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Introduction and Welcome

The proliferation of information access terminals, coupled with the increasing use of information
sensitive applications, such as electronic commerce and health care, has triggered a real need for reliable,
user-friendly, and commonly acceptable control mechanisms for accessing private and confidential
information. The goal is to protect the individuals who use such applications as well as the organizations
offering them. The conventional means of identity verification for access control such as passwords,
personal identification numbers, passports, and identification cards can easily be compromised. In view of
this, it appears that the required level of reliability in determining the identities of individuals may only be
achieved through the use of biometrics.

Many applications concentrate on one biometric modality only (for example, fingerprint or iris-
scan) due to their high discrimination power. However, the suitability of each modality to a given
application depends on various factors including the attitudes of users and their personalities as well as
the operational environments and conditions. Authentication systems that are required to be robust in
natural environments (e.g., in the presence of noise and illumination changes) cannot rely on a single
modality. In addition, a single modality is not always appropriate, convenient, or available. Thus, fusion
with other modalities is essential. Successful integration of multiple biometric modalities must be based
on a thorough understanding of the individual sensing technologies and modalities and of their
interaction.

Developing such systems requires advances in many different recognition and verification
technologies, including those based on analyzing speech, vision, and behavior. Most importantly,
advancement in this field requires the creation of a community of researchers willing to work in an
interdisciplinary manner going beyond the well-established research communities. Speech researchers, for
example, need to go beyond their traditional area of expertise and interact with computer vision or human
interface researchers. Multimodal databases have to be collected and interdisciplinary research needs to
be pursued. Finally, careful evaluation and assessment of multimodal systems has to take place.

The interdisciplinary nature of multimodal user authentication led us to organize this workshop
with the specific goal of providing a forum for researchers from different disciplines to help establish
collaborations and partnerships and to promote the sharing of information and cross-discipline research.
The workshop is supported by a University of California Discovery Grant from the Industry-University
Cooperative Research Program and a sponsorship from France Télécom R&D. It is held in cooperation
with the International Speech Communication Association (ISCA), EURASIP and the IEEE Signal
Processing Society.

We would like to give special thanks to the three invited speakers (Josef Bigun, Gary Strong and
James Wayman), who all accepted with enthusiasm the challenge of preparing overview talks, and to
Jonathon Phillips (and the panelists) for organizing the panel discussion. Finally, our gratitude goes to the
workshop scientific contributors and the members of the International Scientific Committee for their help
in reviewing the submitted papers. It is also our pleasure to acknowledge and thank Tim Robinson from
the University of California, Santa Barbara, for handling the workshop submissions and for his precious
help in communicating with the authors and other important tasks.

We hope that this workshop will be successful from both a technical and social point of view and
that the contacts and discussions you will have will be beneficial for your future research or business.
Meanwhile, be sure to enjoy the beauty of Santa Barbara.

The Workshop Organizing Committee:
Jean-Luc Dugelay, Jean-Claude Junqua, Ken Rose, Matthew Turk
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U.S. Department of Homeland Security
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Signature with Text-Dependent and Text-Independent Speech for Robust Identity
Verification

B. Ly-Van*, R. Blouet**, S. Renouard**, S. Garcia-Salicetti*, B. Dorizzi*, G. Chollet**
* INT, dépt EPH, 9 rue Charles Fourier, 91011 EVRY France;
**ENST, Lab. CNRS-LTCI, 46 rue Barrault, 75634 Paris
Emails: {Bao.Ly van, Sonia.Salicetti, Bernadette.dorizzi}(@int-evry.fr;
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Abstract

This article addresses the setting up of a Biometric
Authentication System (BAS) based on the fusion of two
user-friendly biometric modalities: signature and speech.
All biometric data used in this work were extracted from
the BIOMET multimodal database [1]. The Signature
Verification system relies on Hidden Markov Models
(HMMs) [2], and we use two kinds of Speaker
Verification systems. The first one is text-dependent and
uses Dynamic Time Warping (DTW) [3] to compute a
decision score. The second one is text-independent and
based on Gaussian Mixture Models (GMMs) [4]. We first
present the BIOMET database and describe precisely the
two modalities of interest before giving a presentation of
each monomodal BAS as well as their performance
evaluation. We then compare performances of two
classical learning-based fusion techniques: an additive
CART-trees [5] classifier built with boosting [6], and
Support Vector Machines (SVMs) [7]. In particular, the
signature modality was fused with clean and noisy
speech, at two different levels of degradation. The impact
of noise in fusion performance is studied relative to that
of each of the speech experts alone.

1 Introduction

Many commercial applications require a step of
Identity Verification before accessing to a service or to
sensitive data. As the media and channels through which
the Identity Verification process takes place are becoming
more diverse, multimodal biometric authentication
systems could be used with convenience to improve user
security. Moreover, several studies have already proven
that combining  different biometric = modalities
significantly improves the performances compared to
system working with a single modality [8, 9]. We present
in this article a bi-modal biometric system based on two
well-accepted modalities: signature and speech. The two
main virtues of those modalities are their physical non-
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intrusiveness and their capabilities to be easily sampled
by personal computers or common electronic devices.
Indeed, smart phones, tablet PC and Personal Digital
Assistant (PDA) already allow the use of these two
biometric modalities.

Speaker Verification systems usually work either in
text-dependent or text-independent mode. In this paper,
we use these two Speaker Verification (SV) working
modes along with the on-line hand-written signature to set
up our multimodal BAS. Indeed, these two SV modes
may be very complementary for many applications. For
example, during a phone access to sensitive data the text-
dependent system can focus on keywords while the text-
independent system works on the whole client utterance.
Therefore, we finally have three different biometric
systems.

We perform score fusion of those 3 systems by means
of two different learning-based techniques: an additive
CART-tree [5] classifier built with boosting [6], and
Support Vector Machines (SVMs) [7]. SVMs have
already been successfully used on multimodal biometric
data [9, 10]. They have proven to be a powerful tool for
classification, and well-suited for applications in which
few data is available, as it is the case in identity
verification. Also, decision trees have successfully been
used to fuse the scores of biometric experts, for example
in [11]. Moreover, boosting is known to be a very
efficient tool to fit additive tree based classifiers [12]. It
significantly improves performance and is also well-
suited for applications with few training data. Hence, we
decided to use boosting to fit an additive CART-tree
classifier for multimodal fusion purposes. Finally, we
propose a comparison of these two fusion paradigms on
the BIOMET data, as well as a test of their robustness in
the presence of noise in part of this data. Indeed, the
capture of speech in a real life application is often done in
noisy conditions. It is therefore important to study the
impact of noise in expert scores fusion as recently done in
[13].

This paper is organised as follows: section 2 describes
the speech and signature data from the BIOMET



database. Section 3 gives the principles of the signature
verification expert, detailed in [14], as well as related
experimental results. Section 4 describes the two speech
verification experts. Fusion by additive CART-tree
classifier and by SVM are studied in Section 5, with clean
speech data first, and then with degraded speech data.

2. BIOMET brief description

BIOMET is a multimodal biometric database including
face, image, finger print, signature and voice. We exploit
signature and voice data from 68 people with time
variability, captured in the two last BIOMET acquisition
campaigns, which have a five months spacing between
them. More details on the BIOMET database can be
found in [1].

2.1 Signature data

The digitizer captures from each signature, at a rate of
200 samples per second, 5 parameters, including the
coordinates of each point sampled on the trajectory (x(2),
y(t)), the axial pen pressure p(?) in such a point, and the
position of the pen in space (azimuth and altitude angles).
The total number of genuine signatures available per
person is 15 and 12 impostor signatures, made by four
different impostors.

2.2 Speech data

Both speech sessions of the BIOMET database were
recorded in quiet environment and using the same kind of
microphone. Sampling rate is 16 kHz and sample size is
16 bits. In both sessions, each speaker uttered twice the
10 digits in ascending and descending order before
reading sentences. The amount of available speech for
each speaker is about 90 seconds by session.

3. Signature verification

3.1 Pre-processing and encoding signatures

There is noise in the data, on one hand due to the
parameter quantification performed by the digitizer, and
on the other hand its high sampling rate. Different
filtering strategies were thus chosen according to each
parameter, as motivated in [14]. Finally, 12 dynamic
parameters are extracted on each point of the signature.

3.2 Modelling signatures

As we have few signatures for training a signer's
HMM, we used Bagging [15] to produce an "aggregated
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HMM" of each signer's characteristics. Indeed, by
combining models learned on different samplings of a
given data set, one builds a model with a more complex
and more stable output. We generated 7 different training
sets, by sampling with replacement from the N original
signatures at disposal for training purposes. We thus built
T component models, which are T continuous left-to-right
HMMs [2] with 2 states and 3 gaussians per state. We
then computed a composite score S(O) on signature O, by
averaging the 7 output scores obtained from the
component models when a signature is presented.

We then built a classifier as follows: in order to decide
whether the claimed identity of signer i is authentic or
not, we compute the absolute difference of the composite
score S;(O) of his/her current signature O and the average
value S;* of the T" component models' output scores on
their respective training data set (we have T data sets);
finally, we compare this quantity to a threshold. Indeed, a
signature O is accepted if and only if:

| Si(0)-Si* | <7 (1)
where 7 is a global threshold, computed once for all
signers, on a devoted database, as explained in Section
3.3.

3.3 Experimental setup

In order to train each signer's aggregate model, all the
signatures of the third campaign are used (N=10
signatures most of the time per person). Following the
fact that the improvement of bagging is evident within ten
replications of the original training set [15, 16], we chose
T=10 as the number of component models to be used.

Among each signer’s genuine signatures, 10 out of 15
are used to train the corresponding aggregate model, as
described above. The remaining 5 genuine signatures and
the 12 impostor signatures may be devoted to compute the
global threshold 7 in (1), or to test the system, according
to the signer's number in the database: indeed, the
database of 68 clients was split in two databases B4 and
BT of 34 clients each: B4 to compute the thresholdz, and
BT to test the system once the threshold has been
computed.

The optimal threshold is computed on BA following
two criteria: the Equal Error Rate (EER) corresponding to
FA = FR, FA being the False Acceptance Rate and FR the
False Rejection Rate, and the minimum of the Total Error
Rate (TE), that is the number of errors made by the
system (of type FA and of type FR), over the total number
of signatures (genuine signatures and forgeries as well)
presented in BA. As we use an aggregate model for each
signer, the optimal threshold is found on database BA as
follows: for each possible value of z, for each signature O
belonging to signer i of B4, the corresponding composite
score S(0O) is computed by averaging the 7=10 scores of



the T component models of signer i. Then the decision of
acceptance or rejection is taken according to (1).

The system is then tested on BT. Table 1 shows the
performance obtained for both criteria EER and TE on
such database, with the corresponding 95% confidence
interval [17].

Table 1. Global performances of signers'
aggregate models

Criterion TE (%) FA (%) FR (%)
EER 11.1[+2.6]] 9.5[+3.0]] 14.8 [+5.4]
Minimum TE | 11.9[£2.7]] 8.9 [+2.9]] 20.1 [£6.0]

Roughly, we notice that the signature expert presents a
Total Error Rate of around 10% (with both criteria EER
and Minimum 7FE), with a rather large confidence
interval. This result can be explained by the low number
of samples available in the BIOMET database compared
to other on-line signature databases [18]. Generally, this
difficulty is indeed inherent to personal identity
verification applications: one can hardly imagine building
very large databases of biometric data for each
application. Also, the signature modality, contrary to
other biometric modalities, has the particularity of
forgeries that are made by impostors that intentionally
imitate the genuine signatures which increases this
difficulty.

4. Speech verification

4.1 Introduction

Speaker Verification systems decision is mostly based
on a simple hypothesis test between two hypotheses

H,and H; with:
H,:
H;:

Hence, the score is usually based on two similarity

measures and the claimed identity is confirmed according
to:

X has been uttered by A

X has been uttered by another speaker

> B accept A

<PBrejectr

log

D, X) } -

D ; (X)

where D, (X) and D;(X) are respectively the

similarity measures of the speech utterance X

conditionally to H,and H; and g is the decision

threshold. As described in Section 4.2, the text-dependent
Speaker Verification system relies on Dynamic Time
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Warping (DTW) [3] to compute D, (X) and D (X). In
the text-independent approach, as described in Section
4.3, D, (X) and D (X)respectively correspond to the

probability density functions P,(X) and P;(X)

associated to the densities of H, and H, given X.

The state-of-the-art approach consists in using Gaussian
Mixture Models (GMMs) [4] to estimate those densities.

The same kind of acoustic analysis is used in the text-
dependent and text-independent approach. Every 10ms,
we first extract from each 20ms frame of speech a 32
dimensional acoustic vector composed of 16 mel-scale
filter bank cepstral coefficients augmented by associated
delta coefficients. Delta cepstra are computed over + 2
feature vectors.

4.2 Text-dependent Speaker Verification

In the text-dependent Speaker Verification system, the
decision score is based on the DTW [3] distance between
the training sequence X, of 4 digits with an utterance X of
the same sequence of digits. As in [19], we use a cohort

of speakers to compute D-(X). For each client %, the
cohort is composed of a set /; ={X;... Xy} of K speech
segments of speakers uttering the same sequence of digits.
D, (X) is the mean over I;of the log-DTW distance

between X and X, with k=/...K. D, (X) corresponds to

the log-DTW distance between X and X, . The decision
score for a test sequence corresponds to the subtraction of

log(D, (X)) with log(D; X)).

4.3 Text-independent Speaker Verification

In the text-independent Speaker Verification system,
we use a single speaker-independent model to represent

P-(X) . This model, also called UBM [4], corresponds to

a 256 components GMM with diagonal covariance
matrices. Each client model is obtained by a mean-only
Bayesian adaptation of the UBM [4] using associated
training speech data. The decision score for a test
sequence corresponds to the mean log-likelihood ratio
computed on the whole test utterance.

4.4 Experiments on speech data

4.4.1 Evaluation protocol. In both text-dependent and



independent Speaker Verification systems, the client or
target speaker set is composed of 68 speakers from the
BIOMET database. For the text dependent system, the
training data for a target speaker is one utterance of 4
digits (about 2s of speech). The cohort of speakers is
composed of 50 utterances of the same digits. Test data is
composed of 5 genuine accesses and 12 impostor

accesses. In the text-independent system, P;(X) is

trained using the whole speech data available in the
BIOMET database (about 4 hours of speech). Half of
these 4 hours of speech are uttered by speakers that are
not impostors nor clients. Each client model is adapted
from the speaker using the 10 digits utterance (about 15s
of speech). Test data is composed of a segment of speech
of approximately 15s, taken from read utterances. The
training speech material is based on digit vocabulary and
the test speech material is based on uttered word. For each
speaker we performed 5 genuine and 12 impostor
accesses. Both systems have been evaluated under 3
different conditions of noise in test utterances: without
noise, with a gaussian white noise of -10dB, and with a
gaussian white noise of 0dB.

4.4.2 Results. Performances of text-independent and text-
dependent Speaker Verification systems are given
respectively in Table 2 and Table 3.

Table 2. Performances of the text-independent
Speaker Verification system

Boosting permits to construct efficient additive
modelization from a so-called weak learner. This weak-
learner here corresponds to a classical binary tree built
with the CART [5] algorithm. This algorithm permits one
to construct a tree by recursive split of the observation
space, here corresponding to the 3-D scores space of the
signature modality expert and both speech verification
experts.

For instance, as shown in Figure 1, R* is split in R*'and
R*" when maximizing AH:

AH =HR"*)-p,HR ') -p, HR “")

where H(Rk), H(Rk’l) and H(Rk’r) are entropies
of
nodes R, R*'and R*" with:

H(R) = p, (R) - log(p, (R))+ p- (R) - log(p- (R))

N ! N ks N, (R")
=——,p, = ——and R) = 22—~
pl Nk pr Nk pk( ) N(R k)

in which N*, N*" and N* are respectively the number of
observations in nodes Rk'l, R*" and Rk, and N, /1(Rk) is the

number of observations of class A in R,
In our experiments, a node R is split only if N*> 50.

The score Si associated to each vector s=[s;, s, s3] is

p(Als)
S = iy As)=p, (R
; OgP(MS) p(As)=p,(R)

p(ﬂs) =p;(R) if s is affected to the region R by the

with and

SNR  [Criterion | Error (%) FA (%) FR (%)
without |EER 7.3 [£2.2]| 5.8 [+2.4]|10.7 [+4.7]
noise |Min. TE | 6.3 [+2.0][ 2.0 [+1.4]|16.0 [£5.5]
10 dB EER 12.0 [£2.7]13.2 [£3.4]| 9.5 [+4.4]
Min. TE | 8.0 [+2.3]| 2.0 [+1.4]]23.2 [+6.4]

0dB EER 29.4 [+3.8]|34.0 [+4.8][19.0 [+5.9]
Min. TE |17.0 [£3.1]| 6.0 [+2.4]]45.0 [£7.5]

Table 3. Performances of the text-dependent

Speaker Verification system

SNR  |Criterion | Error (%) FA (%) FR (%)
without [(EER 13.5 [£2.9]]16.4 [£3.7]| 7.1 [£3.9]
noise Min. TE |10.3 [£2.6]| 7.6 [+2.7]|17.0 [£5.7]
10 dB EER 16.0 [£3.1][19.8 [+4.0]| 7.7 [+4.0]

Min. TE |11.9 [£2.7]| 7.8 [+2.7]|22.1 [+6.3]
0dB EER 21.2 [£3.4]|25.3 [+4.4]|11.8 [+4.9]

Min. TE |16.5 [£3.1]| 6.3 [+2.4]|42.0 [+7.4]
5. Fusion

5.1 Additive Tree Classifier
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tree.

Figure 1. An additive
tree classifier. The
observation space R is
split into two subspaces
R*'and R*".

for the next training ensemble.

Given CART, a one-tree
building algorithm, we
use RealAdaboost [20] to
fit an additive model. In
this iterative algorithm,
observations that have
been incorrectly
classified by the previous
trees in the training
ensemble are resampled
with higher probability,
leading to a new
probability  distribution

The fusion decision score S is then obtained as the

mean over all trees of S, .

5.2 Support Vector Machines



In few words, SVMs' goal is to look for a hyperplane
in a large dimension space which is considered because
the input data are not linearly separable in the original
space. We maximize the distance between the surface and
the data, which leads to good generalization performance.
Let X=(x;) be the data with labels Y=(y;) where y; = +1 or
-1 represents the class of each person, and @ is the
function which sends the input data X in the feature space
F. The distance between the hyperplane

Hwb)={xeF:<w,x>+b=0}

and X is called the margin 4. Following the Structural
Risk Minimization (SRM) principle, Vapnik [7] has
shown that maximizing the margin (or minimizing ||w]||)
leads to an efficient generalization criterion. One defines
in F the kernel K as:

Kxy) = <@(x), D(y)>

Thanks to this function, we avoid handling directly
elements in F. The optimal hyperplane is found by
solving, as shown in [7], a quadratic convex problem and,
from the optimality conditions of Karush-Kuhn-Tucker,
one can rewrite w in the following condensed manner:

w=2cor 0y Dx;) (3)

where SV = {i: a; > 0} denotes the set of support
vectors.

The choice of @ or equivalently K is very important in
order to obtain an efficient solution. Traditionally, one
chooses the Vapnik polynomial kernel
Kx,y)=<D(x), @(y)>" or the Gaussian kernel K(x,y)=exp(-
Alx-y||>). We have chosen a linear kernel (4 = I). Indeed,
the use of this type of kernel in a similar fusion case [8]
gave better performance, compared to other choices.

We will fuse the scores of the three experts, each
designed for the same person. We thus put at the SVM
three inputs, one per expert. The first one, for the
signature modality, given signature O, is:

(Si(0) - 8*)/o 4)

where S;(O) and S;* are defined in Section 3.2; ois the
average of the standard deviations ofi) computed for
person i in FLB as follows: we consider the scores given
by the T component models of person i on the T
corresponding genuine signatures data sets generated for
bagging; and we compute their standard deviation ofi).

The second and third inputs to the SVM are the

quantities log {D, (X)/D; (X)} in equation (2), where 2
and ; are respectively estimated in text-independent and
text-dependent modes described in sections 4.2 and 4.3.

5.3 Experiments

5.3.1. Fusion database. Following the same protocol as
the one of the signature framework, we split the database
of 68 persons in 2 subsets of 34 persons each,
respectively named FLB (Fusion Learning Base) and F7B
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(Fusion Test Base). For each person in FLB and FTB, we
have in general at disposal 5 genuine bimodal values and
12 imitation bimodal values.

5.3.2. Results. Table 4 presents the results of the different
verification systems (Signature, Text-independent (TI)
Speech, and Text-dependent (TD) Speech) as well as the
results of the two fusion systems (Additive Tree Classifier
(ATC) and SVM) for individuals of FTB, with the
corresponding 95% confidence interval. These results
have been obtained through a minimization of the global
error rate 7F.

Table 4. The performance of the fusion systems

Model TE (%) FA (%) FR (%)
Signature [ 11.9 [+2.7]| 8.9 [£2.9]/20.1 [+6.0]
Tl Speech | 6.3 [+2.0]| 2.0 [+1.4]]16.0 [+5.5]
Speech 175 Speech|10.3 [2.6][ 7.6 [22.7]] 17.0 [5.7
noise  |ATC 2.8 [£1.4]| 1.7 [+1.3]] 5.2 [+3.3]
SVM 2.7 [+1.4]] 1.3[+1.1]| 5.9 [+3.6]
Tl Speech | 8.0 [+2.3]| 2.0 [+1.4]]23.2 [+6.4]
SNR: |TD Speech|11.9 [+2.7]| 7.8 [+2.7]|22.1 [+6.3]
10dB  [ATC 2.9 [+1.4] 2.5 [+1.6]| 3.9 [+2.9]
SVM 2.9[+1.4]] 1.9[+1.4]| 5.3 [+3.4]
Tl Speech [17.0 [£3.1]| 6.0 [£2.4]]45.0 [£7.5]
SNR: |TD Speech|16.5 [+3.1]| 6.3 [+2.4]|42.0 [+7.4]
0dB ATC 6.7 [+2.1]| 4.7 [+2.1][11.2 [+4.8]
SVM 5.8 [£2.0]| 2.4 [£1.5]|13.6 [+5.2]

Roughly, we notice that in all cases, fusion reduces
error rates of the best monomodal system by a factor 2.
Also, it appears that the ATC and the SVM are equivalent
in these experiments, in all the configurations here
considered (clean or noisy environments). Finally, both
fusion systems here studied show a good robustness to
noise.

6. Conclusions

In this article, we have shown that the use of data
fusion allows to improve significantly the performance of
three unimodal identity verification systems. Indeed, we
had at our disposal one signature and two speaker
verification systems. We compare an Additive Tree
Classifier (ATC) and a SVM on the BIOMET multimodal
database and also study their robustness to the presence of
noise in speech data. Two levels of degraded speech data
were considered. It appears that the ATC gives very good
results, equivalent to those of the SVM, and that in clean
or noisy environments. This shows the importance of the
boosting algorithm here used to build the ATC. Also,
both fusion systems are resistant to the presence of noise.
Indeed, in the best conditions, the Total Error Rate is
around 2.8% for both fusion systems, and this rate is



hardly lowered (to 2.9%) in the presence of noise at -10
dB. These results are encouraging, since few data is used
to train the fusion systems.
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Abstract

In this paper, we present a voice-centric multimodal
user authentication system called “BioAxs” that was
deployed at our facility to provide fast and convenient
physical access control to the laboratory. After discussing
the convenience and robustness features present in the
system, we describe the core components of the speaker
verification engine that revolves around a real-time
passphrase spotting strategy. Finally, we describe the
multimodal authentication procedure and conclude with
experimental field results obtained over a period of 14
months.

1. Introduction

The BioAxs Project initially started as a research and
development framework for the study and improvement
of PSTL’s core speaker verification technology under real
conditions. One of the major requirements for this study
was the ability to collect and process a large amount of
data under real conditions. For that reason, the task of
physical access control that could be used by all
employees on a daily basis for entering the building was
selected. Based on the initial feedback from a first
prototype, the approach rapidly evolved into a multimodal
user authentication system with a mandate centered on
user convenience and robustness. Currently, the system
that is located at the building’s main entrance door
services an average of 140 authentication requests per day
for about 35 enrolled users.

2. Mandate and system overview

During the early stage, it became apparent that, in the
context of our task, a fast and robust interaction model
was a necessity. Convenience became therefore a
primary concern for success since employees could
always resort to using their key to enter the building. An
access terminal housing two biometric modalities
(fingerprint and voiceprint) and one non-biometric
modality (keypad) was built and installed outside near the
main entrance door (first prototype deployed in April
2002). Figure 1 shows a picture of the actual biometric
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terminal. The terminal is connected to a desktop computer
located inside the building via a USB connection.

The access terminal can run in monitoring mode or in
user mode. In monitoring mode, the terminal monitors the
three sensors in parallel to provide multimodal access
control. As explained later in more detail, the
authentication procedure enables single modality user
authentication for fast interaction, and multi-modality is
used to provide smooth uncertainty recovery. In user
mode, the terminal allows users to manage their account
and to run commands. In that mode, users must first login
by entering their 10-digit account number. Once
recognized, authorized users can, for instance, enroll (or
re-enroll) their voiceprint as well as adapt their existing
voiceprint. This self-service mode does not require the
need for a system administrator. The system is available
to all employees and to a selected number of frequent
visitors (e.g. employees of United Postal Service).

Figure 1. Picture of the biometric terminal showing (1)
the fingerprint scanner, (2) the microphone, (3) the
keypad, (4) the LED rack, and (5) the loudspeaker
components.

3. Overview of the user convenience and
robustness features

Convenience, performance, and robustness are primary
concerns for global acceptance in real-world applications.



In that respect, a multimodal strategy is specifically
advantageous to deal with:

= User preferences: Some users may dislike a given
modality or may feel uncomfortable in providing
biometric samples for it.

= Disabilities: Some users may not be able to interact
with all the modalities due to physical or mental
disabilities.

= Redundancy: The environment may render some
modalities unusable (e.g. loud noise in the case of
voiceprint verification) or the user may be temporarily
impaired (e.g. dirty or cut finger in the case of
fingerprint verification).

= Verification uncertainties: All modalities have
limitations that can be characterized by their respective
False Acceptance Rate (FAR) and False Rejection Rate
(FRR) distributions. By combining multiple modalities
together, verification uncertainties can be virtually
eliminated.

Modalities can be categorized based on their activation
requirements. Modalities such as fingerprint and keypad
require contact and inherently bundle the activation and
verification phases into a single step. On the other hand,
modalities such as speaker and face verification only
require proximity. The proximity paradigm can offer
maximum user convenience 1) when the modality does
not require some type of external activation and 2) when
the proximity constraints are not too restrictive. To
provide users with a fast and convenient interaction
model, a speaker verification engine was therefore
developed based on the following main features:

= Contact-less activation: The system monitors the audio
channel continuously without the need for explicit
activation such as a push-to-talk button for instance.

= Far-talking microphone: Users can either speak while
standing by the biometric box or, more conveniently,
they can speak to it as they are approaching; the typical
operating range is between 1 and 10 feet.

= Password-dependent voiceprint modeling: Users can
register the voice passphrase of their choice to enter the
building. The passphrase is used as an active trigger
mechanism that allows people (including registered
users) to maintain normal conversations in the vicinity
on the box.

= Password-spotting input mode: Because the biometric
box is located outside the building and is equipped with
a far-talking microphone, an input strategy based on
automatic endpoint detection was found unreliable in
coping with extraneous noises (e.g. street, air
conditioning equipment) and babble noise. A spotting
strategy is not affected by endpoint errors. User
convenience is therefore increased at the expense of an
additional burden on the acceptance/rejection module
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especially in the case of short passwords (e.g.
“California”).

= Robust speech front-end: A speech front-end based on
sub-band analysis [1] was developed. It incorporates
normalization techniques 1) to deal with stationary
noises via dynamic spectral band weighting and 2) to
increase the robustness with respect to the distance to
the microphone via a short-term spectral energy
normalization algorithm.

4. Overview of the speech front-end

The speech front-end is based on a sub-band analysis
module that generates a power spectrum from the audio
stream sampled at 8KHz and filtered with a pre-emphasis
coefficient of 0.98. A spectral vector composed of M
equally distributed frequency bands is computed every 20
milliseconds (32 bands are typically used for a frequency
resolution of 125Hz). Each frequency band is then
rescaled using eighth root compression. The front-end
only generates static features. Experiments showed that a
better accuracy could be obtained with 32 static
parameters rather than 16 static and 16 dynamic
parameters. The front-end also estimates the average
background noise using a decaying average procedure
that provides a frequency weighting factor w;/t/ for each
band 7 and instant . The algorithm uses energy-dependent
forgetting factors in order to limit the influence of speech
in the estimation process.

To preserve and exploit the redundant information and
specificity of the voice contained in the audio signal no
cepstral transformation, de-correlation or dimension
reduction is performed. In contrast, other analyses such as
fifth order PLP [2] tend to purposefully discard some of
the speaker’s characteristics.

The frequency band weights mentioned earlier are
used at matching time during local distance computation
to minimize the impact of the ambient noise. Every 20
milliseconds, energy normalization is performed over a
Time Spectral Pattern (TSP) of 300 milliseconds by
computing a local loudness factor £/#] as follows:
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where x;/t] and w;ft] represents, respectively, the
compressed spectral value and the weighting factor at
instant ¢ for band i. The final energy-independent
parameter vector y/t/ is then computed as follows:

yilt]=([r]- Ele])/ £]

Figure 2 shows a 3D graphical view of the resulting
analysis for the phrase “Beautiful Day”. The front-end
provides the w//, x/] and y/] streams to the enrollment



and verification procedures. The x// stream which
preserves the original loudness information of the speech
is solely used for the purpose of automatic endpoint
detection at training time.

Figure 2. 3D view of the speech analysis y/t] generated
by the front-end module for the phrase “Beautiful Day” that
shows the evolution of the normalized frequency spectrum
(32 bands) over time.

5. Text-dependent voiceprint modeling

The enrollment of a new speaker requires five
repetitions of a user-selected passphrase and resembles
the training procedure of a speaker-dependent word
model. Table 1 shows some of the typical passphrases
enrolled with the system. It is important to notice that
most users prefer to use short passphrases.

Table 1. List of typical user-selected passphrases

California Garden View

7423 Smoking Gun

Osaka Japan Copenhagen

Beautiful Day West Virginia

Geronimo Treasure Island

A voiceprint model is built by first finding the central
repetition using a Dynamic Time Warping (DTW)
alignment algorithm. The central repetition is the
repetition for which the average alignment distance with
respect to all the other repetitions is minimum. The model
is then computed by aligning each repetition with the
central repetition, and by averaging the sets of aligned
parameter vectors. The interactive enrollment procedure
verifies however the integrity of the repetitions at each
step by building temporary voiceprint models. If the
alignment score of a new repetition with respect to the
partial model is too low, it is then discarded and the user
is re-prompted. If the mismatch occurs on the second
repetition, the enrollment procedure is restarted from the
beginning.

A voiceprint adaptation function is also available to
improve the robustness of the model with speech data
from separate sessions. That function must currently be
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initiated by the users themselves (i.e. via supervised
adaptation). Actual statistics show that about 35% of the
enrolled users are using that feature.

6. Voiceprint detection and verification

The detection and verification tasks are performed in
parallel and in real-time. Figure 3 summarizes the general
process that relies on the following three core modules:

1) The Measurer module performs frame level matches
and provides two types of local similarity scores,

2) The Aligner module performs template level matches
for all active voiceprint models,

3) The Spotter module monitors template score
trajectory curves in order to accept or reject
hypotheses.

As detailed below, the Aligner uses the analysis stream
to generate passphrase-dependent data streams which are
in turn monitored by the Spotter.
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Figure 3. Block diagram of the detection and verification
process.

6.1. The Measurer module

To estimate the degree of similarity between a model
frame M’ (" parameter frame of voiceprint model ) and
a test frame 7, the Measurer computes 1) a frame
recognition score S, and 2) a frame verification score S,.
The biometric information about the speaker is contained
in both scores. The recognition score is computed as the
Euclidian distance between the two frames and is

weighted by the dynamic frequency band weights as
follows:
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The recognition score is used for template detection by
the Aligner. On the other hand, the verification score
measures more specifically the degree of similarity to a
specific voice and is computed as follows:

S 5T]-S[MLT
a1y ST =S4T
SV[*,T]+SV[M]',T]

where S,[*,T] represents the background recognition

score of test frame T. It is estimated by first matching the
test frame 7 against all the parameter frames of all
voiceprint models and is determined as follows:

S [*Tl=ur-w-or

where ur and or respectively represent the mean and
standard deviation of the recognition score distribution
and o is a control coefficient which was experimentally
adjusted to 1.4. The verification score has a value ranging
from -1.0 (high dissimilarity) to +1.0 (high similarity).
The verification score tends to map non speaker-specific
frames to the neutral value 0.0.

6.2. The Aligner module

Matching
Score

Figure 4. 3D view of the endpoint-free alignment process
between a text-dependent model of the passphrase
“California” and the test utterance “Santa Barbara
California”.

The Aligner performs matches at the template level.
Pattern matching is performed continuously and in
parallel for all active voiceprint template models. The
Aligner computes, at each instant # and for each template
model, a set of scores that correspond to the best
alignment of the template when constrained to end at
instant z. More specifically, a template recognition score
and a template verification score are generated using a
DTW algorithm. The search procedure uses a speech
recognition criterion exclusively (i.e. speech recognition
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is preferred over speaker verification during the
alignment). Alignment penalties are used to account for
insertions and deletions when computing template
recognition scores. Template verification scores are
computed in parallel with the recognition-centric search
but alignment penalties are not used in this case.

Figure 4 shows a 3D view illustrating the endpoint-free
alignment process. The valley-shaped depression crossing
the template model shows the portion of the signal where
a good match for passphrase “California” is measured.

6.3. The Spotter module

The Spotter is responsible for the actual detection of
enrolled voiceprint templates. This task is achieved by
monitoring the voiceprint-dependent score trajectory
curves generated by the Aligner. These curves typically
exhibit a stable area which corresponds to the alignment
of the templates against the background noise (i.e. when
pattern has not been spoken). That stable value is
template-dependent and referred to as “idle score” later. It
is continuously estimated and updated by delayed
decaying average to account for template duration.

The spotting strategy is based on the principle of
relative emergence. The Spotter measures the global
emergence of each voiceprint model at each instant. The
global emergence is computed as a combination of 1) the
recognition emergence and 2) the verification emergence.
If the global emergence exceeds a given threshold, a
detection event is sent to the application, otherwise silent
rejection is performed. The emergence of trajectory S/7] at
instant ¢ is defined as:

Enl)=(£(S1)/ £S10))*

where S[¢] represents an estimate of the trajectory’s idle
score, where f() is a transformation function that maps
scores into distance-like values (the recognition and
verification scores are currently remapped with affine
transformations), and where a is a compression/expansion
exponent currently set to 0.5.

The emergence principle has the property of
normalizing the score trajectories. The normalization
compensates 1) for the static differences between
templates that are due to differences in phonetic content,
and 2) for dynamic differences that occur under different
noise conditions. Static differences are more specifically
explained by the fact that each phoneme in the language
(e.g. °s°, ‘zh’, ‘ah’) responds differently in terms of mean
score distribution when matched to a given stationary
background noise. This natural bias is therefore
automatically compensated for. Figure 5 shows the global
emergence trajectory curves obtained for a male speaker
with respect to his own voiceprint template under three
different noise conditions. Brown noise was added to the



original audio file (measured at 12 dB SNR) to generate
the 8 and 3 dB SNR cases. In the example, the Spotter
could detect and verify the true user’s speech at 12 and 8
dB SNR but could not detect it at 3 dB SNR. If voiceprint
detection should occur, the shape of the trajectory
typically starts with a flat area centered on the neutral
value 1.0 (i.e. where only background is matched),
continues with a rise (i.e. the passphrase has been
partially spoken at that point) and ends with a fall (i.e. the
passphrase has been spoken in its entirety). The degree of
match is measured by the depth below the 1.0 idle line.
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Figure 5. Global emergence versus time Emgft] for the
passphrase “California” under three noise level conditions
spoken by the true speaker. The detection performance is
impacted by the Signal-to-Noise Ratio. At lower SNR
where the utterance is being masked by the noise,
detection does not occur.

Figure 6 shows, on the other hand, the global
emergence trajectory curves for a male imposter
(knowing the true user’s passphrase) under the same noise
conditions.
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Figure 6. Global emergence versus time Emgft] for the
passphrase “California” under three noise level conditions
spoken by an imposter. In the example, the observed fall
is not deep enough to trigger detection.

The emergence criterion tends to penalize words and
phrases that have a higher concentration of fricative and
nasal sounds. Words in that category (e.g. ‘fishes’) can
become difficult or virtually impossible to spot due to
their higher confusability with the background.

7. The BioAxs authentication procedure

The authentication procedure is primarily unimodal in
order to speed up the door access process but all
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modalities (keypad, fingerprint and voiceprint) are
available at all times. Upon successful authentication, the
entrance door’s contact relay is automatically activated
and the name of the verified user is played back along
with a series of beeps (from 1 to 5 beeps) indicative of the
level of confidence. The multimodal approach helps in the
recovery of imperfect matches. An ambiguity occurs
when the authentication score is close to the modality’s
Equal Error Rate. In that case, the security constraints of
the helping modality can be reduced without
compromising the overall security level, which in the end
results in a more robust protocol.

In the case where the user initiates the authentication
process by saying his/her voice passphrase, one of three
conditions can occur. Based on the authentication score,
the system may 1) grant access, 2) deny access or 3)
request additional credentials via another modality. In the
latter case, the user can either place his/her finger on the
scanner or enter his/her “magic” key (currently that key
corresponds to first digit of the user’s account number) on
the keypad. If the credentials are compatible with the
hypothesized identity (cross-validation) then access is
granted, it is denied otherwise. The user is however still
allowed to retry by voice.

Other multimodal strategies could be used. For
instance, single modality access could be in effect during
core business hours alone. During non-core hours such as
at night or during weekends multimodal access (e.g. 2 out
of 3 modalities) could be required to enter the building. In
that case, the second modality brings increased security at
some additional expense in user convenience.

