out data. Short 
is assigned to voiced segments with duration less than 8 
frames, and for unvoiced segments with less than 14 
frames. Thus each segment symbol is now augmented 
with an additional duration tag: S and L, depending on if 
it is less than or more than a certain number of frames in 
duration, respectively.  Additionally phone and word 
context can be added to these measures but was not used 
in this evaluation. 

 
3.3 Phonetic 
 
This set of features is focused on capturing speaker 

information carried at the phonetic level, primarily 
pronunciation characteristics. 
 

GMM state N-grams [8] In this approach the sequence 
of GMM states is used to characterize the sub-phonetic 
patterns of a speaker. To do this speech is passed through 
a GMM tokenizer that produces a stream of symbols 
corresponding to the frame-by-frame indices of the 
highest scoring GMM component. A speaker is then 
modeled using a simple unconditioned (joint) n-gram 
model. A background model is also created using a set of 
held out speakers. During recognition, a likelihood ratio 
test between the speaker and background model for an 
input sequence is applied.  

Phone N-grams. [9] In this approach, the time 
sequence of phones coming from a bank of open-loop 
phone recognizers is used to capture some information 
about speaker-dependent pronunciations. Multiple phone 
streams are scored independently and fused at the score 
level. Again, n-gram models and a likelihood-ratio 
classifier are used. 

Phone SVM. [10] In this new discriminative system, a 
kernel for comparing conversation sides based upon 
methods from information retrieval is applied. Sequences 
of phones are converted to a vector of probabilities of 
occurrences of terms and co-occurrences of terms (bag of 
unigram and bag of bigrams). A weighting based upon a 
linearization of likelihoods is then used to compare 
vectors for SVM training. A background for the SVM 
consisted utterances taken from speakers not in the 
current split. 

Pronunciation Modeling. [11] The aim here is to learn 
speaker-dependent pronunciations by comparing 
constrained word-level automatic speech recognition 
(ASR) phoneme streams with open-loop phone streams. 
The phonemes from the CMU Sphinx 3.3 ASR word 
transcripts were aligned on a per-frame level with open-
loop phoneme transcripts. Conditional probabilities for 
each open-loop phone, given an ASR phoneme, are 
computed per speaker and for a background model. A 
likelihood ratio test between the two models is applied in 
testing. 
 

3.4 Idiolectal 
 
The focus here is to capture high-level information 

about the word usage (idiolect) of a particular speaker. 
This is the speech analog to various methods of author 
identification, where writers are characterized by their 
written texts. 

 
Word N-grams. [12] In this approach, unconditioned 

n-gram models of word transcripts from an ASR system 
of several conversations from a speaker are used to model 
the speaker’ idiolectal patterns. A background idiolect 
model from a large population of held-out speakers is 
used to characterize general idiolect patterns, and a 
likelihood ratio text between the two models is used for 



testing. It is particularly interesting that reasonable 
performance can be obtained even using a highly errorful 
transcript (approx 50% word error rate). T-norm was also 
applied using speakers from held-out sets. 

 
3.5 Dialogic 
 
The aim with these features is to capture long-term 

interaction patterns that can help characterize a speaker.  
 
Conversational Pattern N-grams. N-grams from 

conversational patterns, an additional level of linguistic 
information, are extracted from the transcripts for training 
and testing. Intuitively, we know that different speakers 
behave differently in conversation. Some people tend to 
dominate conversations; others work to get a word in 
edge-wise. Speakers may take turns dominating a 
conversation. This system is based on a simple but novel 
n-gram notation that is intended to pick up on these kinds 
of behavioral patterns in conversation. The conversational 
patterns are represented with a very simple notation that 
indicates the duration and amount of text content in the 
speech transcript for each utterance. Although we only 
have the transcript for the test/target speakers, we are able 
to infer the duration of the other speakers' part of the 
conversation. The simplest form of notation we tried was 
to just mark the duration of the turns. Additionally, for 
the test/target speakers we also assigned labels for the 
amount of text in the transcript (a crude measure of 
speaker's "baud rate"). To construct the label, we use the 
labels that represent duration, number of bytes, and 
number of words. 