8. Experimental field results

Over a period of about 14 months, the authentication
system has serviced an average of 140 authentication
requests per day for about 35 enrolled users out of which
the vast majority (95%) are voiceprint-initiated requests.
The remaining 5% are mostly fingerprint-initiated access
requests. Keypad-initiated access, although available, is
virtually not used since the process of entering an account
number is slow and tedious.

The vast majority of users are very pleased with the
convenience brought by the system and keys are very
rarely used. The speaker verification module’s
performance measured under these real-environment
conditions is about 8% False Rejection Rate for 0.1%
False Acceptance Rate with 2.8% Equal Error Rate.
About 37% of these initial rejections are however
recovered via multi-modality (i.e. voiceprint or keypad
cross-validation) reducing the False Rejection Rate to
about 5%.

All the speech data is recorded on disk for database
collection purposes. Manual examination of some the
audio files clearly indicates that intra-speaker variability
(e.g. pitch, enunciation clarity, loudness, prosody



changes) is not a negligible phenomenon. The natural
variability is however difficult to measure. The
phenomenon is exacerbated by the fact that users have the
tendency at times to only achieve the articulation level
needed to pass the authentication test.

The data collected at the entrance door was also used
in the context of a Gaussian Mixture Model (GMM)
system. GMM systems [3] use a statistical approach based
on single-state Hidden Markov Modeling. It has become a
popular state-of-the-art approach for text-independent
speaker verification and identification tasks. The GMM
system developed at our laboratory uses an MFCC front-
end [4] generating 32 ceptral parameters (16 static + 16
dynamic parameters) every 10 milliseconds that are
computed from 64 Mel-frequency bands. The front-end
uses on-line Cepstral Mean Subtraction (CMS) for
channel and noise robustness. A Universal Background
Model (UBM) consisting of 256 Gaussian components is
used. An adaptive procedure generates speaker models of
variable size (i.e. from 64 to 96 Gaussian components per
GMM model) to compensate for the differences in
duration and in variability across the speaker enrollment
data sets. The system uses a background-dependent
frame dropping procedure to eliminate non-speech data
frames at enrollment and verification time.

The performance of the GMM system obtained on the
BioAxs data task is slightly better than the template-
based approach and was measured at about 7% False
Rejection Rate for 0.1% False Acceptance Rate with 2.4%
Equal Error Rate. Unlike the BioAxs system, the GMM
system does not however provide recognition results (i.e.
the inherent time constraints within a passphrase are not
preserved by the GMM modeling method) and therefore
recognition errors as well as spotting errors are not
accounted for.

Table 2. Performance of the GMM system in text-
independent mode on the YOHO database as a function of
the number of utterance used for verification.

# of utterances Equal Error Rate
1 1.91 %
2 0.94 %
4 0.55 %

For comparison purposes, the same GMM system was
also tested on the YOHO database in text-independent
mode. The YOHO database that is available through the
Linguistic Data Consortium (LDC) consists of a
collection of 3-number combination lock utterances (e.g.
“27-51-83”) from 138 speakers. In this case, the UBM
size was increased to 512 Gaussian components and
speaker models were built with a fixed size (128 Gaussian
components per model). Table 2 shows the system’s
performance on that database when trained with 50% of
the available training data set. The performance of the
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GMM system on the YOHO database is comparable to
that of other systems [5] [6] even though the system was
tuned for text-dependent use.

9. Conclusion

We presented a voice-centric multimodal user
authentication system called “BioAxs” which has been
deployed at our laboratory to provide physical access
control. More specifically, we focused our discussion on
the architecture and technology choices that were adopted
to provide a fast, convenient and robust interaction model.
It was shown that multi-modality is a powerful and
natural tool to enable both increased usability to users and
increased security to resources. The BioAxs system is
extensively used by all employees who all like the
convenience of using short voice passphrases to enter the
building. Although the current performance has reached a
satisfactory level under challenging real environment
conditions, further investigation on intra-speaker
variability and noise robustness is needed. Ultimately the
current False Acceptance Rate (i.e. 8% FAR for 0.1%
FRR) must be reduced to increase the level of
performance in such a way that users do not have to be
too careful when talking to the system.

Our current interest focuses on the improvement of the
modeling framework to make use of more statistical
information in conjunction with unsupervised adaptation
techniques.
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Abstract

Results are presented for the largest experimental study to
date that investigates the comparison and combination of
2D and 3D face recognition. To our knowledge, thisis also
the only such study to incor porate significant time lapse be-
tween gallery and probe image acquisition, and to look at
the effect of depth resolution. Recognition results are ob-
tained in (1) single gallery and a single probe study, and
(2) asingle gallery and multiple probe study. A total of 275
subjects participated in one or more data acquisition ses-
sions. Results are presented for gallery and probe datasets
of 200 subjectsimaged in both 2D and 3D, with oneto thir-
teen weeks time lapse between gallery and probe images of
a given subject yielding 951 pairs of 2D and 3D images.
Using a PCA-based approach tuned separately for 2D and
for 3D, we find that 3D outperforms 2D. However, we also
find a multi-modal rank-one recognition rate of 98.5% in a
single probe study and 98.8% in multi-probe study, which
is statistically significantly greater than either 2D or 3D
alone.

1. Introduction

Theidentification of the human facein 2D has been investi-
gated by many researchers, but relatively few 3D faceiden-
tification studies have been reported[1, 2, 3, 4, 5]. One of
the main motivations of 3D face recognition isto overcome
the problems in general 2D recognition methods resulting
from illumination, expression or pose variations.

This study deals with face recognition using 2D and 3D.
Each modality captures different aspects of facia features,
2D intensity representing surface reflectance and 3D depth
values representing face shape data. Even though each
modality hasits own advantages and disadvantages depend-
ing on certain circumstances, there is often some expecta-
tion that 3D data should yield better performance. How-
ever, no rigorous experimental study has been reported to
validate this expectation. The experiments reported in this
study are aimed at (1) examining the spatial / depth resolu-
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tion needed for 3D face recognition (2) testing the hypothe-
sisthat 3D face data provides better biometric performance
than 2D face data, using the PCA-based method, and (3) ex-
ploring whether a combination of 2D and 3D face data may
provide better performance than either one individually in
both a single probe study and a multiple probe study.

This is an extension of our earlier work [6]. We have
expanded the size of the dataset and have improved the
method of geometric normalization used in the 2D and 3D
PCA agorithms, resulting in improved recognition perfor-
mance, both individually and in combination. We have al'so
examined the effect of depth resolution on performance of
3D recognition.

2. Previous Wor k

In this section, methods that use multiple types of biometric
sourcesfor identification purposes, multi-modal biometrics,
are reviewed. The term “multi-modal biometrics’ is used
hereto refer to the use of different sensor typeswithout nec-
essarily indicating that different parts of the body are used.
Theimportant aspects of these multi-modal studiesare sum-
marized in Table 1. Due to the effectiveness of combining
multiple biometrics, such studies are included aswell to re-
view their data fusion methods, types of biometric sources
and the size of experimental dataset. In addition to recog-
nition methods based solely on the human face, there are
other recognition methods using multiple biometric sources
in addition to face data. One commonality of the studies
described in Table 1 is that identification based on multiple
sensors / biometrics sources provides overall performance
improvement.

3. Methodsand Materials

3.1. 2D and 3D Face Recognition Using PCA

Extensive work has been done on face recognition algo-
rithms based on PCA, popularly known as “eigenfaces’
[20]. A standard implementation of the PCA-based ago-
rithm [21] is used in the experiments reported here.



Table 1: Multi-biometrics studiesfor personal identification

Source Biometric Fusion Set
(year) sources methods | size
Wang Face, metric- 90
('03)[7] Iris based
Chang Face, pixel- 111
('03)[8] Ear based
Shakhnaro- Face, metric- 26
vich('02) [9] Gait based
Ross Face, Hands metric- 50
("01) [10] Fingerprint based
Frischholz Face, Voice, metric- 150
("00) [11] Lip Movement based
Ben-Yacoub Face, metric- 37
('99) [12] Voice based
Hong Face, metric- 64
('98) [13] Fingerprint based
Bigun Face, metric- 40
('97) [14] Voice based
Kittler Face, Profile metric- 37
('97) [15] Voice based
Brundlli Face, metric- / 89
('95) [16] Voice rank-based
| Studies that integrate multiple types of facial data
Chang 2D frontal & metric- 278
('03) [6] 3D shape based
Wang 2D frontal metric- 50
('02) [17] & 3D shape based
Beumier 2D frontal metric- 120
('00) [18] & 3D profiles based
Achermann 2D frontal & metric-/ 30
("96) [19] 2D profile rank-based

3.2. Normalization

The main objective of the normalization processis to min-
imize the uncontrolled variations that occur during the ac-
quisition process and to maintain the variations observed in
facial feature differences between individuals. The normal-
ized images are masked to omit the background and |leave
only the face region (see Figure 1). While each subject is
asked to gaze at the camera during the acquisition, it isin-
evitable to obtain data with some level of pose variations
between acquisition sessions.

The 2D image data is typicaly treated as having pose
variation only around the Z axis, the optical axis. The PCA
software [21] uses two landmark points (the eye locations)
for geometric normalization to correct for rotation, scale,
and position of the face for 2D matching. However, the
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face is a 3D object, and if 3D datais acquired there is the
opportunity to correct for pose variation around the X, Y,
and Z axes.

A transformation matrix is first computed based on the
surface normal angle differencein X (roll) and Y (pitch) be-
tween manually selected landmark points (two eye tips and
center of lower chin) and predefined reference points of a
standard face pose and location. Pose variation around the
Z axis (yaw) is corrected by measuring the angle difference
between the line across the two eye points and a horizontal
line. At the end of the pose normalization, the nose tip of
every subject istransformed to the same point in 3D relative
to the sensor (see Figure 2). The geometric normalizationin
2D gives the same pixel distance between eye locations to
all faces. Thisis necessary because the absolute scale of the
faceis unknown in 2D. However, this is not the case with a
3D faceimage, and so the eyelocations may naturally be at
different pixel locationsin depth images of different faces.
Thus, the geometric scaling was not imposed to 3D data
pointsasit wasin 2D. We found that missing data problems
with fully pose-corrected 2D outweighed the gainsfrom the
additional pose correction [6], and so we use the typical
Z-rotation corrected 2D. Problems with the 3D are allevi-
ated to some degree by preprocessing the 3D datato fill in
holes and remove spikes (see Figure 3). This is done by
median filtering followed by linear interpolation using valid

data points around a hole.

A study of one gallery with four probes

A study of one gallery with three probes

Figure 1. Examples of masked imagesin 2D and 3D

3.3. Data Collection

A galery image is an image that is enrolled into the sys-
tem to be identified. A probe image is a test image to be



(a) X-Y plane (b) Y-Z plane
Initial pose of a subject in 3D space
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(a) X-Y plane

(b) Y-Z plane
Corrected pose of a subject in 3D space

Figure 2: Pose normalization

matched against the gallery images. |mages were acquired
at the University of Notre Dame between January and May
2003. Two four-week sessions were conducted for data col-
lection, approximately six weeks apart. The first session is
to collect gallery images and the second session is to collect
probe images for a single probe study in mind. For a study
with multiple probes, an image acquired in the first week
is used as a gallery and images acquired in later weeks are
used as probes. Thus, in the single probe study, there are at
least six and as many as thirteen weeks time lapse between
the acquisition of gallery image and its probeimage, and at
least one and as many as thirteen weeks time | apse between
the gallery and the probe in the multiple probe study. All
subjects completed an |RB-approved consent form prior to
participating in each dataacquisition session. A total of 275
different subjects participated in one or more data acquisi-
tion sessions. Among 275 subjects, 200 participated in both
a gallery acquisition and a probe acquisition. Thus, there
are 200 individuasin the single probe set, the same 200 in-
dividualsin the gallery, and 275 individuals in the training
set. The training set contains the 200 gallery images plus
an additional 75 for subjects whom good data was not ac-
quired in both the gallery and probe sessions. And for the
multiple probe study, 476 new probes are added to the 200
probes, yielding 676 probesin total. The training set of 275
subjectsisthe same as the set used in the single probe study.

In each acquisition session, subjects were imaged using
aMinolta Vivid 900 range scanner. Subjects stood approx-
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@ (b)

Processing missing data points in range data

Processing spike noise in range data

Figure 3: Preprocessing in 3D data points

imately 1.5 meter from the camera, against a plain gray
background, with one front-above-center spotlight lighting
their face, and were asked to have anormal facial expression
(“F4" in FERET terminology [22]) and to look directly at
the camera. Almost al images were taken using the Mi-
nolta’'s “Medium” lens and a small number of images was
taken with its “Tele” lens. The height of the Minolta Vivid
scanner was adjusted to the approximate height of the sub-
ject’s face, if needed. The Minolta Vivid 900 uses a pro-
jected light stripe to acquire triangul ation-based range data.
It also captures a color image near-simultaneously with the
range data capture. Theresult is a 640 by 480 sampling of
range data and a registered 640 by 480 color image.

3.4. Distance Metrics

2D data represents aface by intensity variation whereas 3D
data represents a face by shape variation. It is obvious that
the“face space” could be very different between modalities.
Thus, during the decision process, certain metrics might
perform better in one space than in the other. 1n this experi-
ment, the Mahalanobis distance metric was explored during
the decision process for the gallery matching [23].

3.5. Data Fusion

The pixel level provides perhaps the simplest approach to
combining the information from multiple image-based bio-
metrics. The images can simply be concatenated together



to form one larger aggregate 2D-plus-3D face image. Met-
ric level fusion combinesthe match distancesthat are found
in the individual spaces. Having distance metrics from two
or more different spaces, arulefor combination of combine
the distances across the different biometrics for each per-
son in the gallery can be applied. The ranks can then be
determined based on the combined distances.

One of the early tasks in data fusion is to normalize the
scores that result from the metric function. Scores from
each space need to be normalized to be comparable. There
are several ways of transforming the scoresincluding linear,
logarithm, exponential and logistic [19]. The scores from
different modalities are normalized so that the distribution
and the range are mapped to the same unit interval.

There are many ways of combining different metrics to
achieve the best decision process, including majority vote,
sumrule, multiplication rule, median rule, minrule, average
rule and so on. Depending on the task, a certain combina-
tion rule might be better than others. It is known that the
sum rule and multiplication rule generaly provide plausi-
bleresults[24, 19, 9, 7, 6, 18].

In our study, a weight is estimated based on the distri-
bution of the top three ranks in each space. The motivation
is that a larger distance between first- and second-ranked
matchesimplies greater certainty that thefirst-ranked match
is correct. The level of the certainty can be considered as a
weight representing the certainty. The weight can be ap-
plied to each metric as the combination rules are applied.
The multi-modal decision is made as follows. First the 2D
probe is matched against the 2D gallery, and the 3D probe
against the 3D gallery. This gives a set of N distances in
the 2D face space and another set of IV distancesin the 3D
face space, where N isthe size of the gallery. A plain sum-
of-distances rule would sum the 2D and 3D distances for
each gallery subject and select the gallery subject with the
smallest sum. We use a confidence-weighted variation of
the sum-of-distances rule. For each of 2D and 3D, a“con-
fidence” is computed using the three distances in top ranks
as (second distance - first distance) / (third distance - first
distance). If the difference between the first and second
match is large compared to the typical distance, then this
confidence value will be large. The confidence values are
used as weights in distance metric. A simple product-of-
distances rule produced similar combination results, and a
min-distance rule produced slightly worse combination re-
sults.

4. Experiments

There are three main parts to this study. Thefirst part is to
examine how the recognition performanceis affected by the
X-Y in both 2D and 3D and depth resolution in 3D data.
The second part is to evaluate the performance of 2D and
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3D independently in both single and multiple probe stud-
ies. Data fusion is considered, in the third part, to combine
results at the metric level with different fusion strategies.

The eigenvectors for each face space are tuned by drop-
ping the first M and last N eigenvectors to obtain an opti-
mum set of eigenvectors. Thus, in general we expect to have
a different set of eigenvectors 2D face space versus repre-
senting 3D face space. The cumulative match characteristic
(CMC) curveis generated to present the results.

4.1. Experimental Results: X—Y resolution

This experiment looks at the performance rate changes
while the spatia resolution is varied in texture and shape
images. One average pixel in X axis produced by the Mi-
nolta Vivid 900 covers 0.9765mm and one pixel in Y axis
covers 0.9791mm of surface area. A typical template size
that we initially used was 130 x 150 pixels (a face cov-
erage area of approximately 12.7¢cm x 14.7c¢cm). Figure
4-(a) shows example of both 2D (top row) and 3D (bot-
tom row) images used for this experiment, starting from the
right most, 25%, 50%, 75%, 100% of the original dimen-
sion. Thus, every pixel is retrieved in the step of 3.97mm,
1.96mm, 1.31mm and 0.98mm fromthe original X and Y’
data points in each image set.

The performance results are shown in Figure 4-(b). The
graphis plotted using the first rank match performancerate.
Both performance curves begin to drop at the resol ution of
1.3Lmm in X-Y, (in 2D, 89.0% to 85.0%, and 94.5% to
89.5% in 3D). However, the spatial resolution changes at-
tempted in both 2D and 3D suggest that there is no sig-
nificant difference in performance rates from the original
resolution. We believe that performance degradation re-
sults from undersampling the face and missing differenti-
ating features. The stiff performance drop has been shown
in between 50% and 25% due to the insufficient facial fea-
tures to be differentiated between subjects in PCA method.

4.2. Experimental Results: Depth resolution

This experiment has a similar purpose as the previous one.
However, this examines the depth resolution required to
maintain the performance rate from the original depth res-
olution. According to the Minolta Vivid 900 specification,
its depth accuracy level may be obtained at 0.35mm. One
way to vary the original resolution is to change the pre-
cision leve in floating point values of the Z coordinate.
A lower limit on precision could be 10~ %mm. However,
the camera-to-subject distance and lens combination used
in our acquisition likely support an actual depth resolution
of no better than about 0.5mm on average. Fourteen dif-
ferent resolutions were examined so that every pixel value
representing the actual coordinate is retrieved in the unit
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Figure 4: Experiment in spatial resolutions changes

of 10~ %mm, 10 %°mm, 10~ %mm, 10 3mm, 10" 2mm,
10~ Ymm, 0.5mm, lmm, 2mm, 3mm, 4mm, 5mm, 6mm
and 7mm as shown in Figure 5-(8). As shown in Figure
5-(b), the overal performance rate decreases as the depth
resolution gets coarser. It becomes prominent after 3mm.

However, it is interesting to note that the performance
rates between 0.5mm and 3mm maintain remarkably close
to the original resolution (within 2.5%). This may be par-
tially because as the resolution gets coarser, random noise
would be suppressed. Asit gets even coarser, aface surface
becomes overly contoured and identification suffers from
such coarsely quantized surfaces.
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Figure 5: Experiment in depth resolution changes

4.3. Experimental Results: 2D versus 3D face
- Single probe study
This experiment is to investigate the performance of indi-
vidual 2D eigenface and 3D eigenface methods, given (1)
the use of the same PCA-based a gorithm implementation,
(2) the same subject pool represented in training, gallery
and probe sets, and (3) the controlled variation in one pa-
rameter, time of image acquisition, between the gallery and
probe images. A similar comparison experiment between
2D and 3D acquired using stereo-based system was aso
performed by Medioni et.al.[25].

There can be many ways of selecting eigenvectorsto ac-
complish the face space creation. In this study, at first, one
vector is dropped at a time from the eigenvectors of largest
eigenvalues, and the rank-one recognition rate is computed
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Figure 6: Performance results in single probe study.

using the gallery and probe set again each time, and con-
tinueuntil apoint is reached where the rank-onerecognition
rate gets worse rather than better. We denote the number
of dropped eigenvectors of largest eigenvalues as M. Also,
one vector at atime is dropped from the eigenvectors of the
smallest eigenvalues, and the rank-one recognition is com-
puted using the gallery and probe set again each time, and
continue until a point is reached where the rank-one recog-
nition rate gets worse rather than better. We a so denote the
number of dropped eigenvectors of smallest eigenvalues as
N.

During the eigenvector tuning process, the rank-one
recognition rate remains basically constant with from oneto
20 eigenvectorsdropped from the end of thelist. This prob-
ably means that more eigenvectors can be dropped from the
end to create a lower-dimension face space. This would
make the overall process simpler and faster. The rank-one
recognition rate for dropping some of the first eigenvectors
tend to improve at the beginning but it start to decline as M
gets larger.

After the eigenvectors are tuned, both 2d and 3D are co-
incided at M = 2, and N = 20 to create the face spaces. With
the given optimal set of eigenvectorsin 2D or 3D, the re-
sults show that rank-one recognition rate is 89.0% for 2D,
and 94.5% for 3D (see Figure 6).

4.4. Experimental Results: Multi-modal bio-
metricsusing 2D and 3D

The purpose of this experiment is to investigate the value
of a multi-modal biometric using 2D and 3D face images,
compared against individual biometrics. The null hypothe-
sis for this experiment is that there is no significant differ-
ence in the performance rate between uni-biometrics (2D
or 3D aone) and multi-biometrics (both 2D and 3D to-
gether). According to Hall [26], a fusion can be usefully
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Figure 7: Performance results in multiple probe study.

doneif an individual probability of correct inferenceis be-
tween 50% and 95% with one to seven classifiers. From our
results in the previous experiment, it is reasonable to fuse
the two individual biometrics which meet this fusion crite-
ria. Figure 6 shows the CMC with the rank-one recogni-
tion rate of 98.5% for the multi-modal biometric, achieved
by combining modalities at the distance metric level. In
the fusion methods that we considered, the multiplication
rule showed the most consistent regardless of the particular
score transformation. However, the min rule showed lower
performance than any other rules in different score trans-
formations (see Figure 8). Also, when the distance metrics
were weighted based on the confidence level during the de-
cision process, al therulesresult in significantly better per-
formance than the individual biometric. A McNemar's test
for significance of the differencein accuracy in the rank-one
match between the multi-modal biometric and either the 2D
face or the 3D face alone shows that multi-modal perfor-
mance is significantly greater, at the 0.05 level.

4.5. Experimental Results: 2D face versus 3D
facein biometrics - multiple probe study

In these experiments, there will be one or more probes for
a subject who appears in the galery, with each probe be-
ing acquired in a different acquisition session separated by
aweek or more. We are attempting to retrieve more practi-
cal use of face identification method by incorporating mul-
tiple probes to be matched against the gallery images. The
multiple probe dataset consists of 676 probesin total. Sub-
jects might have adifferent number of probes. For example,
there are 200 subjects with 1 or more probes, 166 subjects
with 2 or more probes and so on. In the probe dataset, the
number of probes can be up to 7 per subject. There might
be different rulesto determine a correct match given several
probes to a galery. In this experiment, a correct match is
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Figure 8: Performance results of fusion schemes used.

measured based on an each individual probe rather than on
some function of all probes per subject.

By using the same set of eigenvectorstuned in the single
probe study, we achieved similar results as in the previous
sections. While 3D performance dropped a little, 92.8%,
2D performance maintains slightly better than the previous
experiment, 89.5% (see Figure 7).

After combining these two biometrics in the multiple
probes, we also were able to obtain significantly better per-
formance, at 98.8%, than for either 2D or 3D alone. The
results of 2D and 3D combination show very similar perfor-
mance behavior as the single probe study. Product rule per-
forms better than minimum rule regardless of score trans-
formation (see Figure 8). Most combined methods consis-
tently perform significantly better than the single biomet-
rics. A McNemar's test for significance of the difference
in accuracy in the rank-one match between the multi-modal
biometric and either the 2D face or the 3D face alone shows
that multi-modal performanceis significantly greater, at the
0.05 level. Thus, significant performanceimprovement has
been accomplished by combining 2D and 3D facial datain
both single and multiple probe studies.

5. Summary and Discussion

The value of multi-modal biometrics with 2D intensity and
3D shape of facia datain the context of face recognitionis
examined in asingle probe study and amultiple probe study.
Thisis the largest experimental study (in terms of number
of subjects) that we know of to investigate the comparison
and combination of 2D and 3D data for face recognition. In
our results, each modality of facial data has roughly similar
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value as an appearance-based biometric. The combination
of the face data from both modalities results in statistically
significant improvement over either individual biometric. In
general, our results appear to support the conclusion that
the path to higher accuracy and robustness in biometrics
involves use of multiple biometrics rather than the best pos-
sible sensor and algorithm for a single biometric.

We aso have investigated the effect of spatial and depth
resolution on recognition performance. This was done by
producing successively coarser versions of the original im-
age. The origina image has a depth accuracy at 0.35mm.
We found that performancedrops only slightly ingoingto a
depth resolution of 0.5mm, but beginsto drop drastically at
4mm. The pattern of results suggests that it would be inter-
esting to determine a sensor accuracy level needed to meet
a specific requirement of face recognition tasks. The accu-
racy requirement might be vary under different conditions
of subjects, such as facial muscle movement, or imaging
condition changes. This initia investigation in resolution
variation would bring a more explicitly decided resolution
level for further experiments.

The overall quality of 3D data collected using a range
camerais perhaps not as reliable as 2D intensity data. 3D
sensors in the current market are not as mature as 2D sen-
sors. Common problems with typical range finder images
include missing datain eyes, cheeks, or forehead as well as
severa types of noise. These problemswould lower the 3D
recognition rate in general even though there exist ways of
recovering some data in such areas.

The criteria used to decide which combination of eigen-
vectors to keep is the rank-one recognition rate on the
galery and probe images. So, in a way, the galery and
probe images are used in deciding what eigenvectorsto use
for the space, and then the results are aso reported on the
gallery and probeimages, thereby “testing on training data’ .
This can be addressed by having a validation set of images
to determine the set of eigenvectors to be used during the
identification process so that eigenvectorsto keep beforethe
performance on the gallery and probe images are obtained.

It is generally accepted that performance estimates for
face recognition will be higher when the gallery and probe
images are acquired in the same acquisition session, com-
pared to performance when the probe image is acquired af -
ter some passage of time [27]. Most envisioned applications
for face recognition technology seem to occur in a scenario
in which the probe image would be acquired some time af-
ter the gallery image. In this context, it is worth noting that
the dataset used here incorporates a substantial time lapse
between gallery and probe image acquisition.

The dataset used in the experimentsreported herewill be
made available to other research groups as a part of the Hu-
man ID databases. See http://www.nd.edu/"cvrl/ for more
information about the dataset and the rel ease agreement.
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Abstract The bandwidth problem can be mitigated if thentlie
shoulders the processing burden entirely. Howetheme
We investigate the application of a face recogniti are scenarios where this is neither possible nsiratge. In
system in a distributed environment. Images oédaare many authentication systems, for example, it iseroft
captured by clients remotely and transmitted teever for ~ necessary to store the database centrally in dalexdd
recognition or authentication using a central daask. In  users dynamically and ensure security. In additocentral
many distributed scenarios, bandwidth may be lihted database is easier to maintain. Therefore, @asonable to
transmission of image data may not be feasiblea¥éame distribute the processing load between clientsthaderver.
the client does not have processing limitations aash Because communication is inevitable in distributed
extract and transmit compressed features. In &midithe processing systems, the flow of information can be
compressed features can be used as an alternativiacilitated using some form of compression.
representation of the faces in the database and thduce In a distributed face recognition system a server
storage needs. In this paper we explore the immdct maintains a large database of faces centrally diedts
feature compression on face recognition performancesubmit face information to the server for recogmiti It may
Specifically, we consider the Bochum/USC face reitiog  be advantageous for the client to extract and mnénthe
system and propose an embedded coding scheme for-Ga features instead of the face image data in ordeavimd
based wavelet features extracted from optimallyectetl bandwidth limitations altogether.  To further prese
landmarks on the face. Our results show that thgaithon ~ bandwidth, the features themselves could be corspdes
recognition rates—even at the highest compressidess—  prior to transmission.

is minimal. Compression for distributed processing systema is
growing area of research. Applications such asilliged
1. Introduction speech recognition [1], distributed image clasatfian [2],

and distributed sensor networks [3] have been atudivet,

Distributed processing systems are fast becoming gcompression  for .di_stributed fgce recognit_ion remain
important area of research. The paradigm of cémechl Unexplored. —As intimated earlier, we are intersta
computing is changing as mobile devices and sensiths partlcula}r, in a scenario where tht_a client has igefit
enhanced processing power and multimedia capasiliti PrOcessing power but limited bandwidth. Furtherenare
proliferate. The emergence of distributed processirstems ~ @SSume the server maintains the database centrally.
enables more flexible solutions to existing prokdeand Based on the above assumptions, the Bochum/USC
simultaneously poses new challenges. face recognmon.system [4] is a goqd _study cas'lams

Applications such as user authentication can new b System can easily be adapted to a distributedr@mvient
carried out using a multitude of devices in a wideiety of ~Pecause it is based on general principles rathen th
locales but must account for bandwidth limitatidindata is ~ Statistical learning. In fact, classification imsed on a
to be transmitted between clients and a servech Eime a  Simple nearest neighbor distance metric. This igspthat
user needs to be authenticated remotely, pertinef@CeS can be easily added to the database witkindito
information (e.g. authentication features) mustsbat to a dynamically retrain the classifier. The fundamempért of
central server for processing. If the communicatibannel the algorithm involves an elastic bunch graph tegimused
between the client and the server has limited baitiyit O locate specific landmarks on the face from wh&zbor
may be intractable to transmit large amounts afrimfation.  Wavelet features are extracted.

This is a considerable limitation for applicatidhat rely on Prior research has shown that in bandwidth limited
visual information, such as a face recognitionesyst cases—where compression is inevitable—the decrease in

classification accuracy is less when compressiragjufe
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vectors as opposed to the signal itself [1]. Tioeeg we  best performance among competing algorithms in REFE
attempt to exploit the underlying structure of tBabor test administered between September 1996 and M&eh
wavelet features as a first step. Although the eletv [7].
features are extracted from selected landmark$erface, Each elastic graph has 48 nodes placed at specific
they demonstrate some tendencies common to naturkeindmarks on the face. The face recognition system
images, including energy concentration in the losgfiency addresses pose variations but for our present paspwe
sub-bands. Given these observations, we propose amly consider frontal views of the face, as showrrigure
modified bit-plane coding technique similar to thel.
embedded zerotree wavelet coder proposed by Shigdiro
The compression scheme also has the advantageingf be 2
fully embedded, meaning that finer renditions @& teatures
are transmitted progressively. We show that thbesided
coding scheme can achieve a bit-rate of 0.13 latsppxel
(based on 128 x 128 pixel images) while decreasig
overall face recognition rate on average by only. 1%
Finally, we show that face recognition performanise
considerably better using embedded feature coding
compared to image compression using the state eofath
JPEG2000 [10] technology, although, obviously, our
scheme, unlike JPEG2000, does not provide a detmdab
version of the full image.

As mentioned earlier, in a distributed scenarie th
limiting factor is bandwidth. Although this is tmeain focus  Figure 1. Spatial location of the 48 landmarks on the face.
of our paper, we also address the case (which ts no
necessarily distributed) where the limiting facterstorage At each node location, a feature vector, or jegxgacted
capacity. When the image database is extremelyelar using a Gabor-based wavelet expansion:
and/or storage space is limited, it is often déderato
compress the images in the database. An alteenativo K2 K 22 o2
build a database of compressed features. In tygmpwe Wy (X) :—zex;{— . :l{exp(ikx)—exp{——ﬂ (1)
also evaluate our proposed feature compressionecifigr o 20 2
such a scenario, i.e., as a tool to provide a cesged
representation of the database. In this respecpmposed \where x are the image coordinatekJO™° is the wave
compression scheme performed favorably compared ftgector, I=1,...,L is the frequency indexg=1,...D is the
JPEG2000. _ _ _ direction index, andg=7d/D is the kernel direction. Let

The paper is organized as follows. We first pi@van 3, (x) be the Gabor jet extracted at each landmark by

overview of the Bochum/USC face recognition systémen  conyolving the imagé(x) with the Gabor wavelet of Eq. (1):
discuss feature vector compression, including sapgsed

embedded coding technique, and conclude with an _ ; Ny
evaluation of the impact of compression on facegedion. Jk(x)_II(X Wi (x=x)ax (2)

2. The Bochum/USC Face Recognition System In the Bochum/USC face recognition system, the ®abo
wavelet is sampled ovér5 levels inD=8 directions:
As discussed earlier, the performance of the Bo¢i&@ _
face recognition system is based largely on theaaf§ of a Jj = aje'ﬂ (3)
bunch graph matching technique [6] used to optiyratiate
specific landmarks on the face. Gabor waveletufestare
then extracted from these landmarks and classifsdg a
simple similarity measure. In terms of feature poassion,
it is noteworthy that the algorithm does not regabily on
the generalization capability of a classifier emgin
Otherwise, distortion resulting from compressionuldo
displace vectors in feature space and consequeffiygt
recognition performance. Finally, it should alse hoted
that the Bochum/USC face recognition system aclidgkie

Where g and ¢, j=1,...LD, are the wavelet coefficient
magnitude and phase respectively. A model graptnds
collection of Gabor jets (i.e. feature vectorseath of the
N=48 landmarks. Therefore, the Gabor jet at eautineark

will have 80 elements (D) organized in the following
manner:
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I a% (/{1 ato (/%D coeff||<:|er(1jts .|rr]1 hhlgh—frequ.enlcy fsub—bands tgn:edd to be
: : : 5 (4) corre ated with the energy in low-frequency sub-bands.

N N N N N
W] [al A el do 3.1. Embedded Coder

The similarity between any two jet3 and J can be The embedded zerotree wavelet (EZW) algorithm was
computed by: introduced by Shapiro [5]. The EZW compression scheme
codes data in a signal by using efficient entropy codingof it

Zaj a; bit-plane representation. Namely, the samples in the signal

S(3,3') = j (5) of interest (e.g. wavelet coefficients) are represented L_Jsing

ZazZa:_z bit-planes. The embedded nature of the EZW algorithm

j ! i ! arises from the fact that each bit-plane is coded separately

and transmitted in order of importance from the LSB to the
MSB plane. Quantization is achieved by stopping this

Yefinement process, i.e., by not sending bit-planes below a

computing the node-wise similarity between correspondin : . > .
jets on each face, according to Eq. (5). This similarity%ertam threshold. Shapiro proposed using embedded coding

R ; " AT aon wavelet coefficients given that there is often a correlation
function is phase insensitive but other similarity measureg
etween energy values across frequency levels.
could be used. : A ; I
The bit-plane coding is accomplished by assigning one
of four labels to the wavelet coefficients. If a coefficient is
above a threshold (half the value of the bit-plane), it is

0 f the chall in devisi . h fassigned aignificant positiveor significant negativdabel,
ne orthe challenges In devising a compression scneme Epending on its sign. If the wavelet coefficient is belaav th

feature vectors is to identify redundancy, irrelevance, an reshold and all of its descendants (i.e. the coefficients in

structure. Assumptions can be made about the features usad, . frequency sub-bands) are also below the threshold
here. In terms of irrelevance, it is reasonable to assume th(ﬂ n it is assigned aerotree rootlabel. Otherwise, it is '

certain landmarks impact recognition more than others. Igssigned aisolated zerdabel. This means that only four

such a case, one _optlon would be to apply a COarSEihels are needed to code the coefficients at each bit-plane.
quantization to less important landmarks. Another opgon IFurthermore, if a coefficient is a zerotree root, it does not

to simply eliminate less important Iandmarks—equivalenttchave to be transmitted at higher bit-planes The

a bitrate of 0. . In fact, the application of principal reconstruction value for significant coefficients at each bit-
component analysis to represent the Gabor wavelet featursﬁdne is simply B/2
using fewer parameters was studied in [8]. EZW also includes a refinement stage where the

| dln tirms cl)(fj tr)edundlarJ[C)c/j, tEe §yr’?metry-to.f the facu’;l econstructed value of significant coefficients is refined.
andmarks could b€ exploited. -For Instance, It IS reasonabig, o refinement is simplyT/4 and only requires one bit for

to assume that the Gabor jets extracted from the landmarks 0" Thus. at each bit-plane two bit-streams are

?rgr;h;;ﬁf;n%ﬁamg c?r? tf]l(;n:liall"]ttz tge f SSPSLJrEIZtSé(;z?te ransmitted: the significant coefficient bit-streanand the
ght €ye. y refinement bit-stream. Assuming the wavelet coefficients

images in a database of 800 images showed that the featuh%%e low-frequency energy compaction, this technique can

?é(at\;ﬁ(r:;zde;?;:tégircl)en? tﬁgeri Vﬁr: Strcgr?I%/hg%rtfé?tﬁgn;w%ield significant savings. EZW is an embedded coder in that
gnt eye. ' e bit-stream s generated and transmitted in order of

study also showed that most of the other Symmetri?mportance

gnocivme%rlﬁftgzzrrtrlgllgggﬁ those near the edge of the face— Ordinarily, in an image compression scheme, the
Another option is tc; exploit the underlving structure OfWavelet coefficients might have to be stored in memory in
P P ying qrder to define the tree structure. This is because a typical

the vygvelet coefficients. It has begn shown that Wavel?/vavelet transform algorithm generates all the coefficients of
coefficients extracted from natural images have a stron ach wavelet subband but the tree is formed by grouping
energy concentration in the low-frequency sub-bands [g]goefficients from different bands together. Depending on
This trend can be used favorably for compression, e size of the original image, this can lead to a considerable

gg?gg%tg%t?gabi ;Z?n urséisgnvg?a\llr?:;tr dCFld(;?g Agngsern?%emory requirement. However, because in this case the
9 P ' ' “Gabor wavelet coefficients are self-contained in relatively

Sﬁgcr::avrﬁvelZttiﬁoiﬁ'flgcsugzﬁjr?ng t(;);traécetlcta)grfr.c;rtz Ssilg\?vt: w-dimensional feature vectors, a tree structure (i.e. an
j ' J nergy coefficient dependence) can be easily defined

}2\?\/{;26uv;i\éele;u%?sgféimaige;gi/trﬁ?fng?encfr?;raéﬁgrln t’—cg/ithout memory constraints. It should be noted that other
q y ' 9 Umbedded coders have been developed since EZW and

3. Feature Vector Compression
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could be applied here but we choose EZW because of its

simplicity. The entry in the bit-stream at bit-plantor a given wavelet
Note that, while in standard image coding applicationscoefficienta, 4 is assigned one of three values:

wavelet coefficients for each subband are generated for the

whole image, in the Gabor jet case the data that is generated 0, agy2T

is naturally localized, since the transformation is only done - _ - =

. : § =11 a.4<T.05=0...L, 8)

in the neighborhood of the face landmarks. In short, because > <T

in our problem we have to operate with localized trees of ’ REN

coefficients at various frequencies it is more natural to

extend the EZW tree, rather than group CoefﬁcientéNhereJ:l,...,L is the decomposition levad=1,...D is the

corresponding to the same frequency and orientation froflirection, and the symbols 0, 1, and 2 represeet th

different landmarks, before proceeding to a JPEG2000-styignificant positive, zerotree root, and isolate@roz

encoding. Moreover, when localization is preserved in th€oefficients respectively. The entry in the refient bit-

coding it is possible to tailor the level of quantizatioritte ~ Stream is simply:

relative importance for recognition of the different

landmarks. 0 T<a, <§Ti

3.2. Modified Embedded Coder for Gabor Jets fi = 3 ! ©)
1 ETi Saq <2l

We modify the EZW principle to apply it to the Gabor jets

extracted using the Bochum/USC face recognition SVSte”Example Gabor wavelet coefficients extracted from
The coefficients in the Gabor Jets are infinite precision;nqmark 17 are shown in Figure 2 (averaged over al

Therefore, in order to apply bit-plane coding, they Wer€mages in the database of faces). The decreasiamye

scaled to 8-bit finite precision. The scaling can be done by q from low frequency to high frequency coefiitts can
normalizing relative to the maximum component of eachy ., pe seen in Figure 2.