 
3.6 Semantic 
 
The last level of information, semantic, is the more 

specialized one and not pursued for the EDT. Given time-
specific, world knowledge of a person’s current interests 
or needs, one could construct a classifier looking for 
particular topic-related words or phrases to use in 
conjunction with the other classifiers. For example, from 
previous emails, a call-center may know that a particular 
person is having trouble with billing for phone service, 
and so a call inquiring about the topic of billing problems 
would more likely be from that particular person. 

  
3.7 Fusion 
 
The scores from the systems were fused with a 

perceptron classifier using LNKnet [13]. The perceptron 
architecture chosen has N input nodes (where N is the 
number of systems being fused), no hidden layers, and 
two output nodes (target and nontarget). Input values to 
the perceptron were normalized to zero mean and unit 

standard deviation using parameters derived from the 
training data. The perceptron weights were trained with 
10-fold jacknife for each of the training conversation sets 
{1, 2, 4, 8, and 16}. The classifier corresponding to the 
number of training conversations is then used to fuse 
scores from systems. A more detailed description of the 
fusion system and other experiments on the NIST EDT 
2001 data can be found in [14]. 

 

4. Results on 2003 EDT 
 
In this section we present results of applying the above 

systems to the 2003 EDT. A list of the systems used in for 
system fusion experiments is shown in . These 
systems were selected to span the different levels of 
information. For analysis purposes, we will group the 
above systems into spectral and non-spectral based 
systems. The spectral based systems are systems 0, 1 and 
2. The non-spectral are systems 3-9. 

Table 1

Table 1: Systems used in fusion experiments 

System 
Number Component System Descriptions 

0 GMM-UBM Baseline 
1 Text-Constrained GMM-UBM 
2 LPCC SVM 
3 Phone SVM 
4 Word n-gram (baseline idiolect) 
4t Word n-gram with T-norm 
5 Phone n-gram 
6 Pitch & Energy GMM 
7 Slope & Duration n-gram 
8 Pronunciation 
9 Conversational Patterns n-gram 

 
4.1 System Combination Results  
 
 In  we show the equal error rate (EER) as a 

function of number of training conversations for the three 
individual spectral systems as well as the fusion of the 
three. The best single system is the SVM but we see a 
significant gain in fusing all three systems. This 
complementary fusion of the generative and 
discriminative systems was also observed in the standard 
NIST speaker detection evaluation. While all systems 
improve with increasing number of training 
conversations, the text-constrained GMM-UBM system 
benefits the most. It is likely that the spectral systems 
continue to improve with the number of training 
conversations due to increased session and channel 

Figure 2



variability in the training data rather than the increase in 
amount of training data. 

In , we show the EER as a function of number 
of training conversations for the non-spectral systems. 
Note that T-normed results are not shown here. The best 
single performing system is the phone SVM followed by 
almost identical performance for the phone n-gram and 
pronunciation systems. We believe the pronunciation 
system was hampered by some poor phoneme alignments. 
The word n-gram and conversational patterns n-gram 
systems have the largest gains with increasing number of 
training conversations, which is not unexpected since 
they rely on using events that are not as frequently 
occurring as other features. We also see again that the 
fusion of these different levels of information produces a 
gain in performance over the individual systems.  

Figure 3

Figure 3: EER vs. number of training 
conversations for non-spectral systems. 

 
 

 

Finally, in , we show the EER versus the 
number of training conversations for the spectral, non-
spectral, fusion of all and minimum DCF search ‘oracle’ 
system. The oracle system is an exhaustive search over all 
system combinations to find the set that minimizes the 
DCF value and is meant for diagnostics purposes to see 
which systems contribute the most.  

Figure 4

The spectral systems outperform the non-spectral 
systems, but the gap is relatively small for 8-16 
conversation cases. We also see, as was the case from the 
SuperSID workshop, that the combination of spectral and 
non-spectral systems improves the overall error rate. The 
gain is not as great as observed with Switchboard-I data 
[1], but this is most likely due to more handset mismatch 
conditions in the Switchboard-II dataii.  Figure 2: EER vs. number of training 

conversations for spectral systems. 