Gabor jet and then sending this value as side information.

Alternatively, the scaling can be done using a global scale

factor for each landmark. There is no reason why the .~ Parent

coefficients could not be scaled to higher bit representations.

The only change would be the number of bit-planes to code.
The first modification to the EZW algorithm is the

elimination of the significant negative label since the Gabor

jet coefficients are all positive. Another modification is the

establishment of parent-child relationships and a scanning

order to determine zerotree roots. In natural images, a

parent is a wavelet coefficient at any sub-band. Children are

coefficients in higher frequency subbands corresponding to

the same spatial location in the original image. The

scanning is done in zig-zag fashion, according to the

traditional dyadic pyramid representation. In the case of the

Gabor jets, each of the eight directions is coded separately. Level, | L Direction, d

We establish parent-child relationships in each direction.

The scanning order is from the low-frequency coefficientigure 2. Parent-child dependency and scanning order.

(I=1) toward the highest frequency coefficients5], as

shown in Figure 2. Define the threshdldht bit-pland as: 4. Evaluation

300

200

100

e e

Coefficient Magnitude

ollog, Al i=0 We evaluated the proposed compression scheme on a
T={1 ) ) (6) database of 800 faces (frontal view). For eaclafamage
ETi—L 1=1..7 there are 48 Gabor jets. Each jet is coded segparand

weighted equally. The embedded coder can be applie
both the magnitude and phase elements but we onlsiaer
the magnitude here since the similarity measurBmf5 is
phase insensitive. For each bit-plane, the coeffis are
assigned one of three labels, zerotrees are establiand
the entropy of the bit-stream is computed. Sire hit-

Where A is the maximum wavelet coefficient magnitude:

A= mjaxaj , (7
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stream is embedded, the entropy of the bit-strdaamyabit- face in the central database using Eq. 5. Thegreton
planeb is equal to the sum of entropies of itself and ey  rate was obtained using:

bit-planes:

No.of graphmodelsmatchedwithin X tries (13)

P(Matchs X) =
( ) No.of imagesn thedatabase

2 1
. | §2_P(s = DIogP(s = ) +R 2 P(r = )logP(i; = J)
H=Z = " = (10) For evaluation purposes we compared the rate-
i=0 SR distortion performance of the embedded quantizerato
standard scalar quantizer. We also compared the
performance of the feature compression using endzbdd
Here,s andr; are the significant and refinement bit-streamscoding to the performance obtained by compresshey t
at bit-planei, respectively, an& andR, are the lengths of ~ images using JPEG2000 prior to feature extraction.
andr;. For an entire model graph, the entropy of eaghd®
jet was averaged. The compression rafiR for the 5. Results
embedded coder is simply:

Figure 3 shows the rate distortion performance tof t
embedded and scalar quantizers (EQ and SQ, resgglti

255
> P(aj =k)logP(a; =k) averaged over all images in the database.

— k=0
CR m (11)

Where,P(g; = k) is the probability that the Gabor coefficient 6| g?aﬁg;’g‘;igi“;"r“m .

magnitude &, j=1,...LD, is equal to the 8-bit valu&.

Hence, Eqg. (11), measures the compression ratithef 5t .

coefficient magnitudes of the original Gabor jetenpared .

to the compressed Gabor jets (independent of tregem 4t P

size). We use the mean squared eMS8E to evaluate N

distortion of each Gabor jet: Ml .

2L
1 LN/, )
MSE= | —— C—a 12

Ak . . .. .
where @; is thejth compressed coefficient magnitude at 0 5 10 15 20 % 30 3B 40 45 50 55

landmarkk. Figure 3. Rate-distortion performance.

4.1. Distortion Impact on Classification Clearly, the embedded coder achieves better cosipreat

) ) ) ) equal distortion. This is encouraging in thathbws that
As discussed earlier, standard rate-distortion gpe™nce the embedded coder is taking advantage of the Gabor
measures are not sufficient to gauge the impacthef \yayelet structure. EQ achieved a maximum compuessi
compression on classification. ~ We thus devised thegtig of roughly 6 to 1 compared to 4 to 1 for Still,
following experiment using a database of 800 imageghese results do not provide any indication of hthe

containing two frontal views of 400 different indivals.  jycyrred distortion affects the face recognitionfpenance.
One half of the database was left uncompressedraatéd  Fyrthermore, it is unclear what the compressioriorat

as the centrz_il server database. The other_ 400eBnagre represents relative to the original images. The&opy
treated as client fgces. In a second expenmw?ewplo_re calculated using Eg. (10) measures bits per larkimar
feature compression for storage space reductiam.this  coefficient. In order to compare the rate perfaraeof the

case compressed features rather than facial intagessent  ompedded coder to image coding performance, thepmnt
the database. This experiment can be regardedeas t \vas scaled to bits per pixel (bpp):

reverse of the distributed case.

The model graphs corresponding to the client faces LDN
were compressed using the embedded coding technique H =H — (14)
. 2 bpp
described above. The similarity was then compbtstdieen 1,

each compressed model graph and the model gragachf
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Where, LD is the number of wavelet coefficients,is
the number of landmarks, ard and |, are the original

image dimensions (128 x 128 pixels in this cadeépure 4
. . . .-
shows the rate distortion performance of EQ and i®sQ ool i
terms of the bit-rate obtained using Eq. (14). o B
0.8 - ]
1 T T T T /
—— Embedded Quantizer @ /
0.9k — — Scalar Quantizer 7 E 0.7F // N
0.8 %, K
g 06f , i
0.7 & /
< 0.6 0.5+ /’ i
E /
g 05y 0al
@ e —— Embedded Quantizer | |
m 0.4F /’ - — JPEG2000
0.31 03 O.‘Z O.‘3 O.‘4 O.‘S O.‘G O.‘7 O.‘B 0.9
Bits per pixel
0‘27 B ey
oal | Figure 6. Recognition rates for the storage case.
% 5 10 15 20 2 30 33 0 2 50 As can be seen from Figures 5 and 6, the perfo_rmgﬁEQ
MSE is much better than JPEG2000. In both the digeitband
Figure 4. Scaled rate-distortion performance. storage cases, EQ achieved a higher face recagnite at

an equal bit-rate. In fact, for the storage cathe

We have chosen to compare our proposed compressi®@cognition rates obtained using EQ are notabljdrighan
scheme with JPEG2000 (we used the version develaped those obtained using JPEG2000. This is notewarthiat
EPFL, Switzerland). We evaluate the performanceath it is not uncommon to store a database of imagéewyus
EQ and JPEG2000 in two scenarios. First, we censle JPEG2000. However, our results indicate that itildidoe
distributed case, where the features are extraetetely, —more advantageous to instead store the compresatdes,
compressed and transmitted. Second, we consider ti&s suggested here.
limited storage case, where features are comprefsed It should be noted that the recognition rates shown
reduce the storage burden. In this first case,obtin  Figure 5 and 6 are for when the face is matchedtiyxan
recognition rates for compressed features comparean  the first try, i.e. forX=1 in Eq. (13). We also consider other
uncompressed database. In the second case, wim obtériteria for success, such as matching a face nvitdther
recognition rates for uncompressed features cordp@rea  Vvalues ofX. These results are shown in Tables 1 through 4.
compressed database. The face recognition rates were evaluated for lineet

Figure 5 shows the recognition rate of EQ andowest bit-rates in (bits per pixel) using Eq. (13)The
JPEG2000 vs. bit-rate for the distributed caseurfgigp recognition rates using EQ for the distributed case

shows the recognition rate of EQ and JPEG2000issate ~ shown in Table 1 compared to the recognition ratgsg
for the storage case. only uncompressed features (with infinite precis@®abor
jets). The bit-rates shown in Table 1 were avetaneer all
o ‘ ‘ ‘ ‘ ‘ ‘ images in the database. The recognition ratesnattdor
I o e | model graphs extracted from JPEG2000 compressegksna
' ' is shown in Table 2. The images were compresseabeat
osl K i target bit-rates shown in Table 2, which are vdpse& to

! those obtained using EQ.

0.7} , |

06r ] Table 1. Recognition rates using EQ (Distributed)

Recognition rate

oo ] P(MatchsX) | Uncompressed ~ 0.13 0.27 | 0.41
! ] bpp | bpp | bpp
~— Embedded Quanize X=1 93.8% 92.5% 93.8%  94.04

- — JPEG2000

O s X=2 95.0% 92.899 94.3% 95.3¢
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Bits per pixel X=5 95.5% 93.5% 95.0% 95.8¢

Figure 5. Recognition rates for the distributed case.

0.4

(=)
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Table 2. Recognition rates using JPEG2000 (Distributed)

further drop in JPEG2000 performance from Tableo2 t
Table 4.
The fact that the EQ compressed feature recognition

P(MatcheX) | Uncompressed  0.15 0.30 | 0.40 rates on average drop by only 1% compared to the
bpp bpp bpp uncompressed features, suggests that the strucfutiee
X=1 93.8% 40.5% 90.0% 91.5% features is being adequately preserved and large ga
X=2 95.0% 445% 90.5% 92.3% compression can be made without a significant imjpac
X=5 95.5% 51.894 91.5% 93.8d Cclassification performance. Furthermore, it isacléthat our
proposed feature compression scheme can be uséd wit
Table 3. Recognition rates using EQ (Storage) equal success for dlstrll_:)uted face recogn!tlon iagfbns
and also for storage savings, whereas this ishsotase for
JPEG2000.
Uncompressed 0.13] 0.27 0.41 . . .
P(MatcheX) P bpp bpp bpp Finally, in comparing the results of Tables 1 tigiou,
- 0 S 0 4, the conclusion can be drawn that compressing featur
X=1 93.8% 92.5% 94.0% 94.3% vectors as opposed to images is preferable inilalistd
— 0, 0, 0, g . . . .
X=2 95.0% 93.3% 94.3% 95.0% classification applications, as well as for redustdrage
X=5 95.5% 94.8% 95.3% 95.5% impact.

Table 4. Recognition rates using JPEG2000 (Storage)

P(MatcheX) | Uncompressed  0.15 0.30 | 0.40
bpp | bpp | bpp
X=1 93.8% 27.5% 79.5% 83.5%
X=2 95.0% 31.3% 80.0% 84.8%
X=5 95.5% 36.0% 81.8% 86.3%

As can be seen from Table 1, the embedded coding fo

feature compression impacts recognition rates nalym

Even at the lowest bit-rate (equivalent to a 6 to 1
is an average decrease

compression

classification performance of only 1%.

ratio) there

At the raglbit-
rates, the recognition rates are equivalent. pact of the
result is most notable when compared to the pedoom

@)

(b)

in

(c) (d)
Figure 7. Original (a), 0.40 (b), 0.30 (c), and 0.15 bpp (d).

using JPEG2000 image compression on the imagestprio
feature extraction (Table 2). At the lowest bikerathe
recognition rates are very poor. The classificatrates
increase significantly for higher bit-rates but at#l below
the embedded coder rates. The dramatic impact
recognition when compressing images at low bitsrasn be ) o "
seen in Figure 7, which shows as example an unessed We _addre_sse_d compression for distributed face r&tnog
face image drawn from the database, together wigh t PY investigating the impact of feature compressim
compressed images at the target bit-rates showabfe 2. overall face recognition rates. Given that the RoochJSC

Clearly, the face in the image compressed at Ofif ib face recognition system employs Gabor wavelet feafwe
unidentifiable. propose using a modified embedded coding schemar O

Tables 3 and 4 show the results for the storage. Casevaluation showed that the embedded coder achabss

Again, in this case, the database is compressetielcase '€ as low as 0.13 bpp with a minimal impact on
of EQ, the compressed features are stored, whénethe recognltlon_rates (a 1% decrease on_a_lver_age).hé?mbrg,
case of JPEG2000, the compressed images are stneed our _e_valuatlon showed that the cIaSS|f|_cat|on penémnce is
features are extracted from the compressed imagege  Significantly better when compressing feature veCto
difference in performance between EQ and JPEG2600 Fompared to the classification performance obtaifieth
more visible in Tables 3 and 4. There is virtuafly features extracted from compressed images. Irtiaddb

difference between Tables 1 and 3. However, there the distributed _face recognition case, we als_os'tigated
the representation of a database of faces usingressed

& Conclusions and Future Work
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feature vectors. Our results showed that sigmiflgehigher
recognition rates could be achieved using our Eego
compression scheme vs. the state of the art JPEG200
compression standard.

worthwhile to study variable coding rates for theciél

Given these promising results, we believe it wid b

landmarks. The variable rates could be determingdgu
existing knowledge obtained from previous studiéghe

Bochum/USC face recognition system with paramditrear

subspaces [6].
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ABSTRACT

The objective of this paperis to addressheissuesnvolved
in deriving the evidencefrom a video sequencef images
of a facewhenthey are matchedwith the staticimageof

thefaceavailableasareferenceThis problemarisesin the
context of faceidentificationandverification. The testdata
consistsof a sequencef faceimagesof a naturally mov-

ing person,capturedrom one or morecameras.An auto-
matic facerecognitionsysteminvolvesface/headracking,
normalizingthefaceregion, representatioandmatchingof

testandreferenceémagesto derive evidence,and combin-
ing the evidencefrom multiple framesof the faceimages.
Theheadcontourpointsof the moving personareextracted
usingthe motioninformation. The faceregion is extracted
andnormalizedo accounfor scalingandorientationto de-
rivethenormalizedfaceimage.Thenormalizedfaceimage
or someselectedportion of the faceimageis matchedwith

the referencamageto derive partial evidence. The partial

evidenceobtainedrom eachframein thevideosequencés

combinedto decidetheidentity of the person.

1. INTRODUCTION
Automaticfaceidentificationor verificationby machineap-
pearsto be difficult, while it is doneeffortlessly by a hu-
manbeing. The mainreasonfor this difficulty is thatit is
difficult to articulatethe mechanismhumansuse. For ma-
chinerecognitionof faces simplifiedassumptionaremade
in the featureextractionandmatching,andthefaceimages
are capturedunderrestrictedand severely constrainecen-
vironment. For example,mostfacerecognitionstudiesas-
sumethe availability of the croppedup faceimageso that
difficultiesdueto variationin scaleandorientationaremin-
imized [1]. Likewise, exceptfor a few carefully designed
databasethefaceimagedatais collectedmostlyfor frontal
pose,so that effects of posevariationcanbe ignored. Ef-
fectsof illumination, shadevs andotherlighting conditions
arealsoreducedy collectingthe dataundercontrolleden-
vironment.
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This paperaddresghe issuesinvolved in deriving the
evidencefrom a video sequencef imagesof a facewhen
they arematchedwith the staticimageof thefaceavailable
asa reference. The testdataconsistsof faceimagesof a
naturally moving person,capturedfrom one or more cam-
eras. It is possiblethat none of the capturedimagesmay
containa faceimagesuitablefor matchingdirectly with the
referencemage.However, theremaybesomemagesn the
videotestsequencevhich may give a goodmatchwith the
referencemage providedproperrepresentatioandmatch-
ing methodsare available. Combiningthe evidencefrom
theseframesmay leadto a betterdecisionfor recognizing
the personin the video. Sincethe illumination conditions
during testare usually differentfrom thosewith the refer
encecollection, matchingof the imagesmay not resultin
high confidencevaluesevenfor the authenticcase. More-
over, the changegdueto expressionposeand othervaria-
tions make the problemof matchinga testimagewith the
referencechallenging. It may be necessaryo derive evi-
denceby matchingselectedpartsof the referencefaceim-
agewith the correspondingpartsin thetestimage,andthen
combinethe partial evidenceto derive the evidenceat the
framelevel matching.

Matchingtwo faceimagesrequirerepresentatioof the
image. For croppedup images,eigervectorsare derived,
and the first few componentof an image projectedonto
theseeigervectorsareusedo representheimagefor match-
ing [2]. Severalvariationsof the eigervectorapproachare
availablein theliterature[3],[4]. Othermatchingmethods
basedon elasticgraphrepresentatiomnd statisticaldistri-
bution of the facial featureshave alsobeeninvestigatedn
theliteraturefor facerecognition.[5]-[7].

The key elementsin the facerecognitionproblemare
representatioandmatchingof faceimages.We discusghe
issuednvolvedin the context of recognizingor verifying a
given still faceimagein a sequencef imagesof the face
collectedby a camera.Characteristicef thereferenceand
testimagesandtheissuedn developinga facerecognition
systemare discussedn the next section. Subsequensec-
tionsdiscusseachof theseissuesn moredetail. In Section



3, we considerthe issueof tracking and normalizationof
the faceregion from a video. The effectsof matchingand
deriving the partial evidencesare discussedn Section4.
The partialevidenceobtainedfrom eachframein thevideo
sequenceanbe combinedusingan Autoassociatie neural
network (AANN) model,andit is discussedn Section5.

2. CHARACTERISTICS OF REFERENCE AND
TEST DATA

Thereferencalataconsistsof onedigital imageof theface
for eachperson. The referencefaceimageof a personis

generallyof highqualitywith croppedup (manuallyif needed)

region of theface. Thetestdataconsistof video sequences
of a single personwalking normally in a specifiedzone
whereit may be possibleto collect video sequencesvith
morethanonevideocameragoveringdifferentviews/angles,
if necessary The testsubjectmay not be cooperatie, in
termsof giving the specificviews to the camera,andalso
the subjectmay have differentfacial appearancencluding
malke up. The illumination alsomay be varying. Someof
the framesin the video may not have ary portion of the
frontal face,andmay not have eventhefacein thefield of
thecameraln suchascenariotheobjectiveis to determine
whetherthe personin view is sameasthe personin oneof
the referencamages(identification),or is sameasthe per
sonin aspecificreferencémagewhoseidentity we wantto
verify from the video (verification). It is obviousthatonly
afew of theframesin thevideo sequencenay have a view
approximatelycorrespondingo the frontal view of theface
of the person. It is thoseframesthat arelikely to provide
high confidencevalue with the referencefaceimage, pro-
vided suitablerepresentatioandmatchingareavailable.

Thefollowing stagesreinvolvedin developinganalgo-
rithm for matchingthe videotestsequencevith areference
image:

(a) Facetrackingandnormalization,

(b) Matchingatestandreferencdaceimageandderiving
theevidence,

(c) Combiningtheevidence.

3. FACE TRACKING AND NORMALIZATION

Computervision basedapplicationssuchas facerecogni-
tionrequiresautomatiadetectiorandtrackingof humanhead
or facein animagesequenceHowever, mary applications
in theliteratureassumehatthefacesn theimagesequence
have beenlocalized.

Methodshas beenproposedin the literature for head
trackingbasedon intensity gradientsand color histograms
[8], statisticalmodelof color andshape[9], 3D modeling
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[10], temporalinformation[11], GaussiarMixture Model
[12], Kalmanfilter [13]. The methodproposedn this pa-
perusesthe motioninformationto extractthe headcontour
points.

3.1. Extracting head contour points

The headcontourpoints are extractedfrom the gray level
interframedifferenceimage. The RGB imageis corverted
to graylevelimage(I), andtheinterframedifferencamage
(D) is obtainedby
D(ZaJak) = |I(17.77k)_-[(la.7>k_1)| (1)
0<i<w,0<j<hk>1

wherek is the framenumberin thevideo,w andh arethe
width andheightof theimage,respectiely.
ThethresholdedlifferenceimageT’ is obtainedby

.o [ 1, if D(i,5,k) > A
T(i,j. k) = { 0, otherwise 2)
where is thethresholdwhichis the smallestinteger such
thatT'(é,4,k) = 0, for all # and j, whenever thereis no
moving regionin thecameraview.

Thethresholdedlifferenceémageis scannedrom topto
bottomto find out an approximatetop pixel (¢, ¢,) of the
moving region. The headcontourpoints are extractedby
scanningthe thresholdedlifferenceimagefrom the pixel
(cz,cy). Thisprocesss repeatedor every two consecutie
framesin orderto trackthefaceregionin thevideo. Fig.1(a)
shavsthethresholdedlifferencamageasgivenby theEq.2
andFig.1(b)shavstheextractedheadcontourpoints.

(a) Differenceimage

(b) Contourpoints

Fig. 1. Head contour points.

3.2. Fittingan €ellipse

The methodproposedin [14] is usedto fit an ellipse for

the extractedheadcontourpoints. In this methoda generic
conic is represente@sthe zero setof an implicit second
orderpolynomialasgivenin Eq.3. If F is afunctiononan
opensetU, thenthe zerosetof F isthesetZ = {z € U :

F(z) =0}.



Fa,x)=ax=az’ +bey+cy’ +dr +ey+ f (3)

wherea=[abcdeflandx =[z? zy y2 zy 1]T. F(a,x;) =
d; is calledthe”algebraicdistance’of apointx; to theconic
F(a,x) =0.

Oneway of fitting a conicis to minimize the algebraic
distanceover the setof N datapointsin the leastsquares
senseasgivenin Eq.4.

N
a=arg main {Z F(a, Xi)2} (4)

i=1

The methodproposedin [14] minimize the algebraic
distancegivenin Eq.4subjecto theconstraind? —4ac < 0.
Themethodgivesthe center width, heightandangleof the
ellipsefor thegivenN contourpointsof thehead.Thewidth
(ew) andheight(ey) of theellipsefor theheadregion satis-
fiestheconstraingivenin Eq.5.

ldxey, <ep <1.9xey (5)

TheBresenhansellipsegeneratioralgorithmis usedto
generateheellipseusingtheestimatedenterwidth, height
andanglevalues[15]. The generatectllipse andthe face
regionareasshovnin Fig.2.

(a) Generatellipse

(b) Faceregion

Fig. 2. Fitting an ellipse.

The proposedmethodrequiresinitial headmovement.
If thereis no motionin the successie framesthenthe pre-
viousellipsecoordinatesreretained.Experimentakesults
shaw that this methodis invariantto scaling,illumination
andfacial expressions.lt is alsoinvariantto tilt, yaw and
poseof thefaceor headto someextent.

3.3. Facenormalization

Theelliptic faceregion obtainedfrom thevideois normal-
izedto accounffor scalingandorientationto derivethenor-
malizedfaceimageasshavnin Fig.3. Thewidth andheight
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of theellipseis usedto normalizethe elliptic faceregionto
afixed size,andthe angleis usedto normalizethe orienta-
tion. Figs.3(a)and3(b) shav theunnormalizedandnormal-
izedfaceimagesrespectiely. Fig.4shavstheresultof face
trackingfor two subjectsandthe correspondingnormalized
faceimagesareshavnin Fig.5.

(a) Unnormalizedace (b) Normalizedface

Fig. 3. Face normalization.

Fig. 5. Normalizedfaceimages

An effective methodof comparinga testandreference
imageis by usingcorrelatiorfilters[16]. An importantmet-
ric in theuseof correlatiorfiltersis the peak-to-sidelobea-
tio (PSR)which quantifiesthe sharpnessf the correlation
peak. For well-designeccorrelationfilters, PSRshouldbe



largefor authenticsandsmallfor impostors.Using PSRof
the correlationoutputonecanderive the evidencefor a se-
guenceof framesof testimagesandareferencdaceimage.
ThePSRis definedas

PSR=(p—p)/o (6)

wherep is the peakvaluein the correlationoutput, 4 and
o are the meanand the standarddeviation in a side-lobe
region, excludinga 5 x 5 maskcenteredat the peak. The
sizeof theside-loberegionis typically 20 x 20 for a64 x 64

faceimage.Thesewindow sizesareempiricallyderivedand
otherchoicesmay be betterfor othercases.The PSRplots
for agenuinetestsequencésubjectl) anda few impostors
testsequenceareshavn in Fig.6. Thethick line shavs the
PSRvaluesfor the genuinetestsequence.

1
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Frame #

Fig. 6. PSR plot for genuine (subject 1) and impostor
test sequence

But despitethe exploitation of the behaior of the cor-
relationfiltering, it may not be possiblemostof the time
to obtain good matchbetweenthe testand referenceface
images,dueto pose,tilt, illumination differencesand par
tial visibility of the facein a videoframe. Fig.7 shows the
PSRplotsfor a genuinetestsequencésubject?2) andafew
impostorstestsequencesln this casemostof thetime the
genuinePSRvaluesarelower whencomparedo the plots
for the impostors. In suchcasest is worth exploiting the

evidenceobtainedfrom selectedportionsof the reference

imageasdiscussedn the next section.

4. MATCHING A TEST AND REFERENCE FACE
IMAGE

If a small portion of the faceimageis usedfor correlation
matchingiit is likely thattherandomvariationsin the pixel

251

—

L L L L )
0 50 100 150 200 250 300

Fig. 7. PSR plot for genuine (subject 2) and impostors
test sequence

valuesmay resultin a poor matcheven for the authentic
case.Thereforeit is betterto represenbnly the significant
partof thefaceimage,by reducingvariationsdueto noise.
For this we proposea representationf the faceimageus-
ing 1-D eigervectors. Thesevectorsare derived from the
referenceimageusing the columnsof the image pixels as
1-D vectors.Fig.8 shavs theimageobtainedusingthefirst
15 eigervectorsderived from the correspondingeference
image. Thereconstructedmagereduceshe variationsdue
to noise, althoughsomeblurring is also present. The se-
lectedportionsof thereconstructedeferencémagesuchas
eyes,nose-moutlandmouthpartsasshavn in Fig.9 canbe
matchedwith the testimageto derive partial evidence.The
testimagealsois representeth termsof thefirst 15 eigen-
vectorsof thereferencémage. It maybe possibleto select
the portionsof the referencamagewhich neednot corre-
spondto ary specificfeatureslike eyes, mouth, noseetc.
For example,onecanusesomecolumnsor rows of theim-
agepixelsfor deriving the partialevidence.

(a) Faceimage (b) Reconstructeflaceimage

Fig. 8. 1-D eigenvector representation of face image.

Figs.10and 11 show the evidenceobtainedfrom eyes,
nose-moutlportion of the faceimagefor the testsubjectl



and2, respectiely. The genuinetestsequencé#SRvalues
arerepresentetly squareandtheimpostorsPSRvaluesare
representebly plus. Figs.12and13shav theevidencewhen
the threefeaturesgyes, nose-moutrand mouth (as shavn

in Fig.9) areused.

ww ) =

Fig. 9. Eyes, nose-mouth and mouth portion of the
reconstructed reference image
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Fig. 10. Partial evidence for test subject 1

5. COMBINING THE EVIDENCE

Theevidenceobtainedromtheselectegortionsfromeach
framein the video test sequencecan be combinedusing
anautoassociate neuralnetwork (AANN) model. AANN

modelis afeedforwardneuralnetwork performinganiden-
tity mappingof theinputspacelt canbeusedto capturethe
distribution of the input data[17],[18]. The distribution of

theimpostorevidencefor eachreferencesubjectis captured
usingafive layerAANN model.Fig.14shovsthestructure
of the AANN modelusedin our study It canbe denoted
as3L 6N 2N 6N 3L, whereL denotesa linearunit, andN

denotesa nonlinearunit. The integer value indicatesthe
numberof units usedin thatlayer The secondandfourth
layersof the network have moreunitsthanthe input layer.

The third layer hasfewer units thanthe first or fifth. The
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Fig. 11. Partial evidence for test subject 2

activationfunctionsatthe secondthird andfourth layerare
nonlinear Thenonlinearunitsusetanh(s) asthetheactiva-
tion function,wheres is theactivationvalueof theunit. The
standardbackpropagatiofearningalgorithmis usedto ad-
justtheweightsof the network to minimizethemeansquare
errorfor eachfeaturevector
Theevidencesarederivedfrom eachframein thevideo
testsequenceavith respecto areferencesubject. Theseev-
idencesare given as input to the model correspondingo
the referencesubject. The output of the model is com-
paredwith the input to computethe normalizedsquared
error.  This squarederror gives an indication of the con-
fidencewith which the input frame belongsto the impos-
tor class. The smallerthe error, the higherthe confidence
with which we may labelthe input to belongto theimpos-
tor class. Therefore,it seemdogical to assumehat larger
error givesan indication of the confidencewith which the
input canbe assignedo the authenticclass. Althoughit is
desirabldo derive asuitableconfidenceneasurdrom these
errorvalues,n this papemwe have usedtheerrorvalueitself
asthe confidencevaluefor the authenticclass. The accu-
mulatederroris calculatedrom the error obtainedfor each
framein the video sequence.This processs repeatedor
all thereferencesubjects.Thelargestaccumulateckrroris
usedto decidethe identity of thetestsubject. Theresultof
the accumulatecerror for the testsubjectl with respecto
its modelis givenin Fig.15. Thethick line corresponds$o
the accumulatecerror with respecto the referencesubject
1. Fig. 16 shaws the correspondingplot for the subject2.
As canbe seenfrom the plot, asmore framesare usedto
accumulateheerrorfor themodelof the subjectit will ex-
ceedthe error from all othermodelsfor the genuinecase.
Thusthe evidencecollectedfrom selectedportionscanbe
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Fig. 12. Partial evidence for test subject 1

combinedandaccumulatedo derive a betterdecisionfrom

the video testsequenceNote that the evidencefor the au-
thenticis significantlybetterin theseplots comparedo the
evidenceobtainedby direct correlationmatchingshown in

Figs.6and7. In particular notethattheevidencefor subject
2 hassignificantlyimprovedascomparedo theevidencein

Fig.7. It may be possibleto enhancehe evidencefurther
by selectingthe subsetof similar facesfrom the plots and
usingotherclues,suchasotherpartsof thefaceimageand
theknowledgeof thevideosequence.

6. CONCLUSION

This paperproposeda methodfor extracting the facere-

gion usingthe motioninformation. The extractedfaceim-

ageis normalizedwith respecto scaleandorientation.The
selectedportion of the normalizedfaceimageis matched
with thereferencémageto derive the partialevidence.The
partial evidenceobtainedirom eachframein thevideose-
guenceare combinedusing an autoassociate neuralnet-
work model. The proposednethodcanbe usedeffectively

for matchingavideotestsequencevith astill referenceém-

age.
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Abstract

This study examines issues involved in the comparison
and combination of face recognition using visible and
infra-red images. This is the only study that we know
of to focus on experiments involving time lapse between
gallery and probe image acquisitions. Most practical
applications of face recognition would seem to involve
time-lapse scenarios. We find that in a time lapse scenario,
(1) PCA-based recognition using visible images may
outperform PCA-based recognition using infra-red images,
(2) the combination of PCA-based recognition using visible
and infra-red imagery substantially outperforms either
one individually, and (3) the combination of PCA-based
recognition using visible and infra-red also outperforms a
current commercial state-of-the-art algorithm operating on
visible images. For example, in one particular experiment,
PCA on visible images gave 75% rank-one recognition,
PCA on IR gave 74%, Facelt on visible gave 86%, and
combined PCA IR and visible gave 91%.

1 Introduction

Face recognition in the thermal domain has received rel-
atively little attention in the literature in comparison with
recognition in visible imagery. This is mainly because of
the lack of widely available IR image databases. Previous
work in this area shows that well-known face recognition
techniques, for example PCA, can be successfully applied
to IR images, where they perform as well on IR as on visible
imagery [1] or even better on IR than on visible imagery [2]
[3]. However, in all of these studies [1] [2] [3], the gallery
and probe images of a subject were acquired in the same
session, on the same day. In our current study, we also ex-
amine performance when there is substantial time elapsed
between gallery and probe image acquisition.

Socolinsky and Selinger [2] [3] used 91 subjects, and the
gallery and probe images were acquired within a very short
period of time. We will refer to such experiments as same
session recognition. Experiments in which the probe and
gallery images are acquired on different days or weeks will
be called time-lapse recognition. Socolinsky and Selinger
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used a sensor capable of imaging both modalities (visible
and IR) simultaneously through a common aperture. This
enabled them to register the face with reliable visible im-
ages instead of IR images. They emphasized the IR sensor
calibration and their training set is the same as the gallery
set. In their experiments, several face recognition algo-
rithms were tested and the performance using IR appears
to be superior to that using visible imagery.

Wilder et al. [1] used 101 subjects and the images
were acquired without time lapse. They controlled only
for expression change. Several recognition algorithms were
tested and they concluded that the performance is not sig-
nificantly better for one modality than for another.

Additional work on IR face recognition has been done by
[4] and [5][6]. In [4], an image data set acquired by Socolin-
sky et al. was used to study multi-modal IR and visible face
recognition using the Identix Facelt algorithm [7]. In [5][6],
IR face recognition was explored with a smaller dataset, but
combined IR and visible images for face recognition was
not addressed.

This study examines more varied conditions and uses
a relatively larger database, in both the number of images
and the number of subjects, compared with the databases
used by Wilder et al. and Socolinsky et al. [1] [2] [3].
We consider the performance of the PCA algorithm in
IR, including the impact of illumination change, facial
expression change and the short term (minutes) and longer
term (weeks) change in face appearance. This current work
is an extension of previous work [8] to more carefully
consider the relative effects of time lapse between gallery
and probe images on the performance of infrared versus
visible imagery, and also to investigate the accuracy of
eye center location as a possible cause for the inferior
performance of infrared relative to visible-light images in a
time-lapse scenario.

2 Data Collection

Most of the data used to obtain the results in this paper was
acquired at University of Notre Dame during 2002, where
IR images from 240 distinct subjects were acquired. Each



image acquisition session consists of four views with differ-
ent lighting and facial expressions. Image acquisitions were
held weekly for each subject and most subjects participated
multiple times. All subjects completed an IRB-approved
consent form for each acquisition session. IR images were
acquired with a Merlin * Uncooled long-wavelength IR
camera, which provides a real-time, 60Hz, 12 bit digital
data stream, has a resolution of 320x 240 pixels and is sensi-
tive in the 7.0-14.0 micron range. Visible-light images were
taken by a Canon Powershot G2 digital camera with a reso-
lution of 1200x 1600 and 8 bit output. Three Smith-Victor
A120 lights with Sylvania Photo-ECA bulbs provided stu-
dio lighting. The lights were located approximately eight
feet in front of the subject. One was approximately four
feet to the left, one was centrally located and one was lo-
cated four feet to the right. All three lights were trained on
the subject’s face. The side lights and central light are about
6 feet and 7 feet high, respectively. One lighting configura-
tion had the central light turned off and the others on. This
will be referred to as “FERET style lighting” or “LF”. The
other configuration has all three lights on; this will be called
“mugshot lighting” or “LM”. For each subject and illumina-
tion condition, two images were taken: one is with neutral
expression, which will be called “FA”, and the other image
is with a smiling expression, which will be called “FB”. For
all of these images the subject stood in front of a standard
gray background. Since glass and plastic lenses are opaque
in IR, we asked all subjects to remove eyeglasses during ac-
quisition. According to the lighting and expression, there
are four categories: (a) FA expression under LM lighting
(FA|LM), (b) FB expression under LM lighting (FB|LM),
(c) FA expression under LF lighting (FA|LF) and (d) FB
expression under LF lighting (FB|LF). Figure 1 shows one
subject in one session under these four conditions.

To create a larger training set for our experiments, we
also used 81 IR and visible-light images of 81 distinct
subjects, acquired by Equinox Corporation [9].

3 Preprocessing

We located faces manually by clicking on the centers of
each eye. The features on a human face are much more
vague in IR than in visible imagery and thus the registration
in the following normalization step might not be as reliable
in IR as in the visible images. Notice that Socolinsky and
Selinger [2] [3] used a sensor capable of capturing simulta-
neous registered visible and IR, which is of particular sig-
nificance for their comparison of visible and IR. The fact
that they get eye location from visible imagery and use it in
IR may make their IR performance better than if they used
IR alone for eye location.

IManufacturer names are given only to specify the experimental details
more precisely, and not to imply any endorsement of a particular manufac-
turer’s equipment.
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(Q)FAILM (b) FBI|LM

(a)FA|LM

(b) FB|LM

Figure 1: Face images in visible and IR under different
lighting and facial expression conditions.

A PCA subspace is derived separately for visible and IR
images of the same 240 individuals. These individuals are
not in the gallery or probe sets. We followed the convention
in the CSU software [10] and used 130 x 150 resolution
versions of the original visible and IR images in creating
the face space. Recognition is performed by projecting a
probe image into the face space and finding the nearest
gallery image. The "MahCosine” metric is used to compute
the distance between points in the face space [10].

4 Same-session Recognition

We used 82 distinct subjects and four images for each sub-
ject acquired within 1 minute with different illumination
and facial expressions. For each valid pair of gallery and
probe sets, we computed the rank 1 correct match percent-
age and the rank at which all the probes were correctly
matched. They are reported in Table 1. Each entry in the
leftmost column corresponds to a gallery set, and each en-
try in the top row corresponds to a probe set. The subspace
for Table 1 was derived by using 240 images of 240 distinct
subjects.