                                                           
ii In Switchboard-II, callers were required to use a different phone 
number when placing an incoming call, thus presumably increasing the 
handset variability of the data. Switchboard-I did not have this 
requirement and so had less handset variability.  



 

Figure 4: EER vs. number of training 
conversations for fusion of spectral and non-spectral 
systems.  

The complete Detection Error Tradeoff (DET) curves 
for the all-system fusion are shown in Figure 5. A post-
evaluation experiment determined that we could reduce 
the EER for 8-conversation training to < 1%. 

 
Figure 5: DET curves for the all-system fusion. The 

boxes represent 95% confidence regions for the EER 
and min DCF operating points. 

4.2 Matched and Unmatched Analysis  
 
It is well known that better speaker recognition 

performance is expected when the training and testing 

data come from a common handset (matched conditions). 
While we do not have explicit handset information, we do 
have coded versions of the telephone number used for 
each call, from which we can assume that a different 
phone number implies a different handset.  

For the 8 conversation training condition, we defined a 
matched target trial as the case when the telephone 
number of the test conversation matches any one of the 
telephone numbers used by the target in his/her training 
conversations. An unmatched trial is when there is no 
overlap between train and test telephone numbers. 
Generally, all non-target trials will be unmatched trailsiii. 
For the 8 conversation training condition, approximately 
50% of the target trials were labeled as matched 
conditions. 

In  we plot DET curves from the 8-
conversation all-system fusion for matched, unmatched 
and all target trial cases. The non-target trials are constant 
for each curve. For the matched target trials the EER is 
0.6%, compared to 1.5% for the unmatched target trials 
and 1.2% for all target trials.  

Figure 6

Figure 6: DET curves for the 8-conversation train 
all-system fusion. Curves for matched and unmatched 
target trial conditions are shown. 

matched

all

 

unmatched

A break down of EER for matched and unmatched 
cases from the spectral, non-spectral and all-system 
fusion systems is shown in . Here we see that all 
systems have a loss in performance under the unmatched 
case. We also see, however, that the fusion of spectral and 
non-spectral systems shows improved performance under 

Figure 7

                                                           
iiiThis does not occur when speakers share a common phone number. 



the matched and unmatched cases.  Additionally, the 
relative loss in ERR going from matched to unmatched 
for the non-spectral system is slightly better than that of 
the spectral systems. The non-spectral system was not as 
robust to the handset mismatch as was hoped. This is not 
totally unexpected, since the non-spectral features (pitch, 
phones, words) are derived at some point directly from 
the acoustic waveform and so are subject to the biases 
induced by varying handsets. Current work is focused on 
better understanding these biases and examining ways to 
mitigate their effects in the non-spectral features.  
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Figure 7: EER from spectral, non-spectral and all 

system for matched and unmatched cases. 

5. Conclusions and Acknowledgements 
 
In this paper, we have outlined some of the recent 

trends and systems aimed at moving beyond low-level, 
short-term spectra by exploiting high-level information 
for speaker recognition. These systems focus on capturing 
speaker habits and idiosyncrasies as manifest in different 
aspects of speech. Even at low error rates, it was shown 
that there is still significant benefit in combining 
complementary types of information. An initial analysis 
of the data for matched and unmatched target trials, 
shows there is still significant loss under mismatched 
conditions, but fusion of different levels of information 
still is beneficial. Further work is aimed at a more detailed 
error analysis to better understand under what conditions 
different information sources best help performance. The 
aim would be to learn how to better combine systems.  

The authors wish to thank Andre Adami of OGI for 
running the prosodic experiments and David Klusácek of 
Charles University for running the pronunciations 
experiments. 
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Abstract 

Large-scale biometric testing has a history of at least 25 years.   However, each test has 
used different testing and reporting protocols, making results very hard to understand and 
causing longitudinal comparison of biometric device and system performance to be 
impossible.  Working Group 5 of the ISO/IEC JTC1 Standing Committee 37 on 
biometrics has been established to address these variances in the hope that a single test 
and reporting standard can be developed.  But many within the field feel that a single 
“standard” might not be possible.  In this talk, we will review historical testing and 
reporting protocols, point out the areas of controversy, and analyze in detail the recent 
UK contribution to the SC37 WG5 process. 
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