Table 1 shows that there is no consistent difference
between the performance of visible and IR. IR is better in
six instances, visible is better in four instances and they
are the same in two instances. The overall performance for
same session recognition is high for both IR and visible,
and so it is possible that some “ceiling effect” could make
it difficult to observe any true difference that might exist.

5 Time-lapse Recognition

Time-lapse recognition experiments use the images ac-
quired in ten acquisition sessions of Spring 2002. In the
ten acquisition sessions, there were 64, 68, 64, 57, 49, 56,



Table 1: The percentage of correctly matched probes at rank
1 and the smallest rank at which all probes are correctly
matched for same session recognition in Visible(bottom)

and IR(top)

FAILF | FA[LM | FB|LF | FB|LM
FA|LF 0.98(2) | 0.99(3) | 0.99(2)
0.98 (10) | 0.98 (10) | 0.94 (4)

FA[LM | 0.99 (2) 0.94 (28) | 0.95 (19)

0.95 (6) 1.00(1) | 1.00 (1)
FBILF | 0.96(4) | 0.95 (39) 1.00 (1)

0.95(6) | 1.00 (1) 1.00 (1)
FBILM | 0.98(2) | 0.96 (19) | 1.00 (1)

0.89 (17) | 0.98(3) | 0.98(3)

54, 54, 60, and 44 subjects. Figure 2 shows the visible and
IR images of one subject across 10 different weeks, which
suggests that there may be more apparent variability, on av-
erage, in the IR images of a person than in the visible im-
ages. In particular, the bridge and sides of the nose appear
somewhat different in different IR images. [11] confirmed
that there is variability in IR images due to startling, gum-
chewing and walking exercise, etc.

The scenario for this recognition is a typical enroll-once
identification setup. There are 16 experiments based on the
exhaustive combinations of gallery and probe sets given the
images of the first session under a specific lighting and ex-
pression condition as the gallery and the images of all the
later sessions under a specific lighting and expression con-
dition as the probe. That is, each gallery set has 64 images
from session 1; each probe set has 431 images from ses-
sions 2-10. The rank-1 correct match percentages are given
in Table 2. For each subject in one experiment, there is one
enrolled gallery image and up to nine probe images, each
acquired in a distinct later session. The same face space is
used as in the “same-session” experiments.

Table 2: Rank 1 correct match percentage for time-lapse
recognition in visible (bottom) and IR (top). Row indicates
gallery and column indicates probe.

FA[LM | FA[LF | FB]LM | FBILF
FA[LM | 0.83 (41) | 0.84 (27) | 0.77 (48) | 0.75 (43)
0.91(39) | 0.93(54) | 0.73(56) | 0.71(56)
FAJLF | 0.81(38) | 0.82 (46) | 0.74 (49) | 0.73 (43)
0.92(31) | 0.92(28) | 0.75(32) | 0.73 (44)
FBILM | 0.77 (45) | 0.80 (49) | 0.79 (39) | 0.78 (51)
0.77 (33) | 0.81(44) | 0.86 (48) | 0.85 (47)
FBILF | 0.73(58) | 0.76 (58) | 0.77 (36) | 0.76 (41)
0.75 (41) | 0.79 (40) | 0.90 (27) | 0.90 (47)

For IR, Table 2 illustrates a striking difference in perfor-
mance in contrast to same-session recognition results shown
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(a) Week 9

(b) Week 10

Figure 2: Normalized FA|LM face images of one subject in
visible and IR across 10 weeks.

in Table 1: the rank 1 correct match rate drops by 15%
to 20%. The most obvious reason is that the elapsed time
caused significant changes among thermal patterns of the
same subject. In addition, it is possible that unreliable reg-
istration of the eye centers could have degraded the perfor-
mance. Table 2 also shows that the performance degrades
for visible imagery compared with that in same-session
recognition. Visible imagery outperforms IR in 12 of the
16 cases, with IR and visible the same in another two.

For one time-lapse recognition with FA|LF images
in the first session as the gallery set and FA|LF images
in the second to the tenth sessions as the probe set, we
illustrate the match and non-match distance distributions
in Figure 3 and Figure 4. The score (distance) ranges
from —1.0 to 1.0 since we use the "MahCosine” distance
metric in CSU software. The match score histogram is
the distribution of distances between the probe images



and their correct gallery matches. The non-match score
histogram is the distribution of distances between the probe
images and all their false gallery matches. Essentially,
the match score distribution represents the within-class
difference, while the non-match score distribution repre-
sents the between-class difference. Hence, for an ideal
face recognition, the match scores should be as small as
possible and the non-match scores should be much larger
than the match scores and they shouldn’t overlap. In this
experiment, there is significant overlapping for both IR
and visible-light, which accounts for the incorrect matches.
The match score distribution for visible is more at the
smaller distance area than that for IR, i.e., the within-class
difference for visible is smaller than that for IR. The
non-match score distributions for these two modalities
are about the same, i.e., the between class differences are
similar. Thus, visible-light imagery performs better than IR.
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Figure 3: Match and non-match score distributions for one
time-lapse recognition in IR

6 Same-session versus Time-lapse

This study used exactly one probe for each gallery im-
age. The gallery sets (FA|LF) are the same in same-session
recognition and time-lapse recognition. The probe set for
same-session recognition is made up of images (FA|LM)
acquired at about the same time (less than one minute dif-
ference) as the probe. The probe set for time-lapse recog-
nition is made up of images (FA|LM) acquired in different
weeks from when the gallery images were acquired.

We conducted 9 experiments of different time delays for
time-lapse recognition and for each there is a corresponding
same-session recognition experiment for comparison.

Figure 5 shows the results for visible and IR. For both
modalities, the same session recognition outperforms
time-lapse recognition significantly. Note that for same-
session recognition there is no clear advantage between
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Figure 4: Match and non-match score distributions for one

time-lapse recognition in visible-light

IR and visible. However, in time-lapse recognition visible
generally outperforms IR.

I T I I
IR same-session
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1 'l
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Figure 5: Rank-1 correct match rate for same-session recog-
nition and time-lapse recognition in IR and Visible

7 Senditivity to Eye Center Location

We manually located eye centers in visible and IR images
for normalization. It is possible that error in eye center lo-
cation could affect the recognition performance differently
invisible and IR, especially considering that the IR imagery
is more vague than visible imagery and the original resolu-
tion for IR is 312 x 219 versus 1600x1200 for visible image.
This is potentially an important issue when comparing the
performance of IR and visible imagery.

We did a random replacement of the current manually-
marked eye centers by another point in a 3x3 (pixel) win-
dow, which is centered at the manually-marked position.
This is very close to the possible human error in reality. The
time-lapse recognition results by using images normalized



with the randomly perturbed eye centers are shown in Table
3.

Compared to Table 2, IR is very sensitive to eye center
locations. The correct recognition rates drop significantly
compared to the performance where the manually located
eye centers are used. For visible imagery in time-lapse
recognition, the performance decrease is at most slight.
This suggests that marking eye centers in IR might be
harder to do accurately than marking eye centers in visible,
and that this might have affected IR accuracy relative to
visible accuracy in our experiments.

Table 3: Rank 1 correct match percentage for time-lapse
recognition of combining IR and visible. Top: rank based
strategy; Bottom: score based strategy. Row indicates
gallery and column indicates probe, eye center is randomly
replaced by a point in a 3x3 window that is centered at the
manually-located eye center

FAILM | FALF | FB]LM | FB|LF
FAJLM | 0.67 (52) | 0.65 (44) | 0.62 (58) | 0.57 (59)
0.90 (46) | 0.91 (54) | 0.71(55) | 0.71 (54)
FA|LF | 0.68 (40) | 0.69 (56) | 0.60 (55) | 0.62 (61)
0.91 (50) | 0.92(27) | 0.74(33) | 0.72 (44)
FB|LM | 0.64 (61) | 0.67 (60) | 0.65 (62) | 0.69 (57)
0.75 (56) | 0.81 (45) | 0.86 (49) | 0.84 (50)
FB|LF | 0.63(57) | 0.62 (57) | 0.63 (62) | 0.65 (55)
0.74 (51) | 0.78 (40) | 0.88 (33) | 0.89 (47)

8 Combination of Visbleand IR

Table 2 shows that visible imagery is better than IR in time-
lapsed recognition, but the sets of mismatched probes of
the two classifiers do not necessarily overlap. This suggests
that these two modalities potentially offer complementary
information about the probe to be identified, which could
improve the performance. Since these classifiers yield de-
cision rankings as results, we first consider fusion on the
decision level. Kittler et al. [12] conclude that the com-
bination rule developed under the most restrictive assump-
tions, the sum rule, outperformed other classifier combina-
tion schemes and so we have used the sum rule for combi-
nation in our experiments.

We first used an unweighted rank based strategy for com-
bination.This approach is to compute the sum of the rank
for every gallery image. The gallery image with the lowest
rank sum will be the first choice of the combination clas-
sifier. However, on average, for each probe there are 10-20
rank sum ties (64 gallery images). Since the visible imagery
is more reliable based on our experiments in the context of
time-lapse, we use the rank of the visible imagery to break
the tie. The top of each item in Table 4 shows the com-
bination results using this approach. Only in 2 out of 16
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instances is the visible alone slightly better than the com-
bination. The combination classifier outperforms IR and
visible in all the other cases.

For each individual classifier (IR or visible), the rank at
which all probes are correctly identified is far before rank 64
(64 gallery images). Hence, the first several ranks are more
useful than the later ranks. We logarithmically transformed
the ranks before combination to put strong emphasis on the
first ranks and have the later ranks have a quickly decreas-
ing influence. The middle of each item in Table 4 shows
the results of this approach. The combiner outperforms vis-
ible and IR in all the sub-experiments and is better than the
combiner without rank transformation.

Second, we implemented a score based strategy. We
use the distance between the gallery and probe in the face
space as the score, which provides the combiner with some
additional information that is not available in the rank
based method. It is necessary to transform the distances to
make them comparable since we used two different face
spaces for IR and visible. We used linear transformation,
which maps a score s in a range of Iy = [smin, smaz] to a
target range of I,» = [0, 100]. Then we compute the sum of
the transformed distances for each gallery and the one with
the smallest sum of distances will be the first match. The
bottom entry of each item in Table 4 shows the results. The
score based strategy outperforms the rank based strategy
and improves the performance significantly compared with
either of the individual classifiers (IR and visible). This
shows that it is desirable to have knowledge about the
distribution of the distances and the discrimination ability
based on the distance for each individual classifier (IR or
visible). This allows us to change the distribution of the
scores meaningfully by transforming the distances before
combination. This combination strategy is similar to that
used by Chang et al. [13] in a study of 2D and 3D face
recognition.

9 Comparison of PCA and Facelt

Facelt is a commercial face-recognition algorithm that per-
formed well in the 2002 Face Recognition Vendor Test[14].
We use Facelt results to illustrate the importance of com-
bined IR-plus-visible face recognition.

Figure 6 shows the CMC curves for a time-lapse
recognition with FA|LF images in the first session as the
gallery set and FB|LM images in the second to the tenth
sessions as the probe set by Facelt and PCA. Note that
the fusion method is score-based as discussed above. We
notice that Facelt outperforms PCA in visible imagery and
IR individually. However, the fusion of IR and visible
can easily outperforms either modality alone by PCA or
Facelt. We should take into account the training set PCA
used when making this comparison. Given an extremely
large unbiased training set which is not often practical



Table 4: Rank 1 correct match percentage for time-lapse
recognition of combining IR and visible. Top: simple rank
based strategy; Middle: rank based strategy with rank trans-
formation; Bottom: score based strategy. Row indicates
gallery and column indicates probe.

FALM | FALF | FB[LM | FBILF
FA|LM | 0.91 (25) | 0.95 (23) | 0.83 (45) | 0.81 (44)
0.93(26) | 0.96 (24) | 0.85 (47) | 0.85 (47)
0.95 (24) | 0.97 (21) | 0.90 (46) | 0.90 (45)
FA[LF | 0.91(18) | 0.93(19) | 0.85 (41) | 0.83 (23)
0.92 (24) | 0.94 (27) | 0.87 (44) | 0.84 (35)
0.95 (20) | 0.97 (20) | 0.91(39) | 0.90 (24)
FBJLM | 0.87 (20) | 0.92 (34) | 0.85 (23) | 0.86 (32)
0.88 (22) | 0.92 (40) | 0.87 (32) | 0.88 (32)
0.91(27) | 0.94(32) | 0.92(25) | 0.92 (31)
FB|LF | 0.85(43) | 0.87 (40) | 0.88 (12) | 0.90 (36)
0.87 (33) | 0.88(37) | 0.90 (17) | 0.91 (38)
0.87 (40) | 0.91 (44) | 0.93 (20) | 0.95 (37)

or efficient, PCA might eventually outperform Facelt in
visible-light imagery.

Cumulative Match Score

& Visible by Facelt
-+ IR by PCA

| -5- Visible by PCA
0751 ~ Fusion of IR and Visible by PCA|

g ‘5 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 A‘o 4‘5 50
Rank

Figure 6: CMC curves of time-lapse recognition using PCA

and Facelt in visible-light and IR

10 Eigenvector Tuning

For one time-lapse recognition with FA|LF images in the
first session as the gallery set and FA|LF images in the sec-
ond to the tenth sessions as the probe set, we examined the
eigenvector selection results for IR and visible images.

For IR, we find that dropping any of the first 10 eigenvec-
tors will degrade the performance. A possible reason is that
in IR face images, there is no significant unrelevant variance
like the lighting in visible images and the first eigenvectors
can well describe the true variance between images. When
retaining 94% of eigenvectors by removing the last eigen-
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vectors, the performance reaches maximum performance of
82.8%, compared with 81.2% when all eigenvectors are re-
tained. This shows that these last eigenvectors encode noise
and are inefficient.

For visible-light, dropping the first 2 eigenvectors make
the performance grow to a peak performance of 92.6%
from 91.4%. It is possible that some significant unrelevant
variance, like lighting, is encoded in these eigenvectors.
With these two eigenvectors dropped, We find that retain-
ing about 80% of the eigenvectors by removing the last
eigenvectors makes the performance increase to 94.4%,
which shows that these last eigenvectors are redundant and
undermine the performance.

11 Assessment of Time Dependency

The first experiment is designed to reveal any obvious ef-
fect of elapsed time between gallery and probe acquisi-
tion on performance. The experiment consists of nine sub-
experiments. The gallery set is FA|LF images of session 1.
Each of the probes was a set of FA|LF images taken within
a single session after session 1 (i.e. sub-experiment 1 used
session 2 images in its probes, sub-experiment 2 used ses-
sion 3 for its probes, and so forth). Figure 7 shows the
histogram of the nine rank-1 correct match rates for the
nine sub-experiments in IR and visible imagery. The fig-
ure shows differences in performance from week to week,
but there is no clearly discernible trend over time in the re-
sults. All the rank 1 correct match rates in visible imagery
are higher than in IR.

1 : : : : : : : R
‘ [ Visible

Rank-1 correct match percentage

1 2 4 5 6 7 8 9 10
Delay in weeks between gallery and probe acquisition

Figure 7: Rank-1 correct match rate for 10 different delays
between gallery and probe acquisition in visible and IR

The second experiment was designed to examine the per-
formance of the face recognition system with a constant de-
lay of one week between gallery and probe acquisitions. It
consists of nine sub-experiments: the first used images from
session 1 as a gallery and session 2 as probe, the second



used session 2 as gallery and session 3 as probe and so on.
All images were FA|LF. The rank 1 correct match rates for
this batch of experiments appear in Figure 8. We note an
overall higher level of performance with one week of time
lapse than with larger amounts of time. The visible imagery
outperforms IR in 7 of the 8 sub-experiments.

R
[| 7 visible

o

Rank-1 correct match percentage
° o

2-3 4-5 5-6 6-7 7-8 8-9 9-10
Session weeks

Figure 8: Rank-1 correct match rate for experiments with
gallery and probe separated by one week in visible and IR

Together with the time-lapse recognition experiment
in Section 7, these experiments show that delay between
acquisition of gallery and probe images causes recognition
performance to degrade. The one overall surprising result
from these experiments is that visible imagery outperforms
IR in the context of time-lapse.

11 Statistical Test on Conditions

In Table 2, the probe pairs that are of the same facial
expression (lighting condition) but different lighting
condition (facial expression), given a gallery of the same
facial expression (lighting condition), should reveal the
illumination (facial expression) impact. Essentially, we
make a comparison of the response of matched pairs
of subjects, using dichotomous scales, i.e. subjects are
grouped into only two categories, correct/incorrect match
at rank 1. Hence we choose McNemar’s test [15].

11.1 lHlumination Impact

Given the null hypothesis being there is no difference in per-
formance based on whether the lighting condition for the
probe image acquisition is matched to the lighting condi-
tion for the gallery image acquisition, the corresponding
p—values are reported in Table 5. For IR, what we ob-
served is very likely if the null hypothesis were true and
the association between FERET and mugshot lighting con-
ditions for the probe images is NOT significant. However,
surprisingly, for visible imagery, there is no evidence to re-
ject the hypothesis either. One reason is that the variance,
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which is dependent on elapsed-time, dominated over the
lighting variance. Another possible reason is that there is
not enough difference between FERET and mugshot light-
ing conditions to produce a noticeable effect. Referring to
the images in Figure 1, this explanation seems plausible.

Table 5: p-values of McNemar’s test for the impact of light-
ing change in visible (bottom) and IR (top)

Gallery | Probe pair | p-value
FAILM | FA|LM 0.55
FA|LF 0.18
FA|LF FA|LM 0.50
FA|LF 0.85
FBILM | FB|LM 0.50
FBILF 0.32
FBILF FB|LM 0.51
FBJ|LF 0.47

11.2 Facial Expression Impact

Given the null hypothesis being there is no difference in
performance based on whether the facial expression for the
probe image acquisition is matched to the facial expression
for the gallery image acquisition, the corresponding
p—values are reported in Table 6. For visible imagery,
all p—values are 0, which means that the null hypothesis
is unlikely to be true according to what we observed, i.e.
the performance is highly dependent on whether the facial
expression for the probe image acquisition is matched to
the facial expression for the gallery image acquisition. For
IR in the group which used neutral expression as gallery,
we have the same conclusion as the visible imagery. But
for IR with a smiling expression as gallery, we failed to
reject the hypothesis, which means the expression impact
may be significant in this scenario.

Table 6: p-values of McNemar’s test for the impact of ex-
pression change in visible (bottom) and IR (top)

Gallery | Probe pair | p-value
FAILM | FA|LM 0.01
FB|LM 0.00
FA|LF FA|LF 0.00
FBJ|LF 0.00
FB|LM | FB|LM 0.23
FA|LM 0.00
FBJ|LF FB|LF 0.92
FA|LF 0.00

12 Conclusion and Discussion

In same session recognition, neither modality is clearly sig-
nificantly better than another. In time-lapse recognition,
the correct match rate at rank 1 decreased for both visible



and IR. In general, delay between acquisition of gallery and
probe images causes recognition system performance to de-
grade noticeably relative to same-session recognition. More
than one week’s delay yielded poorer performance than a
single week’s delay. However, there is no clear trend, based
on the data in this study, that relates the size of the delay to
the performance decrease. A longer-term study may reveal
a clearer relationship. In this regard, see the results of the
Face Recognition Vendor Test 2002 [14].

In time-lapse recognition experiments, we found that:
(1) PCA-based recognition using visible images performed
better than PCA-based recognition using IR images, (2)
Facelt-based recognition using visible images outperformed
either PCA-based recognition on visible or PCA-based
recognition on IR, and (3) the combination of PCA-based
recognition on visible and PCA-based recognition on IR
outperformed Facelt on visible images. This shows that,
even using a standard public-domain recognition engine,
multi-modal IR and visible recognition has the potential to
improve performance over the current commercially avail-
able state of the art.

Perhaps the most interesting conclusion suggested by our
experimental results is that visible imagery outperforms IR
imagery when the probe image is acquired at a substantial
time lapse from the gallery image. This is a distinct differ-
ence between our results and those of others [1] [2] [3], in
the context of gallery and probe images acquired at nearly
the same time. The issue of variability in IR imagery over
time certainly deserves additional study. This is especially
important because most experimental results reported in the
literature are closer to a same-session scenario than a time-
lapse scenario, yet a time-lapse scenario may be more rele-
vant to most imagined applications.

Our experimental results also show that the combination
of IR plus visible can outperform either IR or visible
alone. We find that a combination method that considers
the distance values performs better than one that only
considers ranks. The image data sets used in this research
will eventually be available to other researchers as part of
the Human ID database. See http://www.nd.edu/"cvrl for
additional information.
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Abstract—This paper suggests a method to estimate the
local frequency in a digital noisy image. In order to reduce
the effect of noise and estimate local frequency accurately,
we use multi-scale estimation. In each scale, we measure the
quantity of noise, and along with coherence and we estimate
frequency through use of a Kalman filter whose propagation
weight is the ratio of coherence between each scales. To
demonstrate the performance of our algorithm, we use a
noisy simulated image and a fingerprint image.

Index Terms—frequency, multi-scale, Kalman filter, co-
herence, fingerprint

I. INTRODUCTION

Estimating the local frequency in a digital image is nec-
essary in the overall image enhancement procedure or for
use in feature extraction. Especially, the ridge pattern
frequency varies not only with indivisual users but also
locally due to the pressure which occurs in the capturing
process. Therefore in order to filter a ridge pattern or for
the distortion caused by pressure, we need to know the
local frequency of a given image.

There are several specific approaches used for estimating
the local frequency. One is based on spectrum analysis[1],
another is the wavelet approach[2] and finally use a Gabor
filter[3]. However those methods require a large amount
of computation time, so Maio et al. model ridge patterns,
sinusoidal signals and frequency estimation in spatial do-
main uses the partial derivatives of the individual ridge
patterns[4]. However, if there is some noise in the image,
the algorithm has difficulty estimating the frequency ac-
curately because of a trade-off relationship between the
accuracy of the estimated frequency and the reduction of
noise. If the algorithm smooths the estimated frequency
significantly to reduce the noise, it is difficult to compute
the local frequency accurately, while if the algorithm does
not smooth the estimated frequency enough to identify the
local frequency correctly, it suffers from the noise induced
distortion or errors. The uncertainty rule represents this
relationship well[5]. To reduce the effect of noise and also
estimate the directional information of an image correctly,
XiaoGuang et al. suggests a multi-scale orientation esti-
mate method based on PCA (Principal Component Analy-
sis)[6]. This paper combines Maio’s and XiaoGuang’s con-
cepts properly and suggests the local frequency estimation
method which is robust against the spurious noise of an

56

image.

The remaining sections of this paper are organized as fol-
lows. Section 2 describes the frequency estimation method
applied within a spatial domain. Section 3 describes a
multi-scale approach. The experimental results are shown
in Section 4. Finally, section 5 contains the conclusion
section.

II. FREQUENCY ESTIMATION WITHIN A SPATIAL
DOMAIN

Maio et al. modeled a 1D siganl as a sinusoidal signal
presented as fo ,(z) = asin(v-z). The frequency v of sig-
nal fo.,(z) can be calculated through Eq.(1) and (2). If
nv belongs to a natural number,

I'Y9(fa,) may equal o~ 19,

9(faw) = % / ‘W dr=a-1v9, (nv) € Zt (1)
0
L9 (fa0)
v = 90 fn0) ,g=0,1,...,00 (2)

When n approaches to co, the requirement of Eq.(1) can
be satisfied[4]. This 1D signal f,,(x) can be expanded to
a 2D signal f, 0 q.0(2,y) = p+ asin(v(zsind +ycosf)). In
2 dimensions, Eq.(2) becomes Eq.(3).
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In the 2D domain, the 1st derivative and the 2nd deriva-
tive can be calculated through the use of a gradient oper-
ator and Hessian matrix[7]. To estimate frequency accu-
rately in a noisy image, n must be large, but if n is too
large, the local variety of the available frequency can dis-
appear. If we decrease the size of the window, we can
estimate the local frequency more precisely but accuracy
suffers from the noise of the image. We use the term large,
because no specific measure is available, so large is the
subjective term used in this paper. Maio et al. can not
suggest a reliable method to reduce the noise and measure
the local variety of the frequencies simultaneously, so in the
next section, we suggest multi-scale frequency estimation
method to adjust for the trade-off between noise reduction
and frequency localization.

III. MULTISCALE FREQUENCY ESTIMATION

To estimate local frequency in a noisy image, we need
to measure the noise and adaptively adjust the frequency
estimation method to the existing noise. There are some
theses proposed to measure noise quantities[8][9]. Among
the several noise measures, Coherence is a well-formatted
and good measure used in determining the ridge pattern of
an image, so we select the coherence as a measure of noise.
Coherence is defined as the ratio between the difference of
the maximum and minimum eigen-value and the summa-
tion of these values as presented in Eq.(7). The symbols
Amax and Apin are maximum and minimum eigen-value
repectively. To calculate coherence, we divide an image
into several blocks and calculate the covariance matrix of
the image gradient vector in each block. After complet-
ing the process, we can calculate the eigen-vectors and
the eigen-values of the matrix through use of the Singu-
lar Value Decomposition (SVD)[10]. Instead of using the
SVD, Asker et al. suggest a direct calculation method to
caculate the eigen-vectors and the eigen-values simply[11].
Coherence R can be expressed another way as shown in

Eq.(8).

Amax - >\min
r= )\max + )\min (7)
Goo — Gyy)? +4G2,
Ga::z: + ny
where
G = G2 (9)
N
Gy =) G (10)
N
Goy =Y GGy (11)
N

In Eq.(11) G, and G, are the x and y elements of the gra-
dient vector used in the Cartesian coordinate and N is the
window size. In a ridge pattern image, like a fingerprint,
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(c)

Fig. 1. the distribution of gradient : (a) non-noise image, (b) gaus-
sian noise image (c¢) scar noise image

coherence can indicate how uniform the directional infor-
mation is [6]. If there is some white Gaussian noise in the
individual ridge patterns, the distribution of the gredient
vectors disperses, otherwise the distribution has uniform
direction as displayed in Fig.1. The size of the window in
which the gradient vectors are calculated, is 12 x 12 pixels.
Scars or scratches are different from white Gaussian noise
but the distribution of the gradient vectors also disperses
as shown in Fig.1(c). Since coherence is defined as the
normal difference between maximum eigen-vale and mini-
mum eigen-value, if the gradient vectors distribute widely,
coherence is reduced.

If the noise is white Gaussian, the PDF of R is deter-
mined as presented in Eq.(12)[6]. According to window
size of N, the PDF is shown in Fig.2.

(1 _ RQ)N—Q
(1+ R?)N
If we presuppose that as R is decreasing, the probability
of the existance of noise increases. so we can use R as the
measure of noise quantity.
To estimate the local frequency, we use a multi-scale ap-
proach, using R as the propagation weight. If we convolve

p(R) =4(N - 1)R (12)



P(R) for N+2 white Gaussian matrix
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Fig. 2. PDF of R(Coherence) for white Gaussian noise

the image with a low-pass filter and downsample it to focus
on low levels of resolution, we can reduce the noise but, we
can also distort the frequency information too. Therefore
instead of downsampling the image, we adjust the window-
size n for several layers as previously presented in Eq.(4),
Eq.(5), Eq.(6). When we calculate I'2, in order to exclude
the noisy region we use Eq.(13) instead of Eq.(4). We
change Eq.(5) and Eq.(6) to Eq.(14) and Eq.(15) respec-
tively. In Eq.(13) R(x,y) is coherence in the x,y position
and the threshold th is defined by referring to Eq.(12).

r2 2% f(z,y)
I ™ (ZET(m y)) ZZT(l’y) ’ B (13)
,where i R(m,y) >th Ty =1else T(g,y) =0
2 d f(z, y)’
T . — I 14
S ) 22 T | 00

n n

/ 8 3f(x,y)>2
Nl= | ———M T —=
A BRI oo (T

(15)

According to the layer selected, increasing the window
size makes the algorithm reguire a larger amount of cal-
culations. When the window size is large, the windows
overlap each other to the extent that the estimated fre-
quency is little different from those of the neighbor blocks
and it can enlarge both the opportunity for errors as well
as redundancy. Since we estimate the frequency not in an
individual pixel but in an entire block, we have to overlap
windows to reduce the block effect. However, in order to
reduce redundancy we can adjust the overlapped region by
decreasing the amount of frequency estimation within each
layer as presented in Fig.3. In Fig.3 the dots(frequency
measure point) are the center of the frequency measure
window which is colored gray. As the layer goes up to
higher level, the number of dots is increasing and the size
of the window is decreasing. We measure the local fre-
quency around each dot in the frequency measure window
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Fig. 3. Frequency Sample Point in each layer

of each layer and average the coherence which is already
calculated in the 16 x 16 sized window. We can designate
the frequency measured in each layer the observation of
the layer. We can estimate the frequency in the current
layer with the observation of the current layer and the es-
timation of the previous layer by using a Kalman filter as
explained in Eq.(16)[6].

Ry,

—_— 16
R, + Ry, (16)

8[n] = 8}n] + (z[n] — 3[yn])
where z[n] and §[n] is the observation and the frequency
estimation of the current layer repectively. The symbol
3[yn] represents the frequency estimation in the previous
layer. The symbols R,, and R,, are the coherence of the

current layer and the previous layer respectively.

IV. EXPERIMENTAL RESULTS

We estimate the local frequency through 4 layers and
the sizes of the frequency measure windows in each layer
are 129 x 129, 65 x 65, 33 x 33 and 17 x 17. The number
of frequency measure points in each layer is a quarter of
the child layer’s of each corresponding layer. Coherence is
calculated once in the 16 x 16 sized window. First to show
how well our algorithm estimates the local frequency, we
excuted an experimental test with a fan-shaped ridge pat-
tern Fig.4. The frequency of Fig.4(a) is linearly increasing
according to the distance from the point of origin. Fig.4(b)
shows the frequency of Fig.4(a) as a grayscale value. To
prove that our method can estimate the local frequency
well, we filter the test image through a constant frequency
Gabor filter and an adaptive Gabor filter. Fig.4(c) repre-
sented the image filtered with a constant frequency Gabor
filter whose frequency is 0.13 and Fig.4(d) represented the
image filtered with an adaptive Gabor filter which varies
its frequency from 0.11 to 0.17, according to the estimated
frequency. Since our method estimates the local frequency
successfully, as shown in Fig.4(d), ridge patterns are welll-
extracted. Because of the limits of low and high filter fre-
quencies, there is some distortion as shown in Fig.4(d).

Fig.5 shows that our algorithm is more robust than
Maio’s in estimating the frequency of an image. In Fig.5(b)
which represents the grayscale value of unsmoothed fre-
quencies of Fig.5(a), we determine that Maio’s algorithm
is very sensitive to noise. To reduce the noise, we smoothed
the frequency with 7 x 7 blocks average filter(56 x 56 pixel)



(c)

(d)

Fig. 4. local frequency : (a) test image, (b) multi-scale frequency,
(c) constant gabor filtering, (d) adaptive gabor filtering

as presented in Fig.5(c). However, we can see the effect of
noise near the scar and if we increased the filter size, we
lost the local frequency information. Fig.5(d) represented
the frequency image estimated by our algorithm. Our al-
gorithm reduces the noise effectively and does not distort
the local frequency. Table.I summarizes the comparison
of our algorithm and Maio’s algorithm as the average fil-
ter size increases. Since we calcaulte the block frequency,
the unit of measure for filter size is the number of blocks
where one block occupies 8 x 8 pixels. First, we regard the
non-smoothing frequency of Fig.4(a) as a reference, which
has a correct frequency and we caculate error as shown
in Eq.(17). The Ref(x,y) is the reference and F(z,y) is
the smoothed frequency image or the multi-scale frequency
image. We predetermined that there is no problem in re-
garding the non-smoothing frequency of Fig.4(a) as the
reference frequency because Fig.4(a) has no noise. From
Table.I, we can see that simple frequency smoothing dose
not solve the trade-off problem between noise reduction
and local frequency accuracy, but our multi-scale method
can obtain the optimum solution and also it has almost
minimum error observed in both cases (noisy image and
non-noisy image).
Error = Z Z (F(z,y) — Ref(z,y))? (17)
We use our algorithm to estimate the frequency of a
fingerprint image as shown in Fig.6. In Fig.6, the interior
region of the red circle is a higher frequency region than
other frequenciess of the fingerprint. We can see that our
algorithm indicates the high frequency region with higher
level of grayscale brightness than other regions and it can
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Fig. 5. local frequency of scar image : (a) scar image, (b) non-
smoothing frequency, (c) 7 X 7 smoothing frequency, (d) multi-scale
frequency

TABLE 1
FREQUENCY SQUARE ERROR

’ Filter \ 4x4 8 x 8 12 x 12 \ multiscale ‘
Fig.4(a) | 0.085 0.168 0.292 0.063
Fig.5(a) 6.06 4.08 3.21 0.792

estimate the local frequency of real image well too. We
filtered the fingerprint image with a simple Gabor filter and
an adaptive Gabor filter to extract ridge patterns. After
filtering the image with a simple Gabor filter, which has
constant frequency parameter of 0.13, the ridge patterns of
the interior red circle are broken as displayed in Fig.6(c),
but after adaptively using Gabor filter, the ridge patterns
are very similar to the patterns of the original image as
shown in Fig.6(d).

Unfortunately, we did not have an adequate number of
fingerprint images whose local frequency varies greatly, so
we could not complete the verification test by applying
different Gabor filters.

V. CONCLUSION

This paper proposed a local frequency estimation
method by using a multi-scale approach. To estimate the
local frequency, we used Maio’s algorithm because it re-
quired less computation than others and has easily inte-
grated with the multi-scale approach. To reduce the effect
of noise, first we measured the quantity of noise with the
coherence of the image and applied a multi-scale approach
to Maio’s algorithm, weighted with coherence. In the ex-



Fig. 6. local frequency of scar image : (a) fingerprint, (b) multi-scale
frequency, (c) gabor filtered imag, (d) adaptive gabor filtered image

perimental result, the multi-scale approach was proven to
be more accurate and robust than simply smoothing al-
gorithm in both a non-noise image and noisy image. We
used this algorithm to adjust the filter parameter in the
extraction of the ridge pattern of an individual fingerprint
image or to compensate for the distortion of a fingerprint
caused by pressure on the capture device. We will use this
algorithm to solve the latter problem by making the ridge
intervals the same through the entire warpping process.
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Abstract

One solution to improve the performance of Speaker Recogni-
tion (SR) systems could be the integration of different aspects
of the speech signal. Thus in this paper it is proposed to
integrate, or fuse, all these informations in a probabilistic
framework with a system based on Bayesian Networks (BNs)
where the structure is learned directly from the data. BNs
are a flexible and formal statistical framework that allows us
to represent the conditional independence relations among
different speech features that convey information about the
speaker identity. In this paper, prosodic variables (pitch and
energy), the linear prediction cepstral coefficients (LPCC)
from signal and LPCC from residual signal of linear prediction
analysis are used to represent each speaker.

This study is conducted on the NIST 2002 one speaker text-
independent data base. These experiments confirm the poten-
tialities of BN approach.

1. Introduction

Speech signal carries a lot of information besides the mes-
sage. Other information about the speaker is present such
as mood, emotive state and in particular his/her identity. SR
(Identification (SI) or Verification (SV)) systems should use
features which capture characteristics of the speaker in order
to differentiate them from others. In this search for individual
discriminant features some information could be lost. Many
authors discard prosodic information in speaker verification,
but it is known that they carry a lot of information about
the speaker identity. Therefore speaker information of other
sources must be used. The suprasegmental characteristics,
like intonation, accent or pitch are really important in a
normal communication, specially the pitch that appears like an
important factor in speaker recognition [1]. However the pitch
information in itself is not enough to discriminate between
two different persons. Therefore speaker information of other
sources must be used. For example, spectral information,
conveyed by cepstral coefficients, and knowledge, which is not
often taken in account, that comes from the source of excitation
in speech production.

The main idea, developed in this paper, is to retrieve
the conditional independencies directly from the data (linear
residual analysis from the source in speech production, the
spectral information from the vocal tract and prosody) in order
to build a BN, and by this mean integrate, in a probabilistic
way, all those informations.
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This paper is organized as follows: Bayesian Networks are
first introduced in section 2, with some discussion about the in-
ference problem and algorithms. Section 3 reviews briefly some
ideas about structure and parameters learning in BNs. In section
4, the experiments, results and their probabilistic interpretation
are presented. Finally conclusions and perspectives are given in
section 5.

2. Bayesian Networks

A BN, or Bayesian Belief Network [2], represents a joint
probability distribution defined on a finite set of random
variables. It is a formal representation, based on probabil-
ity theory and graph theory, given by a Directed Acyclic
Graph (DAG) in which nodes represent random variables
and arcs represent conditional probabilistic dependencies
among those variables. An arc from Q to Y can also be inter-
preted as indicating that Q has a direct influence on Y, Figure 1.

In a DAG each edge points from one node, called parent, to
another, called child. In the same topology description, the node
X has a descendant node X; if this one is its child or is con-
nected to it through its children. In a BN, a conditional probabil-
ity distribution is associated with each node X; that describes
the dependency between this node and its parents, each node
is conditionally independent from its non-descendants given its
parents. Those dependence relations induces a factorization in
the joint distribution function expressed as :

,Xn) = [[ P(XilPa(X2)),

i=1

P(Xa,... @

where Pa(X;) is the set of X;’s parents.

2.1. Inference

There are two main research problems in probabilistic rea-
soning using Bayesian Networks: learning and inference [3].
Bayesian network inference involves computing the posterior
marginal probability distribution of some query nodes, and
computing the most probable explanation given the values of
some observed nodes once the structure is known.

A BN is a couple (G,CPDs) formed by one structure,
the graph G, and a set of Conditional Probability Distributions
(CPD), one for each node with parents in the network. For
nodes without parents we have just to specify their prior
probability. Evidence, i.e. knowledge about the state of one
variable, would modify the states of others variables in the
network. Doing probability inference consists in computing



the probability of each state of a node when we know the
state taken by some other variables. There are three types of
evidence propagation, exact, approximated and symbolic. One
or another is used depending on the characteristics of the data
and the complexity of the structure. In order to make exact
inference it is necessary to talk about "belief propagation” [4]
and to take into account the relation of independence obtained
directly from the graph. The exact methods present some
problems. Some of them are not applicable to all the types
of structures. The methods of general validity become very
inefficient with certain structures when the number of nodes
and its complexity grow. This is not surprising since it has
been demonstrated that the exact propagation task is NP-hard
[5]. For that reason, and from a practical point of view, the
exact propagation methods can be very restrictive and even
inefficient in situations in which the type of structure of the
network requires a large memory and a lot of computational
power. With the second method, approximated values are
obtained using simulation methods as Monte Carlo and Gibbs
sampling [6]. The last method of propagation works directly
with symbolic parameters [7].

In general, if we have a set of variables X =
{X1,Xs,...,Xn}and aset E, the evidence, with known val-

ues E = {e1,e2,...,enm}, Where E C X, inference consists
in computing :
plaile) = B2 4 p(ay ). @
p(e)

The conditional dependence assumptions encoded by a BN
have the advantage of simplifying the conditional probabilities
computation. All this could be done in an equivalent tree struc-
ture when the original one is not a tree [8]. This structure is a
tree built of cliques that represent the local structures, and then
preserve the conditional probabilities. The first step in the junc-
tion tree construction consists in finding those cliques C;. Then
it is possible to compute their CPD. The CPDs of variables X;
are computed by marginalizing the cliques. In detail this pro-
cess works has follows:

1. moralization and triangulation (because the parents are
correlated given its children) of G to obtain an undi-
rected graph G'.

2. computation of cliques C of G,
3. assign each X; from X to one clique C;,

4. for each C; € C define a potential ;(C;) =
IIx;ea; P@i|Pa(z:)).

After those steps, the belief propagation method has to be
applied to the new graph (collecting and distribution steps).
That is, it must be updated the belief in each node when some
variables have been observed.

3. Learning

The other main problem in probabilistic reasoning using
Bayesian Networks is learning. Learning Bayesian Network
from data [9] [10] consists in automatically constructing the net-
work, structure and parameters, from information in data using
some learning algorithms. The Statistical base of BN let the
development of learning methods. We use these methods in or-
der to obtain the conditional independences in the graph struc-
ture and the conditional probability distributions that quantify
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Figure 1: Basic BN.

those dependences directly from databases. Therefore, depen-
dences, structure and conditional probability distributions can
be learned from data.

3.1. Structure

In the process of finding the best structure, even if the space of
variables is fully observable, some aspects must be considered.
Firstly concerning the structure space, should trees be a priority
or should more complex graphs be considered? The number
of possible structures depends on the number of variables n
in a super-exponential way. For example, with four variables
there are 543 possible DAGs. It is unrealistic to explore all of
them. For that reason, it has to be taken in consideration search
algorithms that gives the structures to be evaluated. There are
two different approaches to solve this problem, the first one,
like MCMC [11], searches in all the structure space and returns
either the best one, or the best in a Markov equivalent way.
The second approach starts with a specific connected graph and
then searches for independence relations in the data .S, and puts
in or takes away arcs.

The K2 algorithm [12], used in this work, belongs to the
second approach. It starts with a structure, the simplest one,
i.e. a graph without arcs. It needs some prior knowledge and
a relationship between the variables. Then, for each variable
X; we look for the set Pa(X;). The variables in this set are
restricted to those variables with smaller order numbers than
X;.

In order to achieve learning, a scoring function must be
specified for measuring the network’s quality. The criterion, or
quality measure to select Pa(X;) is the last aspect to study in
the structure learning. Maximum likelihood could be an ad-
equate quality measure, but it privileges the fully connected
graph. This graph gets the highest likelihood because it has the
greatest number of parameters. Thus, to overcome this prob-
lem, a prior knowledge on the model can be used. By Bayes’
rule, the MAP model is the one that maximizes :

P(S|G)P(G)
P(s)

where P(QG) penalizes complex model and P(SS) is a con-
stant. The marginal likelihood is :

P(G|S) = ©)

(4)

where S is the database. (4) as the advantage that automat-
ically penalizes more complex structures. This score function
can be approximated [13] with a Laplace method, and finally
get the BIC (Bayesian Information Criterion) :

P(S|G) = /0 P(S|G, ) P(6C)db,



logP(S|G) = logP(S|G, 6) — glogM, (5)
where M is the number of samples, 6 is the ML estimate of
the parameters and d is the dimension of the model.

3.2. Parameters

Here, it is required to adjust the parameters of the BN in such
a way that the CPDs describe the data statistically. The param-
eters @ and the model, B(6), defined for these parameters are
given. Also, the prior distribution over the models P(B(6))
and the space of parameters in these models P(6|B) can be
used. So, given some data S, it is wanted to estimate 6, such
that the posterior probability to be maximized is :

_ P(B) /

P(B|S) P J, P(S|6, B)P(6|B)d6. (6)

Thus the maximum likelihood estimate of 6 is computed by
minimizing the cost function over the probability density func-
tion. We can make an optimization that relies on the gradient of
this function, or use an iterative procedure called Expectation -
Maximization (EM) [14] or a variant, Generalized EM , using a
gradient method in the M step.

4. Experimentsand Results

In this section, experiments and results using our BN Speaker
Verification System (BNSVS) are detailed.

4.1. Database

The data are taken from the second release of the Cellular
Switchboard Corpus (Switchboard Cellular - Part 2) of the Lin-
guistic Data Consortium (LDC) [15]. Each conversation is echo
cancelled before use. The database is divided into training data
(about 400 target speakers), and test data (about 3500 test seg-
ments). The training data for a target speaker consist in about
two minutes of speech from that speaker, excerpted from a sin-
gle conversation. Actual duration is, however, constrained to lie
within the range of 110 to 130 seconds. Each test segment is
extracted from a 1 minute excerpt of a single conversation and
is the concatenation of all speech from the subject speaker dur-
ing the excerpt. The duration of the test segment therefore vary,
depending on how much the segment speaker spoke. So, the
effective speech duration lies between 15 and 45 seconds. Both
test and target speakers are of the same sex.

4.2. Modeling

The training and test parameter vectors consist of a set of
four types of parameters. The first vector is a 24-dimensional
LP Cepstral Coefficients obtained as follow : 12-dimensional
LPCC, with sliding CMS (Cepstral Mean Substraction) and
augmented with their first derivatives, SLPCC, for Signal
Linear Prediction Cepstral Coefficients. The second vector,
24-dimensional LP Cepstral Coefficients has been obtained
as before from the LP-residual signal RLPCC [16][17], and
finally the frame pitch Fp and the frame energy E.

Those data had been used with K2 algorithm to find the
best structure for our four variables. We have worked with all
the possible orders and used the BIC score [5]. From this analy-
sis we have obtained the conditional independence relations for
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RLPCC SLPCC

Figure 2: Structure for the four variables (energy (E), pitch
(Fo), signal SLPCC and residual RLPCC) issued from the
K2 algorithm.

the multivariate Gaussian distribution that define the network
structure which is set to be speaker independent, Figure 2.

From basic probability theory the joint probability for the
four variables U = {E, Fo, RLPCC, SLPCC'} can be writ-
ten as:

P(U) = P(E)P(Fo|E)P(RLPCC|Fy, E)

P(SLPCC|Fo, E, RLPCC). 7

Now, taking into account the graph of Figure 2 and its re-
lations of conditional independence, this equation becomes a
product of local terms :

P(U) = P(E)P(Fo|E)P(RLPCC|F)
P(SLPCC|Fy). ©))

The relation between SLPCC, RLPCC and Fy is
obtained from the term P(RLPCC|F,)P(SLPCC|F). It
can be interpreted as a relation of conditional independence
where RLPC and SLPC are independent given Fjp, noted
RLPCC 1 SLPCC|F, or I(RLPCC,SLPCC|F). Also,
from the second term in (8) it can be seen that Fy depends
directly of E.

The physical interpretation of the relations between the
variables gives the same relations found in the equations
obtained from the graph. For example, the voiced speech has
more energy that the unvoiced speech. It is evident that the
speech energy depends directly from the speech voicing. This
fact is written in the term P(Fy|E). The source influences the
spectral envelope due to the filtering effect of the vocal tract.
The pitch is correlated with the vibration of the vocal folds
and the vocal tract characteristics. Consequently, the source
and the spectral envelope depends on pitch as it is seen in
P(RLPCC|Fo)P(SLPCC|Fy).

The relations obtained in equation (8) exhibit the causal
interaction between the variables. Now, using Bayes theorem
: P(E)P(Fo|E) = P(E)P(Fy|E), the equation (8) can be
rewritten as :

P(U) = P(Fo)P(E|Fo)P(RLPCC|Fy)

P(SLPCC|Fy). ©)
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Figure 3: Equivalent structure for the four variables (energy
(E), pitch(Fp), signal SLPCC and residual RLPCC)) using
the equality P(E)P(Fo|E) = P(E)P(Fo|E).

This new formulation corresponds to the graph shown on
Figure 3. In this equation the causal relations represented are
not similar to that presented in (8), but the probability density
function is the same. Then the equation (9) also represents the
variables relation. This structure has the advantage that pitch is
the root node. Pitch is a feature whose domain is longer than
just one single phonetic segment. Then the independence rela-
tions found in the equation (9) represent the conditional inde-
pendence of SLPCC, RLPCC and E given Fy. Where Fy is
a prosodic variable that relate different linguistic elements, by
making boundaries and defining transitions in speech signal.

Once the structure has been learned, the final Universal
Background Model (UBM) BN’s parameters are learned. Since
there are not enough training data for each speaker, adaptation
methods are applied to compute every Target Speaker Model.
For this purpose, the system starts from an universal model
(UBM) which is then adapted to the client speaker by three iter-
ations of the GEM algorithm and in this way we overcome the
problem. Two gender-dependent UBM have been created using
part of the 2001 cellular development and evaluation datasets
(this database is similar to the database already described).

4.3. Results

Each test segment is evaluated against 11 hypothesized speak-
ers. The decision score is directly based on the log-likelihood
ratio between the target speaker and the UBM over all the
frames without any kind of normalization. Figures 6 and 5
display the DET (Detection Error Tradeoff) curves that measure
the performance obtained with our system and the standard
technique Gaussian Mixture Models (GMM), that have become
the dominant approach for modeling multivariate densities
in text-independent speaker recognition. A DET curve is a
mean of representing performances on detection tasks and is an
standard in speaker and language recognition evaluations. In a
DET curve, error rates are plotted on both axes (False Alarm
and Miss Detection). It shows when a system fails to detect a
target or declare such a detection when the target is not present.

First experiment uses the vector SLPCC modelled by a
GMM with 64 mixtures. The results shown in the DET curve,
Figure 5, show a performance of 19.31 % at the Equal Error
Rate (EER). The same has been done with the RLPCC vector
obtaining a score of 24.34 %. Now combining all the variables
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Figure 4: Structure used in the second experiments.
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Figure 5: DET curve for NIST 2002 evaluation data with
SLPCC, RLPCC and All using a GMM with 64 mixtures.

in a vector and using a GMM with 64 mixtures a 21.34 % score
is obtained.

The next set of experiments use two models. The first one
uses the structure in the Figure 2 and the set of parameters:
32 Gaussians for RLPCC and SLPCC plus 2 for the pitch
Fp and energy E. CPDs were learned with GEM [18] [19].
This choice of gaussian numbers (parameters number) was
made taken into account the computation resources and time
requests to finish a task. K-means was used to determine the
initial setting for the Gaussian parameters. This system obtains
an EER of 24%, Figure 6. The results in the Figures 5 and 6
show that a GMM with a SLPCC vector perform better than
our first system. Given that our score is similar to that obtained
with the RLPCC vector the difference can come from the
independence relations obtained in the structure.

With the second structure shown in the Figure 4, a dis-
cretization of the continuous pitch Fy was made in order to bet-
ter modelize the voiced and unvoiced parts of speech. The pa-
rameters used for this model are : 2 values for the pitch (voiced
and unvoiced), 16 Gaussians for the RLPCC and SLPCC
and 2 Gaussians for the energy E. This system, shown in Figure
6 obtains an EER of 21.18% for male and 22.37% for female.
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Figure 6: DET curve for NIST 2002 evaluation data using our

two Bayesian Network models: First Model as shown in Fig. 2
and Second Model as shown in Fig. 4.

5. Conclusionsand Per spectives

In this paper, a system achieving Speaker Verification based on
BNs is presented. This system infers the Bayesian network
structure automatically from the data. Also, it uses the inde-
pendence relations obtained for integrating all the information
presented on the speech signal in a single probability distribu-
tion. It shows that BNs are a flexible mathematical tool that
can help to modelize information from different aspects of the
speech signal. The physical interpretation given to the equa-
tions describing the structure suggests that the learning algo-
rithms for BN are able to adequately infer the relations present
in data. The perspectives for this work are important because
of the flexibility of BNs. We expect further improvements from
different research algorithms in the network structure learning
and from the augmentation of parameters.
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ABSTRACT

Nonacoustic sensors such as the general electromagnetic
motion sensor (GEMS), the physiological microphone (P-mic),
and the electroglottograph (EGG) offer multimodal approaches
to speech processing and speaker and speech recognition.
These sensors provide measurements of functions of the glottal
excitation and, more generally, of the vocal tract articulator
movements that are relatively immune to acoustic disturbances
and can supplement the acoustic speech waveform. This paper
describes an approach to speech enhancement that exploits
these nonacoustic sensors according to their capability in
representing specific speech characteristics in different
frequency bands. Frequency-domain sensor phase, as well as
magnitude, is found to contribute to signal enhancement.
Preliminary testing involves the time-synchronous multi-sensor
DARPA Advanced Speech Encoding Pilot Speech Corpus
collected in a variety of harsh acoustic noise environments. The
enhancement approach is illustrated with examples that
indicate its applicability as a pre-processor to low-rate
vocoding and speaker authentication, and for enhanced
listening from degraded speech.

1. INTRODUCTION

Linear filtering-based algorithms for additive noise
reduction include spectral subtraction, Wiener filtering,
and their adaptive renditions [NRC, 1989]. Nonlinear
techniques have also arisen including wavelet-based
noise reduction systems [Donaho and Johnson, 1994] and
suppression filters based on auditory models [Hanson,
1995]. Although promising, these methods suffer from a
variety of limitations such as requiring estimates of the
speech spectrum and speech activity detection from a
noisy acoustic waveform, distortion of transient and
modulation signal components, and the lack of a phase
estimation methodology.

* This work is sponsored by the Defense Advanced Research Projects
Agency under Air Force Contract F19628-00-C-0002. Opinions,
interpretations, conclusions, and recommendations are those of the
authors and are not necessarily endorsed by the United States
Government.
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In this paper, we present an alternative approach to noise
suppression that capitalizes on recent developments in
nonacoustic sensors that are relatively immune to
acoustic background noise, and thus provide the potential
for robust measurement of speech characteristics [Ng et
al, 2000]. The effort focuses on the general
electromagnetic motion sensor (GEMS) [Burnett et al,
1999], but also investigates the physiological microphone
(P-mic) [Scanlon, 1998], and the -electroglottograph
(EGG) [Rothenberg, 1992]. These sensors can directly
measure functions of the speech glottal excitation and, to
a lesser extent, attributes of vocal tract articulator
movements.

In Section 2 of this paper, we first formulate the
enhancement problem of interest and review a specific
noise reduction algorithm based on an adaptive Wiener
filter [Quatieri and Dunn, 2002]. Section 3 describes the
GEMS, P-mic and EGG nonacoustic sensors, as well as
the DARPA Advanced Speech Encoding Pilot Speech
Corpus recorded in a variety of harsh noise environments.
In Section 4, we present an approach to speech activity
detection based on different sensor modalities. Section 5
introduces a general multimodal methodology for
improving speech spectral magnitude and phase recovery
in the context of our specific adaptive suppression
framework. Section 6 provides a complete multimodal
speech enhancement scheme that utilizes the GEMS, P-
mic, and acoustic sensors in different frequency bands. In
this section, we also discuss the applicability of the
proposed enhancement system to pre-processing for
speech encoding and speaker authentication. Finally, in
Section 7, we summarize and give future directions.



2. FRAMEWORK

2.1 Baseline suppression filter
Let y[n] be a discrete-time noisy sequence

yln] = x[n]+b[n]

where x[n] is the desired sequence and b[n] is

uncorrelated background noise, both of which are
assumed for the moment to be wide-sense stationary
random processes with corresponding spectral density

functions given by S (w) and S, (w), respectively. One
approach to recovering the desired signal is to find a
linear filter  A[n] such that the sequence
x[n]=y[n]*h[n] minimizes the expected value of

(X[n] - x[n])*. The solution to this optimization problem
in the frequency domain is given by

S ()
H(w)=————
S (W) +5,(w)

which is referred to as the Wiener filter. The required
spectral densities can be estimated by averaging over
multiple frames that contain only the desired signal x[n]

or background signalb[n]. Typically, however, the

desired signal is nonstationary with short-duration,
transient components with spectra difficult to measure,
requiring an average to be essentially instantaneous.

Consider then a signal y[n] processed at frame
interval L samples with short-time Fourier transform
Y(kL,w) = X (kL, w) + B(kL, w) where X (kL,w) and

B(kL,w) denote the short-time Fourier transforms of
x[n] and b[n], respectively. And suppose we have
available an estimate of the Wiener filter on frame £ -1,
denoted by H (k — 1, w) . We assume that the background

noise spectral density, S,(w), is known or estimated by
averaging spectra over a given background noise region.
Assuming that the desired signal x[n] is nonstationary,
one approach to obtain an estimate of its time-varying
spectral density on the k" frame uses the Wiener filter
H(k—1,w) to enhance the current frame. This
operation yields an enhanced spectral
estimate X (kL,w) = H(k —1,w)Y (kL,w) which is then
used to update the Wiener filter for the next frame.
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An approach to slow down a rapidly-varying X (kL, w),
while avoid the blurring of time-varying sounds, is to
temporally smooth X (kL,w) using a time constant that

changes with the degree of stationarity of the signal
[Quatieri and Baxter, 1997]. Although this filter
adaptation results in relatively more noise in non-
stationary regions, there is evidence that, perceptually,
noise is masked by  rapid spectral changes and
accentuated in otherwise stationary regions [Quatieri,
2002].

A measure of the degree of stationarity is obtained
through a spectral derivative defined for each frame as
the mean-squared difference between two consecutive
short-time spectral magnitude measurements of y[n].

The smooth spectral derivative is then mapped to a time-
varying time constant 7(k). The use of spectral change

in the Wiener filter adaptation, as well as a number of
refinements to the adaptivity, including iterative re-
filtering and background-noise adaptation, helps avoid
blurring of temporal fine structure [Quatieri and Baxter,
1997], [Quatieri and Dunn, 2002]. We can further
improve adaptivity by providing distinct Wiener filters,
one during background and one during speech, thus
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Figure 1: Noise reduction algorithm based on spectral change

alleviating the need to re-adapt across speech/background
boundaries. The inclusion of background-noise
adaptation and distinct, state-dependent Wiener filters
requires that we perform speech activity detection to
determine which frames in a signal contain speech and
background noise and which frames contain background
noise only. Finally, an enhanced speech waveform is
obtained by overlap-add synthesis from the modified
short-time sections. An analysis window of 12 ms and
frame interval of 2 ms are used. The baseline noise-
suppression algorithm is illustrated in Figure 1.

2.2 Limitations

We have applied the above adaptive suppression
algorithm to noise-corrupted speech under different
background noise conditions, including fan, automobile,
road, and cellular noise at a variety of signal-to-noise



ratios (SNR) [Quatieri and Dunn, 2002]. In informal
listening, the reconstructions are judged to be “crisp”
corresponding to good temporal resolution of rapidly-
moving and short-duration speech events. The
background noise is significantly suppressed and of high
quality without musicality. Nevertheless, we have
observed numerous limitations particularly in
environments at very low SNR, including:

Speech Activity Detection: The accuracy of speech activity
detection decreases with decreasing SNR, especially with non-
stationary noise. Even when correct, only one detection decision
is made per frame. Ideally, multiple decisions should be made
across the speech band to determine if a frequency interval is
dominated primarily by speech or noise energy.

Magnitude estimation: Requirement of the speech spectrum
makes it difficult to form an accurate Wiener filter, especially in
low SNR frequency regions. Both the background noise and
acoustic transducer can contribute to a band-dependent low-
SNR.

Phase estimation: Although the Wiener filter represents a
least-squared error (LSE) solution, we have found that this
solution is not always perceptually “optimal”. The LSE
solution yields a zero-phase suppression filter so that the phase
of the short-time noisy signal is left intact. In high noise
conditions, phase noise is frequency-dependent and audible.

In this paper, we address these limitations in the use of
measurements from nonacoustic sensors.

3.0 NONACOUSTIC SENSORS AND
MEASUREMENTS

3.1 GEMS

The general electromagnetic motion sensor (GEMS)
measures tissue movement during voiced speech, i.e.,
speech involving vocal chord vibrations [Burnett et al,
1999]. An antenna is typically strapped or taped on the
throat at the laryngeral notch, but also can be attached at
other facial locations. This sensor emits an
electromagnetic signal that penetrates the skin and
reflects off the speech production anatomy such as the
tracheal wall, the vocal folds, or the vocal tract wall.
Because signals collected from a GEMS device depend
on the tissue movement in the speech production
anatomy, it is relatively immune to degradation from
external acoustic noise sources.

During voiced speech, GEMS records quasi-periodic
electromagnetic signals due to vibration of the speech
production anatomy. When placed at the larynx, quasi-
periodic measurements are found during vowels, nasals,
and voiced consonants including prior to and following
the burst in voiced plosives, i.e., during voice bars. Single
pulses have also been observed sporadically from the
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GEMS measurement at the burst in unvoiced plosive
consonants.

3.2 P-mic

The physiological microphone (P-mic) sensor is
composed of a gel-filled chamber and a piezoelectric
sensor behind the chamber [Scanlon, 1998]. Vibrations
that permeate the liquid-filled chamber are measured by
the piezoelectric sensor that provides an output signal in
response to applied forces that are generated by
movement, converting vibrations traveling through the
liquid-filled chamber into electrical signals. The liquid
filled chamber is designed to have poor coupling between
ambient background noise and the fluid-filled pad thus
attenuating vibrations of unwanted ambient background
noise.

Like the GEMS sensor, the P-mic can be strapped or
taped on various facial locations. The P-mic at the throat
measures primarily vocal fold vibrations with quasi-
periodic measurements similar to that of GEMS. The P-
mic signal at the throat, however, contains some low-pass
vocal tract formants with bandwidths wider than normal.
Other facial locations can provide additional vocal tract
characteristics. The P-mic located on the forehead, for
example, gives significant vocal tract information but is
far less noise-immune than the P-mic at the throat in
severe environments.

33 EGG

The electroglottograph (EGG) [Rothenberg, 1992] sensor
measures vocal fold vibrations by providing an electrical
potential (of about one volt rms and two-to-three
megahertz) across the throat at the level of the larynx.
With a pair of gold-plated electrodes, the sensor measures
the change of impedance over time. When the vocal
folds are closed, the impedance is decreased; when they
are open, the impedance is increased. Thus, the opening
and closing of the vocal folds, present in voiced speech,
are measured by the EGG.

3.4 Corpus collection

An extensive multi-sensor speech corpus was collected
from ten male and ten female talkers. Scripted phonetic,
word and sentence material along with conversational
material were generated by each talker. These materials
were generated in nine different acoustic noise
environments. The corpus was collected in two sessions
(on two different days). Speakers were exposed to a
variety of noise environments including both benign and
severe cases. Six of the environments represented three
acoustic environments with each presented at two
intensity states. The presentation levels for these states
differed by 40 dB SPL. Specific environments are quiet,
office (56 dB), MCE (mobile command enclosure, 79



dB), M2 Bradley Fighting Vehicle (74 dB and 114 dB),
MOUT (military operations in urban terrain, 73 dB and
113 dB), and a Blackhawk helicopter (70 dB and 110
dB). We call these environments (with L indicating low
noise and H indicating high noise) quiet, office, MCE,
M2L, M2H, MOUTL, MOUTH, BHL and BHH,
respectively.

For each talker and environment, combination time-
synchronous data was collected from up to seven separate
sensors. These sensors consisted of the previously
introduced GEMS, P-mic and EGG. Data was also
collected from two acoustic microphones, a high quality
B&K calibration microphone and an environment
specific “resident” microphone. The resident microphone
was typically the first-order gradient noise-cancellation
microphone used for normal communications in that
specific environment.

One GEMS and one EGG were located near the talker’s
larynx. Careful attention was given to tuning the GEMS
sensor and in optimizing its placement. The GEMS was
considered the primary sensor during the corpus
collection. A specific talker’s neck and shoulder
geometry often required that tradeoffs be made in the
placement of the secondary sensors in order to optimize
the GEMS signal. Two P-mics were used, one located in
the vicinity of the talker’s larynx and the other on the
talker’s forehead.

Due to the acoustic presentation levels of some of the
noise environments, all talkers used the acoustic
protection systems typical of each specific noise
environment. This normally consisted of some type of
communication headset that provided noise attenuation
on the order of 20 dB. Human subject procedures were
followed carefully and noise exposure was monitored.

The complete corpus consists of up to eight channels of
data from approximately twenty minutes of speech
material in each of nine acoustic noise environments
from each of the twenty talkers. All sensor data was
sampled at 48 kHz, though the nonacoustic data was
downsampled to 16 kHz for space considerations. The
full corpus takes approximately 70 GB of storage.

4.0 SPEECH ACTIVITY DETECTION

Speech activity detection is used to identify which
segments of an acoustic waveform contain speech with
background noise and which contain only background
noise. This detection is useful because it allows state-
dependent processing, as is performed in the adaptive
suppression filter of Section 2. As also noted in Section
2, however, the accuracy of detectors based on the
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acoustic waveform decreases with decreasing SNR and,
even when correct, only one detection decision is made
per frame, thus not accounting for a frequency-dependent
SNR.

4.1 Multi-sensor detection

Our approach to circumventing the speech detection
problem caused by noise in acoustic waveforms is to use
the waveforms from other sensors that are less sensitive
to acoustic background noise. The GEMS and EGG
sensors, for example, are robust at detecting voiced
speech, both during vowels and voicing associated with
voiced consonants. Although these sensors are poor in
measuring the noise component of unvoiced speech
sounds, relative to their acoustic counterpart, they give
more accurate speech activity detection resulting in
increased segmental signal-to-noise ratio in harsh
environments [Messing, 2003]. The P-mic sensor is less
accurate at detecting voiced speech since it is not entirely
immune to acoustic noise. Under certain noise conditions
and placements, on the other hand, it can detect the noise
component of unvoiced speech.

It follows that one approach to improve detection,
relative to that from the acoustic signal, is to perform
voiced speech detection using the GEMS or EGG sensor
and then, given this voiced speech detection decision, use
the P-mic sensor waveform to decide on the presence of
unvoiced speech. This fusion has been found to improve
speech activity detection of both voiced and unvoiced
speech relative to using any one sensor alone [Messing,
2003]. An example of this fusion-based detection is
illustrated in Figure 2 where the GEMS and P-mic
sensors are used.

Detection Based on
Single Measurements
Detection Based on Fusion

N NS et
e | . E— -y
E v

GEMS
Waveform/
Decision

e 2 e B ¢ P-Mic
Waveform/
Decision

Y Detection of unvolced
e toees v aeecni eman - regions with fusion. These
regions are not obtained

'\‘\ Acoustec Waveform by GEMS alone.

Acoustic ¥ T ¥ g v
Waveform/ e
Decision

Figure 2: Illustration of multi-detector fusion using the GEMS and P-mic
sensors. In this case, the sensor signals are from the M2H environment. For
test purposes, the acoustic signal being enhanced is from the acoustic B&K
mic and “truth” is assumed as the output of the corresponding noise-
cancelling resident mic.



Although this style of detection can outperform acoustic-
based detection in noise, it does not address the limitation
of a binary detection decision per frame. In the next
section, we propose a detector that provides frequency-
dependent speech activity evaluation.

4.2 Multi-class detection

There are numerous speech events that may be
characterized by the pattern of signal energy across
specific frequency bands. For example, unvoiced
fricative and plosive sounds are high in frequency, while
nasals and the voice-bar components of voiced plosives
are low in frequency. For these cases a single speech
activity decision limits the performance of the adaptive
suppression filter of Section 2. Consequently, we refine
our multi-sensor detector by exploiting the propensity of
the various sensors to detect speech events in different
frequency bands. The resulting scheme detects three
speech classes: (1) Voiced = Speech present in low- and
high-frequency bands; (2) Low-voiced (including nasals
and voice bars) = Speech is present in low-frequency
band only; and (3) Unvoiced = Speech is present in high-
frequency band only. A background state is declared
when speech is not present in either band. The four-class
detection scheme is illustrated in Table I. According to
the motivation given below, the low band is selected as
[0, 500] Hz and the high band as [3, 5] kHz.

Contains High = Contains Low

Frequency Frequency Table I:
Speech Content? Speech Four
Content? speech-
Low-Voiced No Yes class
Unvoiced Yes No detection
Voiced Yes Yes scheme.
Background No No

The multi-class decisions are based on a detection
scheme much like the above fused GEMS and P-mic
detectors. Rather than using the P-mic signal, which does
not robustly provide high-frequency signal estimates in
harsh conditions, we use the wideband signal from the
resident-mic in the ASE Pilot Speech Corpus. For certain
harsh conditions of interest, the SNR is large for
frequencies within about a 3 kHz to 8 kHz range. This is
advantageous because several consonants such as an /s/,
/sh/, /ch/, and /th/ contain significant energy in this
frequency region. In practice, both voicing and
unvoicing above 3 kHz were found to be detectable. On
the other hand, for these same conditions, the resident-
mic has a poor SNR for low frequencies, particularly
below about 500 Hz and thus is not reliable at detecting
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Figure 3: Waveforms
(from the M2H
environment) and
spectrograms of the (a)
resident-mic signal and
(b) GEMS signal for the
word “dint”. The GEMS
signal shows the
presence of the nasal /n/
and voice bar in the
initial voiced plosive /d/,
while the resident-mic
shows the high-
frequency burst energy in
the /d/ and in the
unvoiced plosive /t/.

Time (s) >

low-frequency events such as nasals and voice bars. An
example is shown in Figure 3 where the GEMS signal
clearly gives the presence of the low-frequency nasal /n/
and voice bar in the voiced plosive /d/ in the word “dint”.
The resident-mic, while not revealing the nasal and voice
bar, more clearly shows the high-frequency burst energy
in the /d/ and in the unvoiced plosive /t/.

One multi-class detector that we are investigating
involves first the use of GEMS, a low-pass signal by its
nature, to detect voicing in low frequencies. The signal
from the resident mic above 3 kHz is then used 100 ms
on either side of the region detected by the GEMS-based
detector, similar to the P-mic and GEMS fused-detector
decision logic.

5.0 MAGNITUDE AND PHASE ESTIMATION

The nonacoustic sensors may also be exploited to aid in
the suppression component of the enhancement algorithm
of Section 2. In this section, we first investigate the
theoretical limits of the use of an “ideal” speech
magnitude and phase as components in the Wiener filter.
We then look at numerous strategies to approach these
limits with nonacoustic sensor measurements.

5.1 Theoretical limits

In the frequency domain, we can view the noisy speech
signal in terms of its short-time Fourier transform which
we write in polar form as

Y (k,w) = X(k, ) + B(k, w)

= [ X (k@) | +M,(k, @e* 0

where M (k,w)and 8 (k,w)are short-time magnitude

and phase noise terms, respectively. One approach to
viewing the “theoretical limit” in magnitude and phase



estimation is to make each noise term zero. We have
performed these replacements over a range of SNRs and
have made the following observations:

Ideal magnitude: When replacing the noisy magnitude with its
ideal form, phase noise persists aurally and this noise increases
with decreasing SNR. A sub-optimal performance bound can be
achieved by constructing a Wiener filter using the ideal speech
magnitude. The resulting enhanced signal lies aurally between
that using the ideal magnitude and noisy magnitude.

Ideal Phase: When replacing the noisy phase with its ideal
form, an increasing noise reduction occurs aurally with
decreasing SNR.

Although we have not yet made quantitative
measurements or performed formal listening tests, our
anecdotal results are consistent with those of Vary who
found the perceptual importance of phase with respect to
signal quality to increase with decreasing SNR, in
particular for SNR < 3 dB [Vary, 1985]. We have also
performed analogous experiments to the above with the
magnitude estimated from the adaptive suppression filter
of Section 2. Using our estimated magnitude in place of
the noisy magnitude yields a reduction in noise residual
but less than with the ideal magnitude, as expected.
Likewise, we find that when replacing the noisy phase
with its ideal form, an increasing noise reduction occurs
aurally with decreasing SNR.

5.2 Strategies for exploiting nonacoustic sensors

The previous section indicates that we have not reached
performance bounds with magnitude estimation and that
we can gain considerably with phase estimation under
harsh background noise conditions. In this section, we
describe a general approach to capitalize on these
observations using nonacoustic sensors.

Magnitude estimation: We have seen that a drawback of
Wiener filtering is the need to estimate time-varying
speech spectra from the noisy acoustic waveform. An
alternative strategy is to estimate short-time speech
spectra for the Wiener filter from a nonacoustic-sensor
signal and the background noise spectrum from the
acoustic signal. Since the estimate of the speech spectrum
depends on the particular nonacoustic sensor and its
placement, and its fidelity can be band-dependent, our
general strategy is to construct a speech spectral estimate
from a fusion of components of nonacoustic and acoustic
signals. Alternatively, in contrast to constructing the ideal
Wiener filter, one can aim for the ideal speech spectrum
by replacing bands of the acoustic signal with those of a
nonacoustic signal where appropriate. Since nonacoustic
signals, although relatively noise-immune, can
themselves be degraded, we apply noise suppression to
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these signals prior to fusion. An example of this strategy
is given in Figure 4 which compares the baseline
suppression on a resident-mic acoustic signal with a
fusion of the enhanced acoustic signal above 500 Hz with
the enhanced P-mic signal below 500 Hz. In this example
word “zed”, voicing during the voiced fricative /z/ and
the voice bar for voiced plosive /d/ have been
approximately restored by the low-band P-mic signal.

(b)

Figure 4: Spectrogram
comparison of (a) enhanced
resident-mic acoustic signal
(from the M2H
environment) and (b) fusion
of the enhanced acoustic
signal above 500 Hz with the
enhanced P-mic nonacoustic
- TR signal below 500 Hz. In this
Voiting'and example word “Zed”,

e voicing during the voiced
fricative /z/ and the voice bar
for voiced plosive /d/ have
been approximately restored
Time (s) by the low-band P-mic
signal.

Phase estimation: In phase estimation, our goal is to use
nonacoustic sensors to recover the short-time Fourier
transform phase of the speech waveform. Based on a
linear speech production model, the speech phase
consists of the sum of the excitation and vocal tract
components. Generally, we have found that different
sensors contain different speech phase components. The
GEMS (placed at the larynx in the ASE Pilot Speech
Corpus) and EGG contain primarily excitation phase
during voicing. The P-mic contains excitation phase, but
also vocal tract phase over selected time-frequency
regions, depending on its location. Figure 5 gives an
example of the use of phase from the P-mic signal in
place of that of the noisy phase from the acoustic signal,
enhanced by the baseline suppression algorithm. In this
case, the P-mic was placed a fair distance above the
larynx, giving significant vocal tract phase, as well as
excitation phase. Replacing the noisy phase of the
Wiener-enhanced speech by the phase of the P-mic signal
over the full 4 kHz band results in additional noise
reduction and cleaner harmonic structure than from the
baseline suppression filtering.

Observe from Figure 5 an apparent paradox: Modifying
the short-time phase modifies the short-time magnitude.
This paradox is resolved by recalling that the enhanced
signal is synthesized by an overlap-add scheme.
Therefore, cleaning the phase of the noisy short-time
Fourier transform may reduce noise in the magnitude of
the short-time Fourier transform of the enhanced
synthesized signal by virtue of overlapping and adding.
In addition, the spectrogram views the synthesized



Freq
(Hz)

Figure 5:
Spectrograms
illustrating use of
the P-mic phase in
noise suppression:
(a) Original noisy
resident-mic signal
(from M2H

enhanced by

filter; (c¢) Use of P-
mic phase in place
of noisy resident-
mic phase of (b).
Acoustic noise in
this case rolls off at
about 2000 Hz.

Time (s)

waveform through a window and frame (in this example,
25 ms and 10 ms, respectively) different from that of the
enhancement analysis/synthesis (12 ms and 2 ms,
respectively).

There are many different scenarios of this phase recovery
scheme. When reliable vocal-tract phase is not available,

one can use the excitation phase solely from a
nonacoustic sensor. Although this phase replacement can
enhance the speech signal in the sense of giving the
perception of less noise, it often leads to an annoying
“buzzy” quality due to excessive phase coherence. A
preferred strategy is to use the excitation phase from the
GEMS or EGG and a vocal tract phase estimate from the
resident-mic or P-mic derived under a minimum-phase
assumption [Quatieri, 2002]. As illustrated in Figure 6
with the P-mic sensor, the synthetic vocal phase is
constructed through a Hilbert transform and filtering to
remove an excitation contribution, implemented by
homomorphic-filtering of the nonacoustic signal. This
allows the possibility of an enhanced vocal tract phase
from an enhanced P-mic spectral magnitude, falling
between the ideal phase and the original noisy phase.
More generally, this constructed phase can be fused over
selected bands with the phase of other sensors.

Speech Phase Estimate
Under Minimum-Phase
Assumption

Figure 6: Phase construction
by addition of the GEMS
phase and a synthetic phase
derived from the P-mic
signal under a minimum-
phase assumption. The
Hilbert transform/filtering
module implements
homomorphic filtering of the
enhanced P-mic signal

Log-magnitude
estimate from P-Mic

Approximate Vocal tract phase

-~

T

Excitation phase
from GEMS

6.0 Composite System Example and Implications

We are investigating a number of system configurations
based on the speech activity detection and magnitude and
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environment); (b) (a)

baseline suppression

phase estimation schemes of Sections 4 and 5. One
particular configuration is shown in Figure 7. In this
scheme, we use our multi-class detector, based on the
GEMS and the wide-band resident mic. The suppression
uses the P-mic signal for the low-band [0, 500] Hz and
the resident-mic signal above 500 Hz. The GEMS and P-
mic are used for a synthetic phase over the range [500,
1200] Hz. As seen in Figure 7, we have introduced a
spectral sharpening module which narrows formant
bandwidths and adds a pre-emphasis, accounting for
formant widening by the P-mic due to energy loss
through the skin and accounting for there being no
acoustic radiation as in the acoustic waveform that
emanates through free space from the lips.

Acoustic

i Background Spectrum .
Signal .
——’I Estimation Figure 7: A
particular
suppression
ome scheme based
Acoustio. —— on the GEMS
signal P Activity and P-mic
Detection B .
nonacoustic

sensors.

Background Detection

Spectra

GEMS  P-Mic

Resident-Mic l l

A

Signal. (7]

P-Mic Non- ™
Acoustic G

Signal i Spectral
[LPF ] Wiener |, pect
_’- Filter Sharpenin

An example using this configuration is illustrated in
Figure 8 in two steps: (1) Combined Wiener filtering of
the high-pass resident-mic and the low-pass P-mic
signals, and (2) Inclusion of the phase construction of
Figure 6.

Phase
Construction

Wiener
Filter

Enhanced
Signal

Observe that the introduction of the enhanced low-passed
P-mic signal has provided significant voice-bar and nasal
consonant components lost by the resident-mic. The
introduction of the synthetic phase derived from the
GEMS and P-mic has improved the visual clarity of the
harmonic and formant structure in the mid-frequency
range, relative to the noisy phase of the original acoustic
signal. Informal listening to a variety of passages, under
the M2H condition, indicates improved quality, and
potentially improved intelligibility, for enhanced
listening. In addition, we cite two other application areas:

Speaker authentication: The nonacoustic sensors appear
to provide an accentuation of low-frequency events such
as voice bars and nasals. We have observed a strong
speaker-dependence of the duration, strength, and
spectral character of these events in nonacoustic signals,
and thus our enhanced, fused signals may provide



information for speaker authentication [Campbell et al,
2003] not represented with the baseline suppression.
Speech encoding: Including the synthetic phase of
Figure 6 appears as a small effect in some cases,
especially in bands of high- to moderate SNR. In the
encoding application, however, this effect multiplies.
Figure 9 shows the result of MELP encoding [McCree et
al, 1996] the signal of Figure 8, before and after
including the synthetic phase. The introduction of phase
has significantly improved harmonic structure of the
signal not only in the [500, 1200] Hz range where the
phase is replaced, but also through the entire speech
band, and with informal listening this corresponds aurally
to a perceived improved “clarity” and lessening of coding
artifacts.

Time (s)

Figure 8: Example spectrograms of enhancement using the
suppression scheme of Figure 7: (a) Original noisy resident-mic;
(b) Inclusion of low-passed P-mic; (c) Inclusion of synthetic phase.
The utterance consists of the word stream “choose-keep-bank-got”
in the M2H environment.

Freq
(Hz)

Time (s)

Figure 9: Example spectrograms of enhancement using the
suppression scheme of Figure 7 after MELP encoding of signals in
Figure 8: (a) Original noisy phase; (b) Introduction of synthetic
speech phase in band [500, 1200] Hz.

7.0 SUMMARY AND DISCUSSION

In this paper, we presented an approach to noise
suppression that capitalizes on recent developments in
nonacoustic sensors that are relatively immune to
acoustic background noise. The GEMS, P-mic, and EGG
nonacoustic sensors were considered. These sensors can

(a)
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directly measure the speech glottal excitation but also
directly measure speech attributes such as vocal tract
articulators. The sensors were exploited to improve a
particular noise suppression system based on a Wiener
filter that adapts to spectral changes in the speech and
background noise signals. Different aspects of acoustic
and nonacoustic signals were used according to their
capability in representing specific speech characteristics.
Frequency-domain sensor phase, as well as magnitude,
was found to contribute to improved signal enhancement
within different frequency bands. Preliminary testing
involved the time-synchronous multi-sensor DARPA
ASE Pilot Speech Corpus collected in harsh acoustic
noise environments. The enhancement approach was
illustrated with examples and shown to have potential as
a pre-processor to low-rate vocoding and speaker
authentication, as well as for enhanced listening.

Next steps include perceptual testing of enhanced signals,
both uncoded and MELP-encoded, using a formal
diagnostic rhyme test (DRT), and further development of
different configurations based on nonacoustic sensor
placements. We are also in the process of applying the
enhancement algorithms of this paper as pre-processing
for speaker authentication with the DARPA ASE Pilot
Speech Corpus [Campbell et al, 2003].
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Abstract— Current state-of-the-art speaker verification algo-
rithms use Gaussian Mixture Models (GMM) to estimate the
probability density function of the acoustic feature vectors.
Previous studies have shown that phonemes have different
discriminant power for the speaker verification task. In order to
better exploit these differences, it seemsreasonable to segment the
speech in distinct speech classes and carry out the speaker mod-
eling for each class separately. Because transcribing databases
is a tedious task, we prefer to use data-driven segmentation
methods. In our previous work, we have focused on the tuning
of the ALSIP data-driven segmentation method. The novelty of
the proposed method is the combination of the DTW distortion
measure with data-driven segmentation tools, and the use of a
Logistic Regression Function to determine the optimal fusion
weights of the speech segments. The performance of the proposed
system is evaluated on subsets build from NIST’2001 and 2002
Evaluation data. Our results show that applying score fusion
with the weights found by the Logistic Regression function
leads to a better results, as compared to a simple summation
of the segmental scores. Our method could also be applied
to automatically remove the less significant segments (usually
corresponding to “silence” segments).

|. INTRODUCTION

Current best performing text-independent speaker veri-
fication systems are based on Gaussian Mixture Models
(GMM) [1]. Speech is composed of different sounds and
speakers differ in their pronunciation of these sounds. GMM
could be interpreted as a “soft” representation of the various
acoustic classes that make up the speakers sounds. They do
not take into account the tempora ordering of the feature
vectors. The speaker verification approach described in this
work is based on speech recognition, grounded on data-driven
techniques that require neither phonetic nor orthographic
transcriptions of the speech data. The main advantages of
introducing a speech recognition stage in speaker verification
experiments are: to exploit the different speaker discriminant
power of speech sounds [2,3,4,5], and to benefit of some
higher-level informations resulting from the segmentation.

The majority of current speech processing systems use
phones (or related units) as an atomic representation of speech.
Using phonetic speech units lead to efficient representation
and implementation for a lot of speech processing systems.
The maor problem that arises when phone based systems
are being developed is the possible mismatch with the data
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being used and the lack of transcribed databases (because
transcribing speech datais an error-prone and expensive task).
The set of speech units can also be learned from examples,
like in data-driven approaches. In [4-6] we have proposed a
new architecture for speech processing based on units acquired
during a data-driven segmentation, that is not grounded on
transcribed databases. These units are denoted as Automatic
Language Independent Speech Processing (ALISP) units.

In [4], [5] we have aready used the ALISP data-driven
speech segmentation method for speaker verification. The
number of classes, (8), was chosen in order to have enough
data for each class, when dealing with 2 min of enrollment
speech data used to build the speaker models. In those ex-
periments, we studied speaker modeling algorithms, such as
Multiple Layer Perceptrons (MLP) and GMM'’s. Classifying
speech in only 8 speech classes, did not led to a good
coherence of the speech classes.

In [17], we have used a finer segmentation of the speech
data into 64 speech classes, and a Dynamic Time Warping
(DTW) distortion measure for the speaker verification step.
It is obvious that when using so many classes, the classical
speaker modeling methods have to be redefined. Speaker mod-
eing with GMM’s is till possible, but more difficult because
of the lack of client speaker data. MLP could not be applied,
because of lack of sufficient datafor the client class. Therefore,
we have decided to use the well known Dynamic Time
Warping method to evaluate the distance between two speech
patterns. This method could be used independently on short
and long speech data. If the two speech patterns belong to the
same speech class, we could expect that the DTW distortion
measure can capture the speaker specific characteristics. DTW
distance measures have aready been used for text-dependent
speaker recognition experiments [11], [7], [12], [13]. The
novelty of the proposed method is its combination with the
ALISP units. In our previous work, we have focused on the
tuning of the ALISP based segmentation. In [17], we have
analyzed the scores used for the speaker verification on a
global level, and all the speech classes were treated with the
same weight. In this paper, we use the Logistic Regression
[14], [15], [16] to exploit the different discriminant power of
the ALISP speech classes.

The outline of this paper is the following: In Sect. Il
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presentsin amore detailed way the proposed method. Sect. 111
describes the database used and the experimental protocol. The
evaluation results are reported in Sect. V. The conclusions and
perspectives are given in Sect. V.

I1. DESCRIPTION OF THE PROPOSED SYSTEM
A. Data-Driven Speech Segmentation

The steps needed to acquire and model the set of data
driven speech units, denoted here as Automatic Language
Independent Speech Processing (ALISP) units [6], are shortly
described in the following section. Instead of the widely used
phonetic labels, data-driven labels automatically determined
from the training corpus are used. The set of symbolic units
is automatically acquired through temporal decomposition,
vector quantization, segment labeling and Hidden Markov
Modeling, as shown in Figure 1. After a classical pre-
processing step leading to acoustic-feature vectors, temporal
decomposition [8] is used for the initial segmentation of the
speech data into quasi-stationary segments. At this point, the
speech is segmented in spectrally stable portions. For each
segment, its gravity center frame is determined. A vector
guantization algorithm is used to cluster the center of gravity
frames of the spectrally stable speech segments. The codebook
size defines the number of ALISP symbols. Theinitial labeling
of the entire speech segments is achieved using minimization
of the cumulated distances of al the vectors from the speech
segment to the nearest centroid of the codebook. The result
of this step is an initial segmentation and labeling. These
labels are used as the initia transcriptions of the ALISP
speech units. Hidden Markov Modeling is further applied for
a better coherence of the initial ALISP units. Since correct
transcriptions of the evaluation data are not available, we
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Unsupervised Automatic Language Independent Speech Processing (ALISP) unit acquisition, and their HMM modeling

cannot compare the correspondence of ALISP units and the
usual phonetic units. We studied this correspondence for some
speaker of the development set and we found that there is
some evidence of correlation of phonemes and ALISP units
(see Figure 2).

B. Principle of the Segmental Speaker Verification

The proposed speaker verification system is a combination
of Dynamic Time Warping (DTW) distortion measure with
data-driven speech segmentation based on ALISP tools. The
number of speech classes used is 64, and is comparable to a
pseudo-phonetic segmentation.

For the speaker verification step we use two dictionaries:
the Client-Dictionary, composed of the segments found in the
enrollment client speech data and the World-Dictionary, build
with segments found in the speech data representing the world
speakers. These dictionaries are defined during the training
(also known as enrollment) phase.

During the test phase, each test speech data, YV is first
segmented with the N ALISP HMM models. If we denote by
M the number of total ALISP segments in the test segment
Y. Y isthe concatenation of M segments y;, t =1,..., M.

In the next step of the testing phase, each of the test speech
segments y; is compared with a DTW distance measure,
to the Client-Dictionary and to the World-Dictionary. This
comparison is done on a per class level. For sake of simplicity,
we will omit the indexes indicating the ALISP classes. The
score s(y¢), for each segment, is calculated as follows (see
also Figure 3):

Dyt ye) = pw
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Fig. 3. lllustration of the proposed segmental method based on searching in a client and world speech dictionaries.

where D(y;,y,) is the distance of y; to y, the most sim-
ilar segment from the corresponding class dependent Client-
Dictionary ; pw and oy are respectively denoting the mean
and variance of the most similar segments from each of the
W), world speakers dictionary.
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Let M be the number of segments in the test speech data.
The globa score of the claimed speaker is then calculated
as a simple summation of the segmental scores (defined by
Equation 1), and normalized by the total number of segments
M:



M

1
S = Mzs(yt)

t=1

)

C. Applying Logistic Regression for Segmental Score Fusion

The system described in the previous section uses the same
weight for all the segments. To exploit the different discrim-
inant power of the speech classes, the Logistic Regression is
applied. The Logistic Regression function ( [15], [14], [16])
is defined as follows:

M
g(s) =wo + Zwts(yt), ©)
t=1

M cy\2 (12
o= 30 WP~ (D) an;(((;)) @
t=1 t

0
where u§ and ! represent the mean of the client and
impostor classes, respectively, and o7 represents their common
variance. w; isthe weight given to the segment y; of theclasst.
This assumes gaussianity of the score distributions with equal
variances. The global score S, can be rewritten as follows.

LM
S = i ;Wts(yt) (6)

This weights are estimated from a development set.

I1l. EXPERIMENTAL SETUP

The experiments described in this paper are carried out
using the NIST 2001 and 2002 Evaluation data [18]. In order
to evaluate the proposed method, 3 digjoint sets denoted here
as. World-ALISP-set, Development-set and Evaluation-set are
designated among the available data.

The World-ALISP-set (comprising data from 58 female and
57 male speakers), is a subset of the NIST’ 2001 data. It is used
for two purposes. to build the gender dependent ALISP rec-
ognizers and to represent the world speakers. The NIST’ 2002
data is split into two sets: the Development-set (80 female
and 60 male speakers), used to estimate with the Logistic
Regression function, the class dependent weighing values and
the Evaluation-set (111 female and 79 male speakers), used
to test the performance of the proposed system.

The speech parameterization for the temporal decompo-
sition is done with Linear Prediction Cepstral Coefficients
(LPCC), caculated on 16 ms windows, with a 8 ms shift
(this choice is due to implementation purposes). For the
speech recognition with the Hidden Markov Models and for
the DTW speaker verification step, we have used the Mel
Frequency Cepstral Coefficients (MFCC). They are generaly
used for common speech and speaker verification purposes.
The window and shift values are kept the same as for the
LPCC parameterization.
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In order to accelerate the search, we have restricted the
number of speech units in the client and world dictionaries.
The 15 longest segments per class and per world speakers are
chosen for the World dictionary, and for the Client dictionary.
During the testing phase (see Figure 3), each of the test speech
segments is compared with a DTW distance measure, to the
Client Dictionary and to the World Dictionary.

IV. FUSION RESULTS

Initialy, the proposed system combines the information
provided by the DTW distance measure by a simple sum-
mation of the segmental score. The final score is obtained by
normalizing by the total number of segments in the test file.
This gives to each of the segments (belonging to one of the
64 ALIPS speech classes) the same weighting in the overall
scoring. This system, whose performance is given in Figure 5
uses al of the segments present to produce the final score.
However, as already mentioned in the Introduction, some
of the segments provide little or no discrimination between
speakers and the inclusion of these may lead to a degradation
in performance. Therefore it should be possible to improve the
system performance by omitting or reducing the contribution
of these segments. An exampleis the usual removal of frames
that are supposed to represent the “silences’, and that are
usually removed, and not used for the speaker verification
procedure.

If we use the Logistic Regression, as explained in Section |
to determine the optimal weights for the merging(fusion) of
the segmental scores, we achieve a better performance, than
the linear summation of the scores. The class and gender
dependent weights are estimated form the Development Set.
Figure 4 shows the weights, found by the Logistic Regres-
sion, for each segment. Because the speech segmentation is
gender dependent, the weights are also gender dependent. The
distribution of weights confirms that certain segments perform
significantly better than others. The results, when we use these
wights on the evaluation set are shown in Figure 5. These
results show that a significant improvement in performance
has been made by weighting the segment classes.

In Figure 5, al the segments are used. In order to have
a better representation of which are the worst and best per-
forming classes, we listened to some files. We found that the
segments with low weight generally correspond to “silences’
and those with high weights (HH for male and H4 for female)
correspond to vowels.

In order to reduce the calculation duration, we have applied
a threshold of U = 0.025 to the weights. The results of the
speaker verification performance, when not considering the
speech segments that belong to classes with a weight below
the threshold U, and using the other weights, are shown on
Figure 6, with the solid line. For comparison, the results
(dotted lines) including all the segments, with the weights
determined by the Logistic Regression are repeated once more.

Using a system which excludes the silence automatically
provides better results than the reference system using al of
the segments. It should be noted also that these results are
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are calculated for each ALISP segment, and an equal weight
is given to each classes. For the second system, we use the
Logistic Regression, to determine class specific weights for
each ALISP class. The results show that with the Logistic
Regression, we can determine the segments that are more
discriminant for the speaker verification task, and we can also



detect automatically the majority of the segments correspond-
ing to “silences’. Further improvements of our system could
be foreseen applying the commonly used speaker verification
normalization techniques. Future work will concentrate on
traying to fuse our system with a GMM based system.
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Abstract

The performance and robustness of a person
recognition system using acoustic information can be
improved with the use of visual information. In this paper
we present an audio-visual (AV) speaker identification
and verification system and analyze its performance. The
proposed system utilizes a Hidden Markov Model (HMM)
approach and Facial Animation Parameters (FAPs),
supported by the MPEG-4 standard for representing
visual features. A number of experiments have been
performed under both clean, and noisy (utilizing additive
Gaussian noise) audio conditions at different signal-to-
noise ratios (SNRs) ranging from 0 dB to 20 dB. The
proposed system improves the performance of the audio-
only system at all SNRs tested and under clean audio
conditions.

1. Introduction

Person recognition can be classified into two
problems, person identification and person verification
[1]. Person identification is the problem of determining
the identity of a person (who the person is) from a closed
set of candidates, based on the best match of the person’s
biometric signals to those in a database. Person
verification is the problem of determining whether a
person is whom s/he claims to be, also utilizing the
person’s biometric signals. A verification system should
be able to reject claims from impostors, persons not
registered with the system, and accept claims from the
clients, persons registered with the system. There is an
increasing need of reliable person verification systems to
improve the security of systems or services used by only
selected group of people. There are many different
biometric signals, such as faces, voices, fingerprints, iris
scans, and passwords, that can be used in a person
recognition system [2, 3]. Each modality has its own
advantages and disadvantages. Although single modality
biometric systems can achieve high performance in some
cases, they are usually not robust to noise and do not meet
the needs of many potential person verification (or
recognition) applications. It has been shown that using
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multiple biometric modalities instead of a singe modality
improves the performance of a system [4, 5]. Different
modalities are combined in order to eliminate problems
characteristic for single modalities. For example, a
person’s voice and face, as biometric signals, are easily
collected and natural to the user. Person verification
systems that rely only on audio data are sensitive to
acoustic noise and therefore not acceptable for many high
security applications. On the other hand, systems that rely
only on visual data can also be very sensitive to visual
noise (lightning changes, poor video quality, occlusion,
etc.). Audio and visual data have been used in automatic
speech recognition (ASR) applications in order to
improve ASR performance [6, 7]. The fact that the
information present in the visual signal can be used not
only to improve speech recognition performance but also
to characterize a persons’ identity justifies the use of
audio-visual biometric systems for person recognition
applications.

An important factor in designing an audio-visual
recognition system is the selection of the audio and visual
features. While the selection of audio features is a well-
studied and agreed upon issue, various visual features
have been utilized. MPEG-4 is an audiovisual object-
based video representation standard supporting facial
animation. MPEG-4’s facial animation is controlled by
the Facial Definition Parameters (FDPs) and Facial
Animation Parameters (FAPs), which describe the face
shape, and movement, respectively [8]. The MPEG-4
standard defines 68 FAPs, divided into 10 groups (group
8 FAPS pertaining to the mouth area —an important visual
speech articulator- are shown in Figure 1). Transmission
of all FAPs at 30 frames per second requires only around
20 kbps (or just a few kbps, if MPEG-4 FAP interpolation
is efficiently used [9]), which is much lower than
standard video transmission rates. FAPs represent an
important descriptor of visual articulatory information
whish is, clearly standard-compliant, and also portable,
i.e., different 3D facial models [10] can be animated
successfully by the same stream of FAPs. They are
therefore utilized in the proposed system.



Figure 2. a) Original video frame; b) MPEG-4 model
[10]

In this paper we describe an audio-visual person
recognition system that uses Hidden Markov Models
(HMMs) to model the temporal behavior of audio and
visual data. Word-level continuous HMMs are used to
model the temporal statistics of audio and visual data.
Each person in the database is modeled using a separate
HMM. During the training procedure, the world model is
first trained on the training data of all speakers. The world
model is then used as the initial model for each speaker
HMM, which is retrained using only the training part of
the database corresponding to the particular speaker.

To the best of our knowledge no results have been
previously reported in the literature on AV identification
and verification when FAPs are used as visual features.
It is therefore the main objective of this paper to report on
such results.

In this paper, we first describe in Section 2 the visual
features extraction and in Section 3 the audio-visual
integration approach used. Next the person verification
and identification experiments and training procedures
are described in Section 4. Finally, conclusions are drawn
and future work is proposed in Section 5.

2. Visual feature extraction

This work utilizes the CMU (Carnegie Melon
University) audio-visual database [11]. The database
contains ten subjects; seven of whom are male and three
female. The vocabulary includes 78 words commonly
used for scheduling applications. Each subject repeated
each of the words ten times. For each of the word set
repetitions, the database contains a speech waveform and
a word-level transcription. The video (a sample frame is
shown in Figure 2a) was sampled at a rate of 30 frames
per second while audio was acquired at a rate of 16 kHz.
All FAPs are expressed in terms of Facial Animation
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Description FAPU value

IRIS Diameter (by definition it is IRISD = IRISDO / 1024
equal to the distance between
upper and lower eyelid) in

neutral face

Eye Separation ES =ES0/1024

Eye - Nose Separation ENS = ENS0/ 1024

Mouth - Nose Separation MNS = MNS0 /1024

Mouth - Width Separation MW =MWO0 /1024

Angular Unit AU = 10'5 rad

Figure 3. Facial Animation Parameter Units (FAPU)

— ¢»

= 4
(b)

Figure 4. The mean lip shape (middle column), and
the lip shapes obtained by the variation of the first(a)
and second (b) eigenvector weights by +2 standard
deviations (left column) and —2 standard deviations
(right column)

Parameter Units (FAPU), as shown in Figure 3. These
units are normalized by important facial feature distances
in order to give an accurate and consistent representation.
Ten FAPs from group 8 which describe the outer lip
contours were used in our work, and they are represented
with the use of two FAPUs, mouth-width separation
(MW) and mouth-nose separation (MNS). Each of these
two distances is normalized to 1024.

The FAP sequences were extracted from the
available visual data for all ten subjects and for all 100
word sequences. Through visual evaluation of the FAP
extraction results we observed that the extracted
parameters produced a natural movement of the MPEG-4
decoder (Figure 2b) that synchronized well with the
audio.

In order to decrease the dimensionality of the visual
feature vector, Principal Component Analysis (PCA) was
performed on the 10-dimensional FAP vectors (f,). The
PCA training set consists of N FAP vectors, which are
obtained from the training part of the visual data. The
10x10 covariance matrix C can be computed as

1 < 7 T
C—F;m F =T, (1)

where f denotes the mean FAP vector.




After the covariance matrix was obtained and its
eigenvalues determined, the FAPs, f,, were projected onto
the eigenspace defined by the first K eigenvectors,

Audio (16kHz) [ Acoustic Feature 0tz o I—[igd::R
——>| Extraction (MFCCs) "I Markoy | Decision
) >
Video (30 88) ™ Vigual Feature Dimensionality | 30 Hz [Visual Feature| %0 Hz Model
> Extraction (FAPS) | ®{Redluction (PCA) Interpolation | System
Figure 5. Audio-visual system for ASR
-7 +E-of 2
fn= fn + o

where E=[e; e,...ex] is the matrix of K eigenvectors,
which correspond to the K largest eigenvalues, and o, the
Kx1 vector of corresponding projection weights. The first
six, three, and one eigenvectors represent respectively
99%, 95%, and 82% of the total statistical variance. By
varying the projection weights by £2 standard deviations,
we concluded that the first and second eigenvectors
mostly describe the movement of the lower and upper lip,
respectively (Figure 4), while the third eigenvector mostly
describes mouth shape asymmetries. When choosing the
dimensionality of the visual feature vector it should be
kept in mind the trade-off between the number of HMM
parameters that have to be estimated and the amount of
the person recognition information contained in the visual
features. Based on the statistical variance distribution and
the above-mentioned trade-off we decided to use three-
dimensional (K=3) projection weights as visual features.
These features were used in all audio-visual person
verification and identification experiments we conducted.

3. Audio-visual integration (feature fusion)

In the system we developed the audio and visual
streams are combined as shown in Figure 5. The Mel-
Frequency Cepstral Coefficients (MFCC), signal energy
and first and second derivatives, widely used in speech
processing, were used as audio features. The three-
dimensional projections weights (Eq. 3) and their first and
second derivatives were used as visual features. The size
of the audio features was 39. The size of the visual
features was 9. Since audio features (MFCCs) were
extracted at a rate of 90Hz, while visual features (FAPs)
at a rate of 30Hz, the visual features were interpolated in
order to obtain synchronized data.

In this approach the audio-visual feature observation
vector (o,) is formed by appending the visual observations
vector (0,") to the audio observations vector (o/%), that is

aT VT T
0, =[o, o, ] . (€))

The newly obtained joint features vectors were used to
train an HMM model, with continuous state emission
probabilities [12] given by
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M
bj(ot):zijN(ot;.ujmazjm) (4)

m =1

In Eq. 4 subscript j denotes a state of a word model, M
denotes the number of mixtures, c;, denotes the weight of
the m’th mixture component, and N is a multivariate
Gaussian with mean vector g, and diagonal covariance
matrix %j,,. The sum of mixture weights c;, is equal to 1.

4. Training and experimental results

The baseline HMM system was developed using the
HTK toolkit version 3.1 [13]. In this work a text-
dependent  audio-visual person verification and
identification system is considered. The experiments used
the portion of the CMU database in which speakers utter
the digit sequence “234567”. The HMMs used to model
each speaker had left-right topology, with 10 states. The
part of the CMU audio-visual database used in the
experiments consists of each speaker uttering the digit
sequence 10 times. The data is divided into training,
evaluation, and testing parts. The first six utterances of
each speaker were used for training, one utterance was
used for evaluation, and the remaining three for testing.
The same training and testing procedures were used for
both audio-only and audio-visual experiments. To test the
algorithm over a wide range of SNRs (0, 10, 20 dB),
white Gaussian noise was added to the audio signals. All
results were obtained using HMMs trained in matched
conditions, by corrupting the training data with the same
level of noise, as used for corrupting the testing data. This
approach was used in order to accurately measure the
influence of the visual data on system performance.

Word-level continuous HMMs were trained for each
speaker in the database. During the training procedure,
the world model (My) is first trained on the training data
of all speakers. The world model is used as the initial
model for each speaker HMM (Ms). Each speaker HMM
is then retrained using only the training part of the
database corresponding to the particular speaker.

In the person identification experiments the objective
was to determine the speaker (§) who’s HMM matches

the best the unknown person’s data (o,), that is
§ =argmax, ¢ Pr(M, |o,), Q)

where S denotes set of all speakers in the database, and
M; an HMM for speaker s.

In the person verification experiments the objective
was to accept the client claims and reject impostor claims.
The similarity measure (Dpyy) is defined as the
likelihood ratio between the speaker set and the world set,
that is

Dy =1ogPr (M [oy) —logPr(My [oy). (6)



If the similarity measure is larger than the a priori defined

verification threshold the claim is accepted, and otherwise

it is rejected. The evaluation part of the data was used to
Table 1. Person identification results

Person Identification Error [%]

SNR [dB] Audio only Audio-visual
clean 5.13 5.13
20 19.51 7.69
10 38.03 10.26
0 53.10 12.82

Table 2. Person verification results

SNR [dB] Audio only [%] Audio-visual [%]
FA | FR | EER | FA FR | EER
clean 285 | 2564 | 256 0 1282 | 1.71
20 285 | 41.03 | 3.99 285 | 2051 | 208
10 0 53.85 4.99 0 23.08 271
0 57 | 6154 | 826 285 | 2821 | 3.13

calculate the wverification thresholds to be used in
determining whether a person is accepted or rejected. The
thresholds determined from the evaluation set were used
for testing.

Two commonly wused error measures for a
verification system are False Acceptance (FA) —an
impostor is accepted - and False Rejection (FR) —a client
is rejected. They are defined by

I
FAzTAXIOO% FR:%Rxloo%, (7)

where I, denotes the number of accepted impostors, /
the number of impostor claims, Cy the number of rejected
clients, and C the number of client claims. There is a
trade-off between FA and FR, which is controlled by the
a priori chosen verification threshold. Verification system
performance can also be measured using Equal Error Rate
(EER). It is determined after the verification experiments
are performed, by choosing the threshold for which FA
and FR are equal.

The verification threshold is chosen on the
evaluation set to meet certain FA and FR requirements. In
our experiments we set the threshold to obtain the
minimum FA rate. FA and FR rates for that threshold are
shown in Table 2. The threshold for which FA and FR
were equal is also calculated after all the verification
experiments were performed in order to determine EER.
The EER results are also shown in the Table2.

The results of the person identification experiments
obtained for different levels of acoustic noise for both
audio-only and audio-visual approaches are shown in
Table 1. The audio-visual identification system
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outperforms the audio-only system for all SNRs tested
and achieves the same performance as the audio-only
system under clean audio conditions.

The results of the person verification experiments are
shown in Table 2. As can be clearly seen, the
performance of the audio-only system degrades
significantly in the presence of noise. The proposed
audio-visual system performs considerably better than the
audio-only system for all SNRs and for the clean speech.
It is important to point out that the considerable
performance improvement was achieved, although only
nine-dimensional visual features were used.

5. Conclusions

We have described an audio-visual person
verification and identification system that significantly
improves performance over an audio-only system. Our
system uses FAPs, supported by the MPEG-4 standard for
the visual representation as visual features. We plan to
extract additional FAPs and determine how much
information useful for person recognition is contained in
them. We also plan to perform text-independent
experiments and experiments on larger AV database.
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Abstract

This paper proposes a multimodal, biometric person au-
thentication method using speech and ear images to attempt
to improve the performance in mobile environments. It is
well known that the performance of person authentication
using only speech isdeteriorated by acoustic noises and fea-
ture changes with time. Since the ear shape of each person
does not change over time, integrating itsimage with speech
information increases robustness of person authentication.
Experimentsare conducted using audio-visual database col-
lected from 38 male speakers at five sessions over a half
year period. Soeech data are contaminated with white noise
at various SNR conditions. Experimental results show that
the authentication performance is improved by combining
the ear image with speech in every SNR condition.

1. Introduction

The necessity of person authentication is spreading in the
recent network society. Biometric authentication, which
identifies an individual person using physiological and/or
behavioral characteristics, such as face, fingerprints, hand
geometry, handwriting, iris, retinal, vein, and speech, is one
of themost attractive and effective methods. These methods
are more reliable and capable than knowledge-based (e.g.,
password) or token-based (e.g., akey) techniques, since bio-
metric features are hardly stolen or forgotten.

Although “speech” is one of the most useful and effec-
tive features for person authentication in mobile environ-
ments, its performance deteriorates due to additive noise
and session-to-session variability of voice quality. There-
fore, the combination with other biometric features to im-
prove the performance has attracted agreat deal of attention.
Along this line, various audio-visual biometric authentica-
tion methods have been proposed[1, 2, 3, 4, 5]. Although
most of them use “face” information in combination with
speech, the face features also change due to make-up, mus-
tache, beard, hair styles and so on, and derives degrada-
tion of the performance. Therefore, it isworth investigating
other biometric features with high permanence.
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From this point of view, this paper proposes an authen-
tication method using “ear” shape information in combina-
tion with speech. It iswell known that the ear shape hardly
changes over timg[6, 7]. Although severa authentication
methods using ear images have aready been proposed[7, 8,
9], there is no research on multimodal authentication using
both speech and ear images. Since ear images could be cap-
tured using a small camerainstalled in a mobile phone, ear
information is expected to be easily used in mobile environ-
ments than other biometrics, such as fingerprint, iris, and
retinal, that need special egquipment.

Our authentication method and audio-visual database are
described in Section 2. Section 3 reports experimental re-
sults and Section 4 concludes this paper.

2. System structure and experiments

Figure 1 shows our multimodal person authentication sys-
tem using speech and ear images. Audio and visual data
are respectively converted into feature vectors. Each set of
features is matched with both a claimed person mode and
a speaker independent (SI) model. Then, audio and visual
scores areintegrated with appropriate weighting and a deci-
sion is made whether he/sheis atrue speaker or animpostor.
If the score is larger than a threshold value, the speaker is
accepted as a claimed speaker.

2.1. Integrated score

A posterior probability is used as the authentication score.
The posterior probability of being a claimed speaker S ¢ af-
ter observing abiometric feature set -, isdenoted by p(S ¢|x).
Since x is composed of speech (audio) features x s and ear
(visual) features z., p(S¢|x) can be transformed as follows:

p(5°x) = p(S¢les) - p(Selwe) oy

where S¢ and S¢ represent the claimed speaker’s speech and
ear models, respectively. Bayes Rule derives the following
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Fig. 1. Multimodal person authentication system using speech and ear images.

eguation:

p(@s|S)P(SS) | ple|Se)p(Se)
p(zs) p(ze)

where p(z,]S¢) and p(z.|SS) are likelihood values with
claimed speaker’s speech and ear models, respectively. The
probabilities in the denominator are approximated by us-
ing likelihood values with general speaker’s speech model
p(z5]S7) and ear model p(z.|S?):

p(S°r) =

2

. p(xs|S9)p(Ss)  p(e|SE)p(SE)
p(S*) p(xs|SEp(SY)  plxe| S)p(SE) ©
~ p(xs|55) ) p(xe|SE) (4)

p(xs |S§) p(Te |Sg)

Equation (4) means that the posterior probability for the
claimed speaker’smodel is cal culated by the product of like-
lihood values normalized using speaker independent (SI)
models. By defining authentication scores for speech (p )
and ear (p.) as

Dm = logp(x,|S;,) —logp(xm,|S2) (m =s,e) (5)

an integrated score p,. which balances the effectiveness of
speech and ear features can be modeled by the following
eguation.

Pse = AsPs + AePe (/\s + A = 1) (6)
where A\, and ). are audio and visua weights, respectively.
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2.2. Audio-visual database
2.2.1. Recording conditions

Audio-visual datawere recorded at five sessions with inter-
vals of approximately one month. The data were collected
from 38 male speakers, and each speaker uttered 50 strings
of four connected digitsin Japanese at each session. Speech
data were sampled at 16kHz with 16hit resolution. One
right ear image for each speaker taken by a digital camera
with 720x 540 pixel resolution was collected at each ses-
sion. Figure 2 shows the arrangement of a speaker and a
camera when recording. An image of the whole ear, with
no hair obscuring it, was captured by the camera positioned
perpendicular to the ear. The camera was located approx-
imately 20cm away from each speaker’'s ear. A flash was
used to keep constant illumination.

2.2.2. Training and testing data

A set of data recorded at sessions 1~3 was used for train-
ing and that recorded at sessions 4 and 5 was used for test-
ing. The database was separated into two groups in terms
of speakers as shown in Figure 3. This figure shows the
case that the speaker #01 was used as the claimed speaker.
The SI model was trained using the utterances by all the
speakers in the speaker group B which did not include the
claimed speaker. When one of the speakers in the speaker
group B was used as the claimed speaker, the utterances by
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Fig. 3. Training and testing data for the authentication ex-
periment when the speaker #01 is the claimed speaker.

the speaker group A were used for the SI model training.
In this way, the SI model was always trained using the data
of a speaker group not including the claimed speaker. All
the speakers in both speaker groups A and B, except for the
claimed speaker himself, were used as imposters.

White noise was added to the audio data for training
at 30dB SNR level to increase the robustness against noisy
speech, and testing data were contaminated with white noise
at 5, 10, 15, 20, and 30dB SNR conditions.

Asimage data, we first extracted gray-scaled ear images
with 80x 80 pixel resolution. An example of the extracted
ear image is shown in Figure 4. The ear location and rota-
tion in the image were manually adjusted. In order to in-
crease robustness of visual models, the following variations
were given to training data:

(1) Shifting the ear location in vertical and horizontal di-
rectionswithin +6 pixelsat a2 pixel interval. Conse-
quently, 49 variations were made for each ear image.

(2) Rotating the ear imageswithin +30 degreesat onede-
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Fig. 4. An example of the extracted ear image.

greeinterval. Accordingly, 61 variations were made
for each ear image.

The both operations made approximately 9,000 (= 3 ses-
sions x 49 x 61) ear images for training each speaker's
model. For testing data, we applied only the rotating opera-
tion (2).

Both training and testing data were filtered to empha-
size the ear feature. The following three conditions were
experimentally compared to find the best filtering method:

(& Nofiltering (Figure 5(a)).
(b) Laplacian filtering (Figure 5(b)).
(c) Laplacian-Gaussian filtering (Figure 5(c)).

Finally, all ear images were circularly sampled and dig-
itized for reducing hair effects and avoiding the window
shape effects caused by rotation of the images.

2.3. Audio and visual features

Audio features were 25-dimensiona vectors consisting of
12 MFCCs, 12AMFCCs, and A log energy. The frame shift
was 10ms and the analysis window length was 25ms. For
ear images, “eigen-ear” space was built by using Principal
Components Analysis (PCA) in the same way as the eigen-
face approach used in face recognition[10]. The PCA was
applied to the ear images recorded at the first session using
19 speakers in one of the two speaker groups that did not
include the claimed speaker. The original ear images with
no shifting or rotating were used for the analysis. Figure 6
shows examples of the first eight elgen-ear images obtained
by the PCA using the Laplacian-Gaussian filtered images.
All the ear images were converted into 18-dimensional vi-
sual feature vectors using thefirst 18 eigen-ears.

2.4. Speech and ear models

The audio featuresweremodel ed by digit-unit HMMs. Each
digit HMM has a standard left-to-right topology with n x 3
states, where n is the number of phonemesin the digit. The
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Fig. 5. Examples of thefiltered ear images.

Fig. 6. Examples of thefirst 8 eigen-ear images.

authentication score for the speech features represented in
Equation (4) is calculated as follows:

p(xs|Ss)
p(msISsg)

Ewp(xs |S§7 w)p(w)
Yuwp(zs|SE, w)p(w)
max,, p(zs]SS, w)

Q

)

max,, p(xs| Sy, w)

where w is a string of four connected digits.

Thevisua featureswere modeled using GMMs. In each
testing experiment, 61-feature vectors converted from the
rotated images were input to the GMMs. Log likelihood
values calculated for the claimed speaker and the SI models
were used to obtain the authentication score for each ear
image according to the Equation (5).
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3. Experimental results

3.1. Resultsof theauthentication using ears

An experiment using only ear images was first conducted
for investigating the effects of shifting and filtering the ear
images. Table 1 shows equal error rates (EER) for the per-
son authentication at various conditions of filtering and im-
age processing applied to the training data. In the exper-
iment, optimum numbers of mixtures: eight mixtures for
speaker GMMs and one mixture for S| GMM, were experi-
mentally chosen.

The results show that both filtering methods are effec-
tive for improving the authentication performance. The
Laplacian-Gaussian filtering yields better results than the
Laplacian filtering. The shifting operation for training data
also improvesthe performanceirrespective of filtering meth-
ods. This probably means that there are some mismatches
of ear location between training and testing data due to the
manual image extraction process.



Table 1. Equal error rate (%) in person authentication using
ear images with various kinds of filtering and processing in
the training stage.

only shifting &
rotating  rotating
no filtering 145 14.0
Laplacian filtering 136 133
Laplacian-Gaussian filtering 13.2 119

The best result, 11.9% EER, is observed at the condi-
tion using the Laplacian-Gaussian filtering and shifting as
well as rotating operations. This condition is used in the
following visual authentication experiments.

3.2. Results of the multimodal authentication

Multimodal authentication results in various SNR condi-
tions obtained by using optimum audio weights (\;) are
shown in Figure 7. The optimum weights (\,) were de-
termined experimentally to minimize the error rate at each
condition. The optimum values are aso shown in the fig-
ure. Results using only speech (A; = 1.0) and only ear
(As = 0.0) are aso shown for the purpose of compari-
son. The number of mixtures in audio HMMs was opti-
mized based on the experimental results at the 30dB SNR
condition; the number of mixtures was set to four for both
speaker and S| HMMs.

Although the authentication performance using only
speech is highly degraded by the noise effect, it is clearly
shown that multimodal authentication is robust. The pro-
posed method is most effective when the SNR is 15dB; the
error rate is reduced by 53.0% from the audio only method
and 43.9% from the visual only method. The best perfor-
mance of 0.3% EER is observed at the 30dB SNR condi-
tion.

Figure 8 shows EER as a function of the audio weight
(As). Improvement using the ear images is observed over a
wide range of \;. It isalso shown that the optimum A, val-
uesexistintherangeof 0.6 ~ 0.8 at all the noise conditions
with the exception of the 5dB SNR condition. This means
that the proposed multimodal method is not sensitive to the
change of weights and the weight can be easily optimized.

3.3. Comparing earswith faces as biometrics

We previously conducted person authenti cation experiments
using speech and face featureq 5] in the similar way as that
described in this paper. Although the speech and face
database has the same number of speakers and recording
sessions as the speech and ear database, 38 male speakers
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and 5 sessions, actual speakers are different between thetwo
databases.

The previous work showed that the EER using only the
face information was 7.0%, which was better than the EER
using the ear information, 11.9%.

One of the reasons is that ear images are more change-
able than face images by atilt of the camera, since the ear
surface is more irregular than the face surface. However,
since the ear itself is not as changeable as the face, the au-
thentication using ear biometrics has apossibility to become
apractical method, if the above observation problem can be
solved.



4. Conclusions

Thispaper has proposed amultimodal authentication method
using the combination of speech and ear images with the
aim of increasing noise robustness in mobile environments.
The proposed method has been confirmed to be more robust
than the speech only method in various SNR conditions.

Future works include 1) improving the authentication
performance using the ear information by increasing the ro-
bustness against ear image variation caused by a tilt of a
camera, 2) reducing the effects of hair and sideburns, 3) de-
veloping an automatic method for ear area detection, and
4) investigating the robustness of ear features against their
changes over time.
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Abstract

The scant research with ear biometric has used in-
tensity images and therefore the performance of the sys-
tems is greatly affected by imaging problems such as
lighting and shadows. Range sensors which are insen-
sitive to above imaging problems can directly provide us
3D geometric information. In this paper, we present a
new local surface descriptor for surface representation
for recognizing human ears in 8D. A local surface de-
scriptor is defined by a centroid, its surface type and
2D histogram. The 2D histogram consists of shape in-
dexes, calculated from principal curvatures, and angles
between the normal of reference point and that of its
neighbors. By comparing local surface patches between
a test and a model image, we find the potential corre-
sponding local surface patches. Geometric constraints
are used to filter the corresponding pairs. Verification
is performed by estimating transformation and aligning
models with the test image. Experiment results with
real ear range image are presented to demonstrate the
effectiveness of our approach.

1. Introduction

Faces and fingerprints are popular biometrics for
personal identification. However, they have some draw-
backs. For instance, it’s a very challenging problem to
design face recognition techniques which can deal with
the effects of aging, facial expressions and problems
such as changing 3D pose, lighting and shadow. Fin-
gerprints also require the cooperation of subjects. The
ear, which is viable as a biometric [13], has certain ad-
vantages over other biometrics. For example, ear is
rich in features; it is a stable structure which does not
change with the age (8 to 70). It doesn’t change its
shape with facial expressions. Furthermore, the ear is
larger compared to fingerprints and can be easily cap-
tured [11].

In recent years, some approaches have been devel-
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oped for ear recognition. Burge and Burger [5] pro-
posed an adjacency graph, which is built from the
Voronoi diagram of the ear’s edge segments, to de-
scribe the ear. Ear recognition is done by subgraph
matching. Hurley et al. [12] applied force field trans-
form to ear images and wells and channels are shown
to be invariant to affine transformations. Victor et al.
[18] used Principal Component Analysis to ear images.
All of these papers have used 2D intensity images and,
therefore, the performance of these systems is greatly
affected by imaging conditions. However ears can be
imaged in 3-D from a distance and we can develop a
robust ear biometric.

In this paper, we introduce a new local surface de-
scriptor for 3D ear representation. We calculate the
local surface descriptors only for the feature points
which are defined as the local minimum and maximum
of shape indexes calculated from principal curvatures
[8]. Our approach starts from extracting feature points
from range images, then define the local surface patch
as the feature point and its neighbors, next calculate
local surface properties which are 2D histogram, sur-
face type and the centroid. The 2D histogram con-
sists of shape indexes and angles between the normal
of reference point and that of its neighbors. By com-
paring local surface patches, we find the potential cor-
responding local surface patches. Finally, we estimate
the transformation based on the corresponding surface
patches and calculate the match quality between the
hypothesized model and test image.

The rest of the paper is organized as follows. We in-
troduce the related work and motivation in Section 2.
In Section 3, our approach to represent the free-form
surfaces and matching the surface patches is presented.
Section 4 gives the experiment results to demonstrate
the effectiveness of our approach. Conclusion is pro-
vided in Section 5.



2. Related work and motivation
2.1 Related work in 3D object recognition

In 3D object recognition, the key problems are how
to represent free-form surfaces effectively and how to
match the surfaces using the selected representation.
In the early years of 3D computer vision, the rep-
resentation schemes included Wire-Frame, Construc-
tive Solid Geometry (CSG), Extended Gaussian Image
(EGI), Generalized Cylinders, planar faces [2] and Su-
perquadric [17] [3]. All of these are not suitable for rep-
resenting free-from surfaces. The ear can be thought
of as a rigid free-form object.

Stein and Medioni [16] used two different types of
primitives: 3-D curves and splashes, for representation
and matching. 3-D curves are edges corresponding to
the depth and orientation discontinuities. For smooth
areas, splash is defined as surface normals along con-
tours of different radii. Both of them can be encoded by
a set of 3D super segments, which are described by the
curvature and torsion angles of a super segment. The
3D super segments are indexed into a hash table for
fast retrieval and matching. Therefore, all the model
information is recorded in the hash table. Hypothe-
sis is generated by casting votes to the hash table and
bad hypotheses are removed by estimating rigid trans-
formation. Chua and Jarvis [6] used point signature,
which can describe the structural neighborhood of a
point, to represent 3D free-form objects. Point signa-
ture is one-dimensional signed distance profile with re-
spect to the rotation angle defined by the angle between
the normal vector and the reference vector. Recogni-
tion is performed by matching the signatures of points
on the scene surfaces to those of points on the model
surfaces. The maximum and minimum values of the
signatures are used as indexes to a 2D table for fast
retrieval and matching.

Johnson and Hebert [14] presented the spin image
(SI) which is really a 2D histogram. Given an oriented
point on the surface, its shape is described by two pa-
rameters. One is the distance to the tangent plane of
the oriented point from its neighbors; the other is the
distance to the normal vector of the oriented point.
There are three steps: spin image generation, corre-
spondence points finding and verification. First, spin
images are calculated at every vertex of the model sur-
faces. Then the corresponding point pair is found by
computing the correlation coefficient of two spin images
centered at those two points. Next the corresponding
pairs are filtered by using geometric constraints. Fi-
nally, a rigid transformation is computed and a modi-
fied Iterative Closest Point (ICP) algorithm is used for
verification. In order to speed up the matching pro-
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cess, principal component analysis (PCA) is used to
compress spin images. Salvador et al. [7] proposed the
spherical spin image (SSI) which maps the spin image
to points onto a unit sphere. Corresponding points can
be found by computing the angle between two SSI. Ya-
many et al. [19] introduced the surface signature which
is also a 2D histogram. One parameter is the distance
between the center point and every surface point. The
other one is the angle between the normal of the center
point and every surface point. Signature matching can
be done by template matching. Zhang and Hebert [20]
introduced harmonic shape images (HSI) which are 2D
representation of 3D surface patches. HSI are unique
and they can preserve the shape and continuity of the
underlying surfaces. Surface matching can be simpli-
fied to matching harmonic shape images.

2.2 Motivation

Some of above approaches generated surface signa-
tures for very point on the surface, which is compu-
tationally expensive. Moreover, the surface signatures
are similar if the two points are close to each other in
the 3D space. Therefore, it’s not necessary to calcu-
late surface signature at every vertex on the surface.
In our approach, we only calculate surface signatures
at feature points which are defined as the local min-
imum and maximum of shape indexes. Because the
imaged surface is only a sampling of the actual sur-
face, it’s almost impossible for a point in an image at a
certain viewpoint to appear in another image at a dif-
ferent viewpoint (even the same viewpoint). It’s more
reasonable to find corresponding surfaces. Therefore,
we use local surface patches as our representation.

Motivated by [16] [14], our approach has two steps:
off-line preprocessing and on-line recognition. During
the first step, we extract feature points, calculate some
features for every local surface patch and save them
into the model database. During the online recogni-
tion, we find potential corresponding surface patches
by comparing the test local surface patches with model
local surface patches. In our approach, we use shape
indexes, normal angles as our basic features to repre-
sent local surface properties, since shape indexes and
angles between surface normals are invariant to rigid
transformation.

Furthermore, when we calculate the rigid transfor-
mation, we use the centroid of the local surface patch
instead of using the 3D coordinates of the feature point.
The centroid is less sensitive to the noise since it is the
average of 3D coordinates of the local surface patch.
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Figure 1. System diagram.
3. Technical approach

Our approach has two phases: off-line preprocessing
and on-line recognition. The block diagram is illus-
trated in Figure 1.

3.1 Feature points extraction

In our approach, feature points are defined as local
minimum and maximum of shape indexes, which can
be calculated from principal curvatures [8]. In order
to estimate curvatures, we fit a biquadratic surface (1)
to a local window and use the least square method to
estimate the parameters of the quadratic surface, and
then use differential geometry to calculate the surface
normal, Gaussian and mean curvatures and principal
curvatures [9] [17]. Based on differential geometry, sur-
face normal 77, Gaussian curvature K, mean curvature
H, principal curvatures ki o are given by (2), (3), (4)
and (5) respectively.

fl@y) = az?+by’ +cexy+detey+f (1)
7 - fo—fyl) 2)
VIt S

I+ 12+ )2

_ fzz+fyy+fwwfy2+fyyfm2_2fzfyfzy
= 20+ 2+ )P @

k‘172 = H++H?2-K (5)
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Shape index (.S;) at a point p is defined by (6) where
k1 and ky are maximum and minimum principal cur-
vatures respectively.

1 1

. - — -1
Si(p) 5 Wtan

k1 (p) + ka2(p)
k1(p) — ka(p)

Within a 5 x 5 window, the center point is marked
as a feature point if its shape index is higher or lower
than those of its neighbors.

The feature points extraction results are shown in
Figure 2 where the feature points are marked by red
plus sign. In order to see the feature points’ location,
we enlarge the two images. From the Figure 2, we can
clearly see that some feature points corresponding to
the same physical area appear in both images.

(6)

3.2 Local surface patches

We define a ”local surface patch” as the region con-
sisting of a feature point P and its neighbors N. A lo-
cal surface patch is shown in Figure 3. The neighbors
should satisfy these two conditions,

N = {pizels N,||N—-P||<e}

and acos(npen, < A), (7

where n, and n,, are the surface normal vectors at
point P and N. The two parameters ¢; and A are
important since they determine how the local surface
patch is resistant to clutter and occlusion. Johnson [14]
discussed the choices for the two parameters. For every
local surface patch, we compute the shape indexes and
normal angles between point P and its neighbors. Then
we can form a 2D histogram. One axis of this histogram
is the shape index which is in the range [0,1]; the other
is the dot product of surface normal vectors at P and
N which is in the range [-1,1]. In order to reduce the
effect of the noise, we use bilinear interpolation when
we calculate the 2D histogram [14].

We also compute the centroid of local surface
patches. For the feature point, we can get the sur-
face type based on the Gaussian and mean curvatures
[1] [4]. There are 8 surface types determined by the
signs of Gaussian and mean curvatures given in Table
1. Note that a feature point and the centroid of a patch
may not coincide.

In summary, every local surface patch is described
by a 2D histogram, surface type and the centroid. The
local surface patch encodes the geometric information
of a local surface.

3.3 Off-line model building

Considering the uncertainty of location of a feature
point, we repeat the above process to calculate de-



Figure 2. Feature points location in two range images of the s
The darker points are away from the camera and the lighter one

Table 1. Surface type Tp based on the signs
of Mean curvature(H) and Gaussian curva-
ture(K).

Gaussian Curvature K
Mean Curvature H S0 K=0 <0
H<O Peak | Ridge | Saddle Ridge
Tp=1 | Tp=2 Tp=3
H=0 None Flat Minimal
Tp=4 | Tp=5 Tp=6
H>0 Pit Valley | Saddle Valley
Tp=7 | Tp=8 Tp=9

scriptor of local surface patches for neighbors of fea-
ture point P and save these descriptions into the model
database. For each model object, we repeat the same
process to build the model database.

3.4 Recognition

Given a test range image, we repeat the above steps
and get local surface patches. Considering the inac-
curacy of feature points’ location, we also extract lo-
cal surface patches from neighbors of feature points.
Then we compare them with all of the local surface
patches saved in the model database. This compar-
ison is based on the surface type and histogram dis-
similarity. Since histogram can be thought of as an ap-
proximation of probability distributed function, we use
statistical method to assess the dissimilarity between
two probability distributions. The x? — divergence is
among the most prominent divergence used in statis-
tics to assess the dissimilarity between two probability
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Figure 3. lllustration of Local Surface Patch.

density functions. We use it to measure the dissimilar-
ity between two observed histograms Q and V, which
is defined by (8) [15].

(gi —vi)®
gi +v;

X (Q,V) = Z (8)

From (8), we know the dissimilarity is between 0 and
2. If the two histograms are exactly same, the dissimi-
larity will be zero. If the two histograms don’t overlap
with each other, it will achieve the maximum value 2.

For every local surface path from the test ear, we
choose the local surface patch from the database with
minimum dissimilarity and same surface type as the

possible corresponding patch. Using the above steps,
we get the number of possible corresponding local sur-



face patches for each model. For the top 3 models
which get three highest numbers, we filter the possible
corresponding pairs based on the geometric constraints
given below.

9)

Where ds, s, and dar, v, are Euclidean distance be-
tween centroids of two surface patches. For two corre-
spondences C1 = {S1, M1} and Cy = {S3, M2} where
S means test surface patch and M means model surface
patch, they should satisfy (9) if they are consistent cor-
responding pairs. Thus, we use geometric constraints
to partition the potential corresponding pairs into dif-
ferent groups. The largest group would be more likely
to be the true corresponding pair.

Given a list of corresponding pairs L =
{C1,C4,...,Cy,}, the grouping procedure for every pair
in the list is as follows: Initialize each pair of a group.
For every group, add other pairs to it if they satisfy (9).
Repeat the same procedure for every group. Select the
group which has the largest size.

dC'l,Cz = |d51,52 - dM17M2| < ez,

3.5 \Verification

After filtering the corresponding pairs, we get the
largest group which is at least three potential matched
pairs of local surface patches. By using quaternion rep-
resentation [10], we calculate the rotation matrix and
translation vector. Applying this transformation to the
model object, we get a transformed data set. For ev-
ery point in this dataset, we search the closest point
in the test image. If the Euclidean distance between
them is less than €3, they are considered as correspond-
ing points. Thus, we can get the match quality, MQ
defined below.

MQ = # of corresponding points

1
# of total model points (10)

In order to speed up the nearest point search process,
we use k-d tree.

4. Experiment results
4.1 Data and parameters

We use real range data acquired using a range finder.
There are ten ears in our database and they are EQ, E1,
E2, E3, E4, E5, E6, E7, E§, E9 where the number rep-
resents Model ID. The model ears are shown in Figure
5, and the test ears are shown in Figure 6. For Figures
5 and 6, we only use z coordinates to show the ears.
The 3D surfaces of the model ears are shown in Figure
4.
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Figure 4. 3D surfaces of model ears EO-E9
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Figure 6. Test ear range images TO-T9 corresponding to EO-E9
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Figure 7. Recognition rate vs. the average
number of local surface patches in test im-
ages.

The parameters of our approach are ¢, = 5.8mm,
A =7/3, &2 = 9.4mm and e3 = 4.8mm. The bin size
of the two dimensions of 2D histogram is 0.06. The
average size of local surface patch is 47 pixels.

4.2 Results

The recognition results on real data are shown in Ta-
ble 2. In Table 2, the number in the parenthesis means
the number of local surface patches. From this table,
we can clearly see that most of the highest number of
corresponding pairs go to the right ear models. By
estimating the rigid transformation, we calculate the
match quality listed in Table 2. We choose the model
with the maximum match quality as the recognized ear.
It’s clearly seen that we achieve 100% recognition rate
for our dataset.

As mentioned in Section 3.4 to allow for uncertainty
in location of feature points, we extract local surface
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patches (LSP) from neighbors of feature points. Choos-
ing different neighborhood size, we repeat the experi-
ments and get the relationship between recognition rate
and the average number of LSP in test images. The re-
sult is shown in Figure 7. From Figure 7, we can see
better recognition results are obtained with a larger
number of LSPs.

We show the visualization of our recognition results
in Figure 8. In order to evaluate our results, we dis-
play the model ear and test ear in the same image,
the transformed model and test ear in the same image.
With our programs, we can view them at different view-
points. In Figure 8, we only display them at a certain
viewpoint. For the ear EO, the model ear and test ear
are shown in Figure 8(a); the transformed model ear
and test ear are shown in Figure 8(b). We clearly see
that the transformed model ear is well aligned with the
test ear. For the ear E1, the model ear and test ear are
shown in Figure 8(c); the transformed model ear and
test ear are shown in Figure 8(d). We can see that E0Q
is a better fit to the test ear TO than E1 to T1. Similar
results are shown in Figure 8(e) and (f) for the ear E2,
in Figure 8(g) and (h) for the ear E3, in Figure 8(i) and
(j) for the ear E4, in Figure 8(k) and (1) for the ear E5,
in Figure 8(m) and (n) for the ear E6, in Figure 8(0)
and (p) for the ear E7, in Figure 8(q) and (r) for the
ear E8, in Figure 8(s) and (t) for the ear E9.

5. Conclusions

We have presented an approach for recognition of
3D ears. We have used a new integrated local sur-
face patch representation. Through experiments, we
see that the local surface patch is a good local surface
descriptor, since we can get good corresponding pairs



(a) EOQ and TO

(b) E0T™ and TO

(d) E17" and T1

(c) E1 and T1

(e) E2 and T2

E4 and T4

(m) E6 and T6

(q) E8 and T8

(f)E27" and T2

(j) E4T" and T4

(n) E6T" and T6

(r) E8T" and T8

(g) E3 and T3 (h) E3T" and T3

E5 and T5 (1) E5TT and T5

(o) E7 and T7 (p)E7™" and T7

(s) E9 and T9 (t) E9T™ and T9

Figure 8. Visualization of recognition results.
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Tr means transformed model ears.




Table 2. Recognition results.

Test ears Results (Top 3 matches)

Model ID 0 8 5

T0(50) No. of Pairs 26 7 6

Match Quality | 100% | 66% | 81%

Model ID 1 8 5

T1(162) No. of Pairs 31 29 27

Match Quality | 97% | 46% | 35%

Model ID 2 4 3

T2(70) No. of Pairs 15 12 11

Match Quality | 92% | 44% | 43%

Model ID 8 5 3

T3(63) No. of Pairs | 17| 10| 7

Match Quality | 53% | 35% | 91%

Model ID 4 8 3

T4(182) No. of Pairs 28 11 9
Match Quality | 99% | 80%

Model ID 5 8 4

T5(120) No. of Pairs 58 15 14

Match Quality | 99% | 38% | 46%

Model ID 6 8 4

T6(103) No. of Pairs 30 18 13

Match Quality | 99% | 31% | 26%

Model ID 7 8 2

T7(54) No. of Pairs | 29| 9] 3
Match Quality | 97% | 63%

Model ID 8 b} 6

T8(153) No. of Pairs 97 14 10
Match Quality | 97% | 90%

Model ID 9 8 5

T9(109) No. of Pairs 27 23 23

Match Quality | 94% | 35% | 49%

based on comparing local surface patches. The exper-
imental results show the potential of our approach for
robust ear recognition in 3D.
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Abstract

We examine the performance of multimodal biometric
authentication systems using state-of-the-art Commercial
Off-the-Shelf (COTS) fingerprint and face biometrics on a
population approaching 1000 individuals. Prior studies
of multimodal biometrics have been limited to relatively
low accuracy non-COTS systems and populations
approximately 10% of this size. QOur work is the first to
demonstrate that multimodal fingerprint and face
biometric systems can achieve significant accuracy gains
over either biometric alone, even when using already
highly accurate COTS systems on a relatively large-scale
population.  In addition to examining well-known
multimodal methods, we introduce novel methods of
fusion and normalization that improve accuracy still
further through population analysis.

1. Introduction

It has recently been reported [1] to the U.S. Congress
that approximately two percent of the population does not
have a legible fingerprint and therefore cannot be enrolled
into a fingerprint biometrics system.  The report
recommends a system employing dual biometrics in a
layered approach. Use of multiple biometric indicators
for identifying individuals, so-called multimodal
biometrics, has been shown to increase accuracy [2, 3, 4],
and would decrease vulnerability to spoofing while
increasing population coverage.

The key to multimodal biometrics is the fusion (i.e.,
combination) of the various biometric mode data at the
feature extraction, match score, or decision level [4].
Feature level fusion combines feature vectors at the
representation level to provide higher dimensional data
points when producing the match score. Match score
level fusion combines the individual scores from multiple
matchers. Decision level fusion combines accept or reject
decisions of individual systems.
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Our methodology for testing multimodal biometric
systems focuses on the match score level [2]. This
approach has the advantage of utilizing as much
information as possible from each single-mode biometric,
while at the same time enabling the integration of
proprietary COTS systems.

Published studies examining fusion techniques have
been limited to small populations (~100 individuals),
while employing low performance non-commercial
biometric systems. In this paper we investigate the
performance  gains achievable by COTS-based
multimodal biometric systems using a relatively large
(~1000 individuals) population. Section two and three
describe the traditional and novel normalization and
fusion methods that we employed for match score
combination. New methods for adaptive normalization
and fusion using user-level weighting based on the wolf-
lamb [5] concept are introduced and compared. In section
four we provide a performance analysis of these
multimodal methods and investigate performance
variability attributable to population differences.

2. Normalization

A normalization step is generally necessary before the
raw scores originating from different matchers can be
combined in the fusion stage. For example, if one matcher
yields scores in the range [100, 1000] and another
matcher in the range [0, 1], fusing the scores without any
normalization effectively eliminates the contribution of
the second matcher. We present three well-known
normalization methods, and a 4™ novel method, which we
call adaptive normalization that uses the genuine and
impostor distributions.

We denote a raw matcher score as s from the set S of
all scores for that matcher, and the corresponding
normalized score as n. Different sets are used for
different matchers. The abbreviations (such as MM) next
to the normalization method names are used throughout
the remainder of this paper.



Min-Max (MM). This method maps the raw scores to

the [0, 1] range.

max(S) and min(S) specify the end

points of the score range (vendors generally provide these

values):

p=_ 5" min(S)
max(S) —min(S)

Z-score (ZS). This method transforms the scores to a
distribution with mean of 0 and standard deviation of 1.

where f() denotes the mapping function which is used

on the MM normalized scores. We have considered the
following three functions for f(). These functions use
two parameters of the overlapped region, ¢ and w,
which can be provided by the vendors or estimated by the
integrator from data sets appropriate for the specific
application. In this work, we act as the integrator.

Two-Quadrics (QQ). This function is composed of 2
quadratic segments that change concavity at ¢ (Fig. 2).

mean() and std() denote the mean and standard
deviation operators:

_s- mean(S)
std(S)

Tanh (TH). This method is among the so-called robust
statistical techniques [6]. It maps the scores to the (0, 1)

range:
. 1{,0,,1,{0_01Mj . 1}
2 std(S)

Adaptive (AD). The errors of individual biometric
matchers stem from the overlap of the genuine and
impostor distributions as shown in Fig. 1. This region is
characterized with its center ¢ and its width w. To
decrease the effect of this overlap on the fusion algorithm,
we propose to use an adaptive normalization procedure
that aims to increase the separation of the genuine and
impostor distributions, as indicated by the block arrows in

(0,0)

C

(1,0) > .

Fig. 2. Mapping function for QQ.
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Fig. 1. Overlap of genuine and

distributions.

This adaptive normalization is formulated as

nup = f(myn)

Score

impostor

100

that the
n,, = N,,, is shown by the dashed line.

For comparison, note identity function,

Logistic (LG). Here, f() takes the form of a logistic

function. The general shape of the curve is similar to that
shown for function QQ in Fig. 2. It is formulated as

1

L) e — - —
1+ A [ B0

where the constants 4 and B are calculated as

Azi—l and len_A
A c

Here, f(0) is equal to the constant A, which is
selected to be a small value (0.01 in this study). Note the
inflection point of the logistic function occurs at c, the
center of the overlapped region.



Quadric-Line-Quadric (QLQ). The overlapped zone,
w, is left unchanged while the other regions are mapped
with two quadratic function segments (Fig. 3):

0.0) c ORGE

Ve—>

Fig. 3. Mapping function for QLQ.

1 w
o My S(€=—)
(=2 2
2
w w
Nyp= My » (C_E)<nMMS(C+E)
w w w
ct+—)+,|(l—-c——)ny,, —c——), o/w
( 2) \/( 2)( MM 2)
3. Fusion

We experimented with the five different fusion
methods summarized below. The first three are well-
known fusion methods; the last two are novel and they
utilize the performance of individual matchers in
weighting their contributions. As we progress from the
first three methods to the fifth, the amount of data

necessary to apply the fusion method increases.

m

Our notation is as follows: #;

normalized score for the matcher m (m=1,2,...M,

where M is the number of different matchers) and for the
user i (i=1,2,..,1, where [ is the number of

individuals in the database). The fused score is denoted as

fi

represents the

Simple Sum (SS). Scores for an individual are summed:

M

— m .

fi= Zni i
m=l1
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Min Score (MIS). Choose the minimum of an
individual’s scores:

-1 2 My A
f; =min(n;,n;,...,n;" ), 0i

Max Score (MAS). Choose the maximum of an
individual’s scores:

_ 1 2 M ;
f; =max(n;,n;,..,n; ), Ui

Matcher Weighting (MW). Matcher weighting-based
fusion makes use of the Equal Error Rate (EER). Denote

the EER of matcher m as e”, m=1,2,...M and the

weight w” associated with a matcher m is calculated as

m — m=le (1)

M
Note that 0<w” <1,0m, Zwm =1 and the weights
m=1
are inversely proportional to the corresponding errors; the
weights for more accurate matchers are higher than those
of less accurate matchers (Although the EER value alone
may not be a good estimator for the accuracy of a
matcher, we chose to use it for spanning the amount of
data available to the integrator mentioned above). The
MW fused score is calculated as

M

. m__m .
fi—Zw n", Ui

m=l1

User Weighting (UW). The User Weighting fusion
method applies weights to individual matchers differently
for every user (individual). Previously, Ross and Jain [7]
proposed a similar scheme, but they exhaustively search a
coarse sampling of the weight space, where weights are
multiples of 0.1. Their method can be prohibitively
expensive if the number of fused matchers, M , is high,

since the weight space is 0 ; further, coarse sampling
may hinder the calculation of an optimal weight set. In
our method, the UW fused score is calculated as

M
o mom
fi_zwi n;, Ui
=l
7

where w!" represents the weight of matcher m for user

l.

The calculation of these user-dependent weights make
use of the wolf-lamb concept introduced by Doddington,
et al. [5] for unimodal speech biometrics. They label the
users who can be imitated easily as lambs; wolves on the



other hand are those who can successfully imitate some
others. Lambs and wolves decrease the performance of
biometric systems since they lead to false accepts.

We extend these notions to multimodal biometrics by
developing a metric of lambness for every user and
matcher, (i,m), pair. This lambness metric is then used to
calculate weights for fusion. Thus, if user i is a lamb
(can be imitated easily by some wolves) in the space of
matcher m, the weight associated with this matcher is
decreased. The main aim is to decrease the lambness of
user i in the space of combined matchers.

We assume that for every (i,m) pair, the mean and
standard deviation of the associated genuine and impostor
distributions are known (or can be calculated, as is done

in this study). Denote the means of these distributions as

&y and ™ u", respectively, and denote the standard

deviations as *"'g’"

We use the d-prime metric [8] as a measure of the
separation of these two distributions in formulating the
lambness metric as:

d_m _ genyim _imp,uim
i -
\/(gena.im)Z +(tmp0.im>2

If d" is small, user i is a lamb for some wolves; if

" and "Po" , respectively.

d" is large, i is not a lamb. We structure the user

weights to be proportional to this lambness metric as
follows
P &)

= ;
m
2
m=l1

M
Note that 0 < w]" <1,00;, Cm , and Y w" =1,00;.

m=l1

Fig. 4 shows the location of potential wolves for a
specific (i,m) pair with a block arrow, along with the
associated genuine and impostor distributions. This user
dependent weighting scheme addresses the issue of
matcher-user relationship: namely, a user can be lamb for
a specific matcher, but also can be a wolf for some other
matcher. We find the user weights by measuring the
respective threat of wolves living in different matcher
spaces for every user.

4. Experimental Results
4.1. Databases
Our experiments were conducted on a population of

consistently paired fingerprint and facial images from two
groups of 972 individuals, using our previously
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developed test methodology and framework [2]. Since
the paired fingerprint and facial images come from
different individuals, we are assuming that they are
statistically independent — a widely accepted practice.
The images were taken from two separate groups of 972
individuals, with the first group contributing a pair of
facial images and the second a pair of fingerprint images.
This creates a database of 972 virtual individuals. Each
pair consists of a primary and a secondary image, with all
primary images assigned to the farget set, and all
secondary images assigned to the query set.

Match scores were generated from four COTS
biometric systems — three fingerprint and one face. For
each biometric system, all query set images were matched
against all target set images, yielding 972 genuine scores
(correct matches) and 943,812 imposter scores.

Frequency

? impostor

<IN

PR genuine

! Score

Fig. 4. Distributions for a (user, matcher) pair:
the arrow indicates location of wolves for lamb

4.2. Approach

Among the three adaptive normalization methods (QQ,
QLQ and LG), the QLQ method gave the best results in
our experiments, so it is selected as the representative
method.

We carried out all possible permutations of
(normalization, fusion) techniques on our database of 972
users. Table 1 shows the EER values for these
permutations. Note that EER values for the 3 individual
fingerprint matchers and the face matcher are found to be
3.96%, 3.72%, 2.16% and 3.76%, respectively. The best
EER values in individual columns are indicated with bold
typeface; the best EER values in individual rows are
indicated with a star (*) symbol.

Table 1. EER values for permutations (%).

Normalization Fusion Technique
Technique SS | MIS | MAS | MW | UW
MM 099 | 543 | 0.86 | 1.16 |*0.63
ZS *1.71] 528 | 1.79 1.72 | 1.86
TH 1.73 | 4.65 | 1.82 | *1.50 | 1.62
QLQ 094 | 543 | *0.63 | 1.16 | *0.63




4.3. Normalization

Figures 5-9 show the effect of each normalization
method on system performance for different (but fixed)
fusion methods. The ROCs (Receiver Operating
Characteristics) for the individual fingerprint matchers
and the face matcher are also shown for better
comparison.

For UW fusion (Fig. 9), the scatter plot of user weights
(Fig. 10) form a distinctive band-like behavior for each
fingerprint matcher V1, V2, V3, and the face matcher.
The mean user weights for the individual biometric
matchers, calculated from (2), are 0.14, 0.64, 0.17 and
0.05, respectively, which implies that on average,
fingerprint matcher V2 is the safest for the lambs;
whereas the space of the face matcher is filled with
wolves (i.e., those waiting to be falsely accepted as one of
the lambs). Note that individual matcher performance,
shown in the previous ROC curves, is not reflected
directly in the set of user weights and their means.
Namely, V2 has a higher mean user weight than V3,
despite V3’s generally better ROC.
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Fig. 5. ROC curves for SS, normalization varied.
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For MW fusion (Fig. 8), the matcher weights,
calculated according to (1), are: 0.2, 0.22, 0.37 and 0.21,
for the fingerprint matchers and the face matcher,
respectively. From Figures 5-9 and Table 1, we see that
QLQ and MM normalization methods lead to best
performance, except for MIS fusion. Between these two
normalization methods, QLQ is better than MM for fusion
methods MAS and UW; and about the same as MM for
the others.
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Fig. 8. ROC curves for MW, normalization varied.
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for QLQ normalization.
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4.4. Fusion

Figures 11-14 show the effect of each fusion method
on system performance for different (but fixed)
normalization methods. The ROCs for the individual
fingerprint matchers and the face matcher are also shown
for better comparison.

From Figures 11-14 and Table 1, we see that fusion
methods SS, MAS and MW generally perform better than
the other two (MIS and UW). But for the FAR range of
[0.01%, 10%], UW fusion is better than the others. One
reason that below 0.01% FAR the performance of UW
fusion drops may be the estimation errors become
dominant, since we have only one sample available for
replacing the individual genuine distributions.

Note that parameter update (for normalization and/or
fusion methods) can be employed for addressing the time
varying characteristics of the target population. For
example, the matcher weights can be updated every time a
new set of EER figures are estimated; the user weights
can be updated if the fusion system detects changes in the
vulnerability of specific users, due to fluctuations in their
lambness, etc.
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4.5. Fusing Subsets of Matchers

ROC curves were generated for fusing subsets of the
total matcher set. Here, we fixed the normalization
method to QLQ and the fusion method to SS.

In Fig. 15 we see that fusing just the three fingerprint
matchers (V1V2V3, with EER of 1.94%) is not as good
as fusing all the available four matchers (V1, V2, V3 and
Face) using QLQ/SS (see Figs. 5 and 14). This implies
that even though the face matcher is not as good as any of
the individual fingerprint matchers, it still provides
complementary information for fusion.



Fusing individual fingerprint matchers separately with
the face matcher (V1-Face, V2-Face, V3-Face; with EERs
of 1.68%, 1.46% and 2.02%, respectively) we see that
V2-Face performs better than V3-Face fusion. Since V3
is the better fingerprint matcher for our dataset, this result
may seem counterintuitive. In fact this shows that the face
matcher is best complemented with the V2 matcher, i.e.,
they make independent mistakes; whereas face matcher
and V3 matcher make relatively more correlated mistakes.
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Fig. 15. Fusing subsets of matcher set.
4.6. Performance Variability

We are interested in determining how the performance
of the fused system changes when using (i) an
increasingly larger database, (ii) different equal-size
databases, and (iii) many randomly assigned virtual
subject databases.

Scalability. We created five new user databases from
subsets of our original 972 user database: (i) the first 20%
of all the users (194 users), (ii) the first 40% of all the
users (389 users), (iii) the first 60% of all the users (583
users), (iv) the first 80% of all the users (778 users) and
(v) 100% of all the users (972 users). Fig. 16 shows the
associated ROC curves for an MM/SS based multimodal
system using these datasets. The EERs corresponding to
these five sets are 0.42%, 0.75%, 0.67%, 0.8%, and
0.99%, respectively.

We observe that the performance initially drops, but
then quickly converges. For this relatively large, but
limited, dataset we are unable to draw any general
conclusions. It is widely believed that performance
decreases as the database size increases. A possible
explanation for this belief is that as the state space
becomes more populated, differentiation within it, or
some clustered areas, becomes more difficult. Another
viewpoint is that performance trends cannot be
extrapolated to larger populations. Thus a representative
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database of the intended size may be necessary to predict
performance.
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Fig. 16. Scalability: ROC curves for overlapping
portions of the whole database.

Generalizability. We created two new user databases
of 486 users each from disjoint subsets of the original
database of 972 users. Fig. 17 shows the associated ROC
curves for an MM/SS based multimodal system using
these disjoint datasets. The EERs corresponding to these
datasets are 0.68% and 1.45%, respectively. We see that
the portion of the ROC curves above 0.4% FAR, show a
considerable performance difference. Although we can
draw no general trends, this implies that its necessary to
use a representative database when determining expected
performance, but there are presently no clear
measurements/methods to determine if a database is
representative. Similar results have been reported for
performance variation of unimodal systems in [9].

Virtual Subjects. As explained previously, it is
common practice to create virtual subjects in multimodal
experiments. In our previous experiments, we
consistently assigned a “physical finger” to a “physical
face” to create a virtual subject. In this section, we
randomly created 1000 virtual user sets (i.e., we randomly
assigned the 972 face samples to the 972 fingerprint
samples, 1000 times). In Fig. 18, we plot the ROC’s for
all of these 1000 cases, with the one used previously in
this paper highlighted in red.

The minimum, mean, maximum and standard
deviation of the EER set (with 1000 members) is found to
be 0.82%, 1.1%, 1.5% and 0.11, respectively. The EER
for the one case used previously in this paper is 0.99%.
The close clustering of these curves, and the low standard
deviation, supports the independence assumption between
face and fingerprint biometrics and would seem to
validate the use of virtual subjects. Furthermore the
“thickness” of this cluster of curves supports other
observations that performance estimates vary by nearly
+/- 1%.
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5. Conclusions

We examined the performance of multimodal
biometric authentication systems using state-of-the-art
Commercial Off-the-Shelf (COTS) fingerprint and face
biometrics on a population approaching 1000 individuals,
10 times larger than previous studies. We introduced
novel normalization and fusion methods along with well-
known methods to accomplish match score level
multimodal biometrics. Our work shows that COTS-based
multimodal fingerprint and face biometric systems can
achieve better performance than unimodal COTS systems.
However, the performance gains are smaller than those
reported by prior studies of non-COTS based multimodal
systems (a ~2.3% gain here as compared to a ~12.9% gain
reported in [2], at 0.1% FAR). This was expected, given
that higher-accuracy COTS systems leave less room for
improvement. Our analysis of fusion and normalization
methods suggests that for authentication applications,
which normally deal with open populations (e.g.,

106

airports) whose specific information is not known in
advance, Min-Max normalization and Simple-Sum fusion
generally out perform unimodal biometrics. For
applications which deal with closed populations (e.g., a
laboratory), where repeated samples and their statistics
can be accumulated, our novel QLQ adaptive
normalization and UW fusion methods tend to out
perform Min-Max normalization and Simple-Sum fusion.

Our analysis of multimodal face-fingerprint pair
systems shows that better performance is obtained by
combining complementary systems rather than the best
individual systems. And our investigations of
performance variability across different datasets have
provided evidence that the use of virtual subjects is valid,
and offer initial estimates of variability for COTS-based
multimodal systems .
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ABSTRACT

This paper presents a new method of personal
authentication using face and palmprint images. The
facial and palmprint images can be acquired by using
touchless sensors and integrated to achieve higher
confidence in personal authentication. This has been
confirmed from the qualitative and quantitative results
shown in this paper. The proposed method of fusion uses
a feed-forward neural network to integrate individual
matching scores and generate a combined decision score.
The significance of the proposed method is more than
improving performance of hmodal system. Our method
uses claimed identity of users as a feature for fusion. Thus
the required weights and bias on individual biometric
matching scores are automatically computed to achieve
the best possible performance. The method proposed in
this paper can be extended for any multimodal
authentication systemto achieve higher performance.

1. INTRODUCTION

The technology for trusted e-security is critical to many
business and administrative process. There has been a
newfound urgency after September 11 attacks to develop
cutting-edge  security technologies. However, the
performance of currently available technology is yet to
mature for its broad deployment in real environments. The
biometrics-based characteristics i.e., face, pamprint, iris,
hand geometry, etc., are distinctive, cannot be forgotten or
lost, and requires physical presence of the person to be
authenticated [1]. Thus biometrics-based personal
authentication systems are more reliable, convenient, and
efficient than the traditional identification methods. The
financial risks in personal authentication are high; the
double dipping” in social welfare schemes are estimated
around $40 billion and 40-80% of IT help desk calls are
attributed to forgotten passwords [2]. Secure access

" where an individual unlawfully benefits under multiple
identity.
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control helps to minimize the security/terrorist threats at
airports, airplanes, and security installations and is more
relevant in the current world scenario.

The multimodal biometrics system alows
integration of two or more biometric in order to cope up
with the stringent performance requirements imposed for
high security access. Such systems offer high reliability
due to the presence of multiple piece of evidence and are
vital for fraudulent technologies as it is more difficult to
simultaneously forge multiple biometric characteristics
than to forge a single biometric characteristic. One of the
recent research problems in the design of multimodal
biometrics system concerns with information fusion, i.e.
how the individual modalities should be combined to
minimize errors and achieve high accuracy.

1.1. Prior Work

Multimodal biometric systems have recently attracted the
attention of researchers and some work has already
reported in the literature [3]-[11]. Hong and Jain [3]
combined fingerprint and face to achieve major
improvement while Ben-Yacoub et al. [4] demonstrated
this by integrating face with voice. Chatzis et al. [5] have
used fuzzy clustering algorithm for the decision level
fusion in personal authentication. Recently, bimodal
biometric systems using face and iris [6], pamprint and
hand-geometry [8], have shown promising results.
Odadciw et al. [9] have presented a framework for
multimodal biometric system that is adaptively tuneable to
the security needs of user. Verlinde et al. [10] achieve
decision level fusion by using parametric and non-
parametric classifiers. Kittler et al. [11] have shown that
the sum rule is most resilient for the estimation of errorsin
biometric fusion.

1.2. Proposed System

This paper investigates a bimodal biometric system using
face and palmprint. Face has highest user acceptance and
its acquisition is most convenient to users [12]. People
have lot of concerns about hygiene, especially due to



recent spread of SARS', while using biometric sensorse.g.
fingerprint sensors. However the face and pamprint
images can be conveniently acquired from the touchless
sensors such as digital camera. One of the important
features that is only available in personal authentication,
but not in recognition, is the claimed user identity. The
clamed user identity is unique for every user and can be
used to restrict the decision space, i.e. range of matching
scores, in user authentication. The claimed user identity
can be suitably coded and then used as a feature to
classify the genuine and impostor matching scores and is
investigated in this paper The main contributions of this
paper are twofold; (i) investigate a new bimodal biometric
authentication system by integrating face and palmprint
features, and (ii) propose a new decision level fusion
strategy that uses claimed identity asafeatureto classifier.

Matching
Score

Training Data

e

Matching
Score

2

Neural
Network

Genuine/
Imposter

| Palr%print

Claimed Identity

Figure 1: Personal Authentication using Face and
Palmprint.

2. METHODOLOGY

The block diagram of the proposed bimoda biometric
authentication method is shown in Figure 1. The acquired
grey-level images from the pamprint and face are
presented to the system. In addition, each of the users also
presents its claimed identity. The matching scores from
each of the two biometric are presented to a neural network
classifier. As shown in Figure 1, the claimed user identity
is also used as a feature to neural network classifier. The
weights and bias of individual biometrics are automatically
computed during the training of neural network. The
trained neural network generates the combined decision

" Severs Acute Respiratory Syndrome (SARS) is highly
infectious disease prone to human touch.
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scores for the claimed user identity and assigns them in
one of two classesi.e. genuine or impostor.

3.FACE MATCHING

Several face recognition algorithms have been proposed in
the literature [13]. Among these, the appearance based
face algorithms are most popular and have been installed
in real-environments [14]. The appearance based face
authentication approach used in this work employed
eigenfaces [15]. Each of the M x N grey-level face images
from every subject are represented by a vector of 1 ©~ MN
dimension using row ordering. The normalized set of such
training vectors is subjected to principal component
analysis (PCA). The PCA generates a set of orthonormal
vectors, also known as eigenfaces, which can optimally
represent the grey-level information in the training dataset.
The projection of subjects training face image on
eigenfaces is used to compute the characteristic features.
The matching score for every test face image is generated
by computing the similarity score between the feature
vectors from the claimed identity (x.) and computed
characteristic feature vector (xg).

o
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face ” G- —o
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4. PALMPRINT MATCHING

Palmprint contains several complex features, e.g. minutiae,
principa lines, wrinkles and texture, which have been
suggested for personal identification. The pamprint
matching approach used in thiswork is same as detailed in
[8]. Four directional spatial masks are used to capture line
features from each of the palmprint images. The combined
directional map is generated from voting of the resultant
four images. The standard deviation of pixels, from each of
the 24 x 24 pixel overlapping block with 25% overlap, in the
combined image is used to form characteristic feature
vector. The palmprint matching scores are generated by

computing the similarity measure h palm similar to (1),

between the feature vectors from acquired image and those
stored during the training phase.

5. DECISON LEVEL FUSON USING NEURAL
NETWORKS

Decision level fusion that can consolidate the decision
scores from multiple evidences has shown [3]-[8], [16]-[17]
to offer radical increase in performance. The genuine and
impostor matching scores from the face and palmprint are
used to traina feed-forward neura network (FFN). Our
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Figure 2: Convergence of training error from the Palmprint
and Face matching scores.

strategy is to use the claimed identity of every user as a
featureto FFN. Execution speed of multi-layer feed-forward
neural network is among the fastest of all models currently
in use. Therefore this network may be the only practical
choice for online personal authentication. A (FFN) with P,
neurons in the I™ (I = 1, ..., Q) layer is based on the
following architecture [18]:
%-1
A 0,11 [
J j_aWin Yi, Y, =90 )
i=1
where the sum of weighted inputsfor j" (j =1,...,P)

@

neuron in the | ™" layer is represented by | '] . The weights
fromthe 1™ neuronat (I - )™ layer tothe j™ neuron

inthe | layer are denoted by V\fij'l‘I and y'i is the

output for ™ neuron in the | ™ layer. Thevalues—1 and

1, corresponding to ‘ impostor’ and ‘ genuine’ responses,
were given to the three layers FFN during training as the
correct output responses for expected classification during
the training. The hyperbolic tangent sigmoid activation
function was empirically selected for first two layers, while
alinear activation function was chosen for third layer.

g(j |)=tanh( |) forl =1,2. and
oG )=a(}) forl=3. )

The back-propagation training algorithm is used for
minimizing training function T, defined by:

1 ER )
T. = aa (yj,k - Oj,k) @)
KP
Q k=l j=1
where Kk is an index for input-output pair and

(yfk - Oj’k)2 is the squared difference between the
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Distribution of Gennuine and Imposter Scares from Palm and Face
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Figure 3: Distribution of genuine and imposter scores from
the two biometric.
actual output value at the jth output layer neuron for pair

k and the target output value. The connection weights
W are updated after presentation of every feature
ij

vector using a constant learning rate. The weights are
updated using Levenberg-Marquardt algorithm [19] for
faster convergence rate.

6. EXPERIMENTS AND RESULTS

The proposed method was investigated on available face
database [20] from 40 subjects with 10 images per subject.
The hand images from 40 subjects, with 10 images per
subject, were acquired by using a digital camera. Each of
the subjects for palmprint and face were randomly paired*
to obtain a bimodal set for every subject. The 300 x 300
region of interest, i.e. pamprint, were automatically
segmented and features vectors of size 1 ~ 144 were
extracted as detailed in [8]. Each of the 92 x 112 pixel face
image was used to obtain 1 ~ 40 characteristic feature
vector from the 40 eigenfaces. The matching scores for
face and palmprint were computed by similarity measure
(2). In this work, the first four images samples, from face
and palmprint, were used for training and rest six were for
testing. Thus genuine and impostor matching scores from
the training samples were used to train 18/5/1 neural
network as shown in Figure 1. The learning rate was fixed
at 0.01 and the convergence of training error is shown in
Figure 2. There is no guarantee that the achieved training
error is globa and therefore the FFN was trained 10 times
with the same parametersand theresult with the smallest

* The mutual independence of biometric modalities [21]
allows us to augment two biometric indicators that are
collected individually.
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of training errors of all the results are reported. Thetrained
neural network was used to test 240 (40x6) genuine and
9360 (40x39x6) impostor matching scores from the test
data.

The distribution of decision scores from trained
neural network, from the test data, is shown in Figure 3. It
can be seen that the two matching scores are quite distinct
and separable by any two class linear discriminant
function. The receiver operating characteristicsfor (i) face,
(ii) pamprint, and (iii) using fusion of face and palmprint is
shown in Figure 4. All these cases shown in Figure 4
employ the claimed identity as a feature to FFN. The
variation of False Accept Rate (FAR) and False Reject Rate
(FRR) with decision threshold for combined decision is
shown in Figure 5. The cumulative distribution for
combined impostor and genuine decision scores is shown
in Figure 6.
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Figure 5: Variation of FAR and FRR scores with
decision threshold for combined decision.
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Figure 6: Comparative performance fore user

authentication using Palmprint and Face.

The FAR and FRR scores for three distinct cases
using total® minimum error (TME) is shown in Table 1. It is
worth to mention that the total minimum error for the
fusion was 2.80% when the claimed user identity was not
utilized and 1.54% when claimed user identity was
employed to train/test the FFN. In order to ascertain the
improvement (or degradation) in the separation of genuine
and impostor decision scores for the fusion, the
performance ndex using three objective functions [22],
were considered.

2
My (g ) (- )P
Jy=—J,=———3,=—2—2— (9
|Ji ugui S g +s i
where m,,m are the mean and S ¢S are the standard
deviation of genuine and impostor distributions

respectively. The scores for above performance indices
were computed from the test data (Figure 6 scaled to
positive axes) and are displayed in Table 2. The bracketed
entries in this table show the respective scores when the
claimed identity of user isnot utilized. These entries can be
used to interpret the performance increase when the
claimed user identity is used as a feature. Table 2 also
shows the equal error rate (EER) for each of the
corresponding cases.

Table 1: Performance scores for total minimum error.

Decision
ar | e | G |
Face | 304 | 10 | -om |
Palmprint | 375 | 315 | -099 |
Fusion at Decison | 070 | 083 | -066 |

8 Sum of FAR and FRR for the combined decision.



Table 2: Performance indices from the experiments.

J; J, J, EER
Face 385 211 4.42 833%
(105) (0002) (2.34) (8.69 %)
Peimprint 438 261 861 365%
(103) (0.001) (3.71) (432 %)
Eusion at Decigion 4.84 3.04 35.57 0.84 %
(4.78) (2.988) (23.78) | (2.09%)

7. CONCLUSIONS

The grey-level images of palmprint and face can be
simultaneously acquired and used to achieve the
performance that may not be possible by single biometric
alone. The performance improvement shown in Figure 4
confirms the usefulness of the proposed bimodal system.
Furthermore, this can also be quantitatively ascertained
from the results shown in Table 2. All the three

performance indicators, i.e. J;,J,,and J, have shown
improvement when both the biometrics are utilized.
However, the scoresfromindex J 5 are substantially higher

than those from J; or J,. Thisisdueto the fact that J,

also accounts for the standard deviation of decision
scores. Therefore J; can be used as areliable measure to

evaluate the performance in biometrics. The performance
scores in first two rows of Table 2 also suggest that the
claimed user identity has significant effect in improving
performance even for unimodal authentication, i.e. face
and palmprint. This improvement is attributed to thefact

that the FFN classifier uses the claimed user identity to
reduce the decision space, i.e. range of valid matching
scores, for the corresponding user. The inclusion of
claimed user identity can be used improve the performance
in unimodal authentication systems without any extra cost
and is therefore recommended.

The significance of the proposed method is more
than improving performance for a bimodal system. Our
method has utilized the claimed identity of subjects as a
feature for fusion. The employed neural network thus
automatically computes the weights and bias for the
individual biometric matching scores to achieve the best
possible performance. The performance scores shown in
Table 2 suggest that this is indeed the case. In order to
achieve more reliable estimate on the performance it is
desirable to evaluate this method on significantly large
database and we are currently working on this. A
qualitative summary of related work on multimodal user
authentication is presented in Table3. The proposed
method of fusion can be extended to any multimodal
system to achieve higher performance. Additionally, the

Table3: A summary of related work on multimodal user authentication.

. . . . Performance | Touchless
Authors Biometric M odalities Fusion Strategy Criteria Sensor's
Hierarchal decision using
Hong and Jain [3] Face, Fingerprint combined imposter FRR, ROC No
distribution
Ben-Yacoub et al.[4] | Voice, Face SVM, Bayes FAR, FRR Yes
Chatziset al. [5] Voice, Face FVQ, RBF FAR, FRR Yes
. User-specific RBF,
Wang et al. [6] Face, Iris Weighted Sum Rule TME Yes
Kumar et al. [8] Palmprint, Hand Geometry | Max Rule TME, ROC Yes
. Face, Fingerprint, Hand User-specific threshold,
Jain and Ross [7] Geometry Weighted Sum Rule ROC No
. . . Sum, Max, Median,
Kittler et al. [11] Face, Face Profile, Voice Product Rule EER Yes
. FFN based fusion with user 333
Kumar and Zhang Face, Pamprint dlaimed identity 15,3 Yes
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performance improvement in multimodal system can be
also be ascertained by two class separation functions (5),
rather than just ROC or total minimum error as used in prior
work [3]-[8].
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ABSTRACT

In general, most systems for face and speaker identification
are tested on high quality data collected in well-lit and quiet
environments. In this study, we investigate the application
of existing face and speaker identification techniques to the
task of user authentication on a handheld device. In this
context, the audio/visual capture hardware is of lower qual-
ity than equipment typically used in laboratory experiments.
Additionally, variable background conditions which can de-
grade the audio/visual signal may be present. These fac-
tors can be expected to harm the performance of the system.
Under these circumstances, using a combination of biomet-
ric modalities can improve the robustness and accuracy of
the person identification task. In this paper, we present our
approach for combining both face and speaker identifica-
tion technologies on a handheld device, and experimentally
demonstrate a fused multi-modal system which achieves a
90% reduction in equal error rate over the better of the two
independent systems.

1. INTRODUCTION

This paper investigates the integration of two biometric tech-
niques, face and speaker identification, into handheld de-
vices. This research is spurred by the recent increased popu-
larity of commercially-available handheld computers which
have allowed computation to become more mobile and per-
vasive. Formerly specialized devices, such as cellular tele-
phones, now offer a range of capabilities beyond simple
voice transmission, such as the ability to take, transmit and
display digital images. As these devices become more ubig-
uitous and their range of applications increases, the need
for security also increases. To prevent impostor users from
gaining access to sensitive information, stored either locally
on a device or on the device’s network, security measures
must be incorporated into these devices. Face and speaker
verification are two techniques that can be used in place of,
or in conjunction with, pre-existing security measures such
as personal identification numbers or passwords.

Bernd Heisele

Honda Research Institute USA, Inc.
Boston, MA 02111, USA

Handheld devices offer two distinct challenges for stan-
dard face and voice identification approaches. First, their
mobility ensures that the environmental conditions the de-
vices will experience will be highly variable. Specifically,
the audio captured by these devices could contain highly
variable background noises producing potentially low signal-
to-noise ratios. Similarly, the images captured by the de-
vices can contain highly variable lighting and background
conditions. Second, the quality of the video and audio cap-
ture devices is also a factor. Typical consumer products are
constrained to use audio/visual components that are both
small and inexpensive, resulting in a lower quality audio
and video than is typically used in laboratory experiments.

To examine these issues we have developed a prototype
system for incorporating two biometric techniques, speaker
identification and face identification, into a mobile device.
Results of an early evaluation of this system were previ-
ously reported in [1]. In our previous study, we evaluated
a combined face and speaker identification system within
a user verification “login” scenario on an iPAQ handheld
computer. The combined system was able to achieve a 50%
reduction in the verification equal error rate (EER) over a
system using only our speaker identification technology. This
large improvement in performance was attained despite the
fact that speaker identification system achieved an EER that
was 75% smaller than that of the face identification system.
This result was surprising because it showed that large im-
provements could be obtained through the combination of
different biometric systems, even when one of the systems
was vastly superior in accuracy to the other. In the work
conducted in this paper, we improve upon our previous re-
sults by replacing our older, simpler face identification sys-
tem with a newer state-of-the-art system.

The rest of the paper is organized as follows. We first
present an overview of our two biometric techniques and the
fusion technique for combining them. Next, we discuss the
mobile-device paradigm in which we are conducting our ex-
periments and the methods of data collection employed. We
follow this with experimental results showing the perfor-
mance of the two biometric techniques on the data we have
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collected, both individually and in combination. Finally, we
summarize and discuss the results and present plans for fu-
ture directions of our work.

2. PERSON IDENTIFICATION

2.1. Speaker Identification

Speech has long been recognized as a reasonable biometric
for person identification. However, speech is a variable sig-
nal whose main purpose is not to specify a person’s identity
but rather to encode a linguistic message. In systems where
the linguistic content of the speech is unknown (e.g. for
surveillance tasks), text-independent speaker identification
systems are generally used. However, in security applica-
tions where the user is cooperative in the attempt to prove
his/her identity, the linguistic content of the speech mes-
sage is typically known and can be tightly constrained. In
this case, a text-dependent system can be used. When the
linguistic content of the message is known, text-dependent
speaker recognition systems generally perform better than
text-independent systems because they can tightly model
the characteristics of the specific phonetic-content contained
in the speech signal.

A common technique used in speech-based person iden-
tification is to prompt the user with a randomly generated
challenge phrase. During authentication, automatic speech
recognition can be used to verify that the spoken utterance
matches the prompted utterance. For this type of scenario,
it is both reasonable and beneficial to use the automatic
speech recognition (ASR) output to leverage the phonetic
constraints that give text-dependent systems their advan-
tage. In [2], two techniques were described that use the ASR
output during the analysis of the phonetic content from the
test utterance.

In our speaker adaptive ASR approach, the system uses
speaker-dependent speech recognizersto model each speaker.
During training, phonetically transcribed enrollment utter-
ances are used to train context-dependent phonetic mod-
els for each speaker. During testing, a speaker-independent
ASR component generates a phonetic transcription from the
test utterance. This transcription is then used by the sys-
tem to score each segment of speech against each speaker-
dependent phonetic model. Modeling speakers at the pho-
netic level can be problematic because enrollment data sets
are typically too small to build robust speaker-dependent
models for every context-dependent phonetic model. To
compensate for this difficulty, we use an adaptive scoring
approach in which the speaker-dependent (SD) score is in-
terpolated with a speaker-independent (SI) score.

Mathematically, if the word recognition hypothesis as-
signs each feature vector z from the utterance X to phonetic

unit 7, then the score for speaker S;, p(X1S;), is given by

1 3" log ()\i,jpSD('Tle’ Si) +(1 - Ai,j)pSI(w|Mj))
1X] = ps1(z|M;)

where Mj is the model for phonetic unit j and A; ; is an
interpolation factor given by

_ My

Aig = N+ T ’

In this equation, n; ; is the number of training examples of
phonetic unit j observed for speaker S;, and 7 is a global
tuning parameter that is set empirically using a separate
development set. The log ratio in the equation generates
positive scores when the input speech is a good match to
a particular speaker’s models and negative scores when the
speech is a poor match.

This scoring strategy results in models that capture de-
tailed phonetic-level characteristics for a speaker when suf-
ficient training data is available, but relies more on speaker
independent models for phonetic units with sparse training
data. Thus, for cases with limited training data, the speaker
independent model provides a more neutral score. In the
limiting case, if no speakers have training data for any of
the phones observed in a particular test utterance, then they
will all receive the same neutral score of zero, which is an
intuitively consistent result.

2.2. Face ldentification

The face identification framework used in our work is simi-
lar to the one described in [3], but with some differences in
detection and classification methods.

2.2.1. Face Detection

A two-step process is used for face detection. First, a fast
hierarchical classifier similar to the one described in [4] is
applied to the captured image, to roughly localize the face
in the image. The region around the face is then cropped out
from the larger image, histogram equalized, and scaled to a
fixed size.

Next, a component-based face detector [3] is applied
to the extracted region to precisely localize the face and to
detect facial components. This method first independently
applies component detection classifiers to the face image.
Each of these support vector machine (SVM) classifiers is
trained to detect a particular component, such as a nose,
mouth, or left eyebrow. In all, 14 face components are used,
and each component classifier is evaluated over a range of
positions in the vicinity of the expected location of the de-
sired component. A geometrical configuration classifier is
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Fig. 1. A sample image and its face detection result with the
face component regions superimposed.

then applied to the combined output of each of the 14 com-
ponent classifiers from each candidate position. The candi-
date positions that yields the highest output of the second-
level classifier are taken to be the detected component posi-
tions.

Ten out of the 14 components are used for face recog-
nition. The remaining four are not used because they ei-
ther overlap heavily with other components, or display few
structures of use in distinguishing people from one another.
The gray values of the ten selected components are normal-
ized in size and combined into a single feature vector. The
feature vector serves as input to the face recognizer. Fig-
ure 1 illustrates an enrollment image, as well as its selected
face region with the positions of the facial components as
detected by our system.

2.2.2. Face Recognition

For recognition, a one-vs-all SVM scheme is used, where
one classifier is trained to distinguish each person in the
database from all the others [5]. In the SVM training pro-
cess, for each person’s classifier, the feature vectors corre-
sponding to that person’s training images are used as posi-
tive examples, and the feature vectors corresponding to all
the others” images are used as negative examples. The SVM
training process finds the optimal hyperplane in the feature
space that separates the positive and negative data points.
Since the training data may not be separable, a mapping
function corresponding to a second-order polynomial SVM
kernel function [5] is applied to the data before training.

The runtime recognition process consists of computing
the SVM classifier output score for each person’s SVM clas-
sifier [5]. The scores are zero-centered — that is, a score of
zero means the data point lies directly on the decision hy-
perplane, and positive and negative scores mean the data
point lies on the positive and negative example side of the
decision hyperplane, respectively. The absolute value of
the SVM output is a multiple of the distance from the de-
cision hyperplane, and could be normalized to produce the
distance. Thus, a highly positive score represents a large
degree of certainty that the data point belongs to the per-
son the SVM was trained for, and a highly negative score
represents the opposite. The output scores from all SVM
classifiers make up the n-best list that we treat as our face
recognition result.

For our face identification task, we collected and tested
frontal face image data only. Most state of the art face iden-
tification systems attempt to account for rotations in and
out of the image plane, and/or occlusions — which would
be present in a typical surveillance task. However, for the
handheld face identification problem, the user will be coop-
erating with the identification process; and in general, the
user certainly will be looking at the screen of the hand-
held device as he or she is using it. Thus, accounting for
heavily rotated or occluded faces is not important in this
project. Generally, rotations or occlusions in face images
make the problem of identification more challenging; thus,
our problem is easier in this respect. Nonetheless, the vari-
able lighting and background conditions and inexpensive
camera present an orthogonal challenge, to ensure the non-
triviality of our problem.

2.3. Multi-Modal Fusion

Past work on fusing face and speaker classifiers has gener-
ally used very simple combination strategies. Poh and Ko-
rczak used a logical AND rule on the results of their inde-
pendent face and speaker systems [6]. This rule is most
useful when the goal is to limit false acceptances, since
both classifiers must accept the user in order to produce
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an acceptance by the fused-classifier. Brunelli and Falav-
igna [7] and Kittler et al [8] use basic probabilistic com-
bination operators on the outputs from their independent
recognizers. Bigin et al utilize a Bayesian statistics ap-
proach which compensates for biases and interdependen-
cies between different classifiers [9]. An alternative to these
statistical fusion approaches is the use of discriminatively
trained methods such as decision trees or linear discrimi-
nant functions [10].

In our work, a linear weighted summation is employed
for the classifier fusion where the weights for each classi-
fier are trained discriminatively on a held-out development
set using minimum classification error (MCE) training. The
MCE training optimizes the equal error rate of false accep-
tances and false rejections under the user verification sce-
nario. Because the final decision only requires the combi-
nation of two independent classifiers, only one additional
parameter (the ratio of the weights of the classifiers) needs
to be learned. A simple brute force sampling of the param-
eter space is used for this MCE training. More complicated
techniques (such as gradient descent training) could be used
in situations where more than two scores must be fused.

3. EXPERIMENTS

3.1. The Handheld Device

For our experiments we utilized a collection of iPAQ hand-
held computers. Speech data were collected utilizing the
built-in microphone of the iPAQ. Two different models of
iPAQs were used, with two different models of off-the-shelf,
inexpensive electret condenser microphones. Face data were
collected using a 640x480 CCD camera located on a custom-
built expansion sleeve for the iPAQ. The iPAQ handheld
computer, combined with the custom sleeve, is the hand-
held device platform used for pervasive computing research
in the MIT Oxygen Project [11]. An image of the iPAQ with
the expansion sleeve is shown in Figure 2. Because of the
current computation and memory limitations of the iPAQ
handhelds, the images and audio are captured by the hand-
held device, but then transmitted over a wireless network
to servers which perform the operations of face detection,
face identification, speech recognition, and speaker identi-
fication. In future work we hope to improve the computa-
tional efficiency and memory footprints of our systems so
they can be deployed directly on small handheld devices.

3.2. The Login Scenario

Our experiments were conducted using a login scenario that
combined face and speaker identification techniques to per-
form the multi-biometric user verification process. When
“logging on” to the handheld device, users snapped a frontal
view of their face, spoke their name, and then recited a

Fig. 2. The iPAQ handheld computer used in this study.

prompted lock combination phrase consisting of three ran-
domly selected two digit numbers (e.g. “25-86-42"). The
system recognized the spoken name to obtain the “claimed
identity”. It then performed face verification on the face
image and speaker verification on the prompted lock com-
bination phrase. Users were “accepted” or “rejected” based
on the combined scores of the two biometric techniques.

3.3. Data Collection

For our set of “enrolled” users, we collected face and voice
data from 35 different people. Each person performed eight
short enrollment sessions, four to collect image data and
four to collect voice data. For each voice session, each user
recited 16 prompted lock-combination phrases. Each im-
age collection session consisted of the user taking 25 frontal
face images in a variety of rooms in our lab with differ-
ent lighting conditions. No specific constraints were placed
on the distribution of the locations and lighting conditions;
users were allowed to self-select the locales and lighting
conditions of their images. To illustrate the quality of the
images, Figure 3 shows two sample images captured during
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Fig. 3. Two sample images collected on the iPAQ.

the data collection.

During image collection, a fast face detector [12] was
applied to each captured image to verify that the image in-
deed contained a valid face. This face detector occasionally
rejected images when it failed to locate the face in the im-
age with sufficiently high confidence. When this occurred
the user was instructed to capture a new image. Due to a
conservative face detection confidence threshold, no false
positives (i.e., images with incorrectly detected faces) were
observed from this face detector during the data collection.
It is important to note that the face detector used during our
data collection was not the same one used in the experi-
ments in this paper.

Each voice and image session was typically collected
on a different day, with the time span between sessions of-
ten spanning several days and occasionally a week or more.
Each enrollment session typically lasted less than 5 min-
utes with the total enrollment time taking approximately 30
minutes on average. In total this yielded 100 images and
64 speech samples per enrolled user for training. An ad-
ditional set of four enrollment sessions of audio data (i.e.,
64 additional utterances) from 17 of the training speakers

was available for development evaluations and multi-modal
weight fusion training.

For our evaluation, we collected 16 sample login ses-
sions from 25 of the 35 enrolled users. This yielded 400
unique utterance/face evaluation pairs from enrolled users.
We also collected 10 impostor login sessions from 20 peo-
ple not in the set of enrolled users for an additional 200
utterance/face evaluation pairs from unenrolled people.

We used the evaluation data to perform our user veri-
fication experiments. Each utterance/face pair from in-set
speakers was used as a positive example of that user. This
yielded a total of 400 positive examples for our evaluation.
Each utterance/face pair from each in-set user could also be
used as an impostor for the other 34 users in the enrolled set.
This yielded 13600 impostor examples from in-set speakers.
Each utterance/face pair collected from out-of-set impostors
was also used to generate an impostor example for each of
the 35 users in the enrolled set. This yielded 7000 impostor
examples from users not in the enrollment set. In general,
it is expected that impostors that have never been observed
by the system will generate more classification errors than
enrolled users who try to impersonate other enrolled users.
This is because the models are trained to discriminate be-
tween users observed in the training data and thus may not
generalize well to unseen users.

3.4. Training

The face and speaker systems were trained on the enroll-
ment data for the 35 enrolled users. To train the fusion
weights, one of the four face enrollment sessions was held
out and a development face ID system was trained on the
remaining three face sessions. Face identification scores
from this held-out set were pairwise combined with speaker
identification scores generated for utterances from the exist-
ing speaker identification development set. The true in-set
examples and in-set impostor examples were provided to
the MCE weight training algorithm previously described to
generate the multi-modal fusion weights.

3.5. Face Detection Issues

For the experiments presented in this paper, the face detec-
tion algorithm used during the evaluation is not the same
as the face detection algorithm used during the data collec-
tion. The detection algorithm used during the evaluation
was specifically tuned to accept facial images that are well
suited to the component-based classification method used
for face identification. Because this classification method
works best with frontal images of faces that are not tilted or
contorted, the face detection algorithm was initially tuned
such that tilted or contorted faces were rejected. The face
detection algorithm used during our data collection was less
conservative in its accept/reject decision of a hypothesized
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Table 1. User verification results expressed as equal error
rates (%), when forcing the face detector to output a de-
tected face, on three systems (face only, speaker only, and
multi-modal fusion) under two impostor conditions (known
in-set impostors vs. unknown out-of-set impostors).

System || In-set Impostors | Out-of-set Impostors
Face 3.21% 4.87%
Speaker 0.75% 1.66%
| Fused | 0.24% | 0.66% |

face in an image. As a result, a sizable number of images
in the training and evaluation data sets were rejected by the
new face detection algorithm.

Because of the reduced number of images for our evalu-
ation, we could not make a direct comparison with our pre-
vious test results. To allow us to make this comparison, we
elected to run two experiments, one where the conservative
face-detection decisions were used and a second experiment
where the face detection algorithm was forced to output a
detected face even if the image’s detection score fell below
the standard acceptance threshold. These two experiments
allow us to examine the trade-off between the added gain
in accuracy enabled by stricter control in the input facial
images, and the potential added inconvenience of requiring
users to provide an untilted, uncontorted frontal image.

3.6. Experimental Results
3.6.1. Forced Face Detection Results

Table 1 shows our user verification results for three systems
(face ID only, speaker ID only, and our full multi-modal sys-
tem) under two different impostor conditions (using only
known in-set impostors vs. using only unknown out-of-
set impostors). This experiment uses a detection threshold
which forces the face detector to output a face hypothesis for
all of the images, even when the detection confidence score
is low. Figure 4 shows the results for the out-of-set impostor
evaluation on a detection error trade-off (DET) curve.

Several observations should be made from these results.
First, the speaker ID system has an equal error rate (EER)
which is three times smaller than that of the face ID system
when evaluated with unknown out-of-set impostors. These
face ID results are better than our previously reported results
in which the face ID system produced an EER which was
four times larger than the speaker 1D EER.

Next, the combined system has a 60% reduction in EER
from 1.66% in the speech only system to 0.66% in the com-
bined system. This is a slightly better improvement than
the 50% reduction we had observed in our previous study.
This demonstrates that sizable improvements can be ob-
tained when multiple independent biometric techniques are
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0.01 i i i i i i i i
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Fig. 4. DET curves for face and speech systems run inde-
pendently and in combination when tested using impostors
unknown to the system and when using a face detector that
is forced to output a detected face for each input image.

combined even when one biometric technique performs sub-
stantially better than others.

Finally, it is interesting to note that the combined sys-
tem achieves an EER of only 0.24% on the in-set impostor
experiment. In other words, the EER when using the un-
known impostors is 2.75 times greater than the EER of the
in-set impostor experiment. This shows the importance of
evaluating the system using people that are not part of the
training data.

3.6.2. Conservative Face Detection Results

When applying the conservative face detection threshold
to the evaluation utterances, 12% of the images were re-
jected. To evaluate the system under these conditions, the
face ID system was first re-trained using the same threshold

Table 2. User verification results expressed as equal er-
ror rates (%), when using the conservative face detection
threshold on three systems (face only, speaker only, and
multi-modal fusion) under two impostor conditions (known
in-set impostors vs. unknown out-of-set impostors).

System || In-set Impostors | Out-of-set Impostors
Face 1.66% 2.57%
Speaker 0.77% 1.63%
| Fused ] 0.00% | 0.15% |
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Fig. 5. DET curves for face and speech systems run in-
dependently and in combination when tested using impos-
tors unknown to the system and when using the conservative
face detection threshold.

for detection. The system’s verification results were then
re-computed using the 88% of the data that passed the more
conservative face detection threshold.

Table 2 shows the equal error rates under these new
constraints. The face ID system shows a nearly 50% im-
provement in EER performance over the forced detection
result when the images with poor face detection scores were
discarded. When used in conjunction with the speaker 1D
component, the combined system achieved an EER of only
0.15% when testing with out-of-set impostors. This a size-
able 90% reduction in EER from the speech only system!
This combined system also achieved perfect separation be-
tween true users and in-set impostors resulting in a 0.0%
EER on the in-set impostor experiment. This demonstrates
that highly accurate biometric authentification can be ob-
tained if the user is willing accept additional constraints on
the verification process that may increase the inconvenience
of the system. Unfortunately, because so few errors are ob-
served, due to the limited size of our evaluation set, it is not
possible to make any firm claims about the absolute level of
the error rate of the system. We plan to increase the size of
our evaluation set in future experiments.

3.6.3. Comparison with YOHO Corpus

To examine the degradation that might be experienced when
our speaker identification technique is utilized in a mobile
environment, we compared the performance of closed-set

speaker recognition on the mobile handheld data set against
the performance of our system on the tightly constrained
YOHO corpus, which uses the same lock combination phrase
approach that we employed [13]. It is important to note
that the YOHO corpus was collected using a single close-
talking telephone handset in a quiet office, and thus does
not suffer from the degradations that are present in our mo-
bile devices due to the low quality far-field microphone and
the variable background conditions. In [2], it was shown
that our system’s speaker recognition error rate was 0.31%
over YOHQ'’s closed-set of 138 speakers. Using our 400 ut-
terance in-set speaker evaluation set, our system’s speaker
recognition error rate was 0.25% over our closed set of 35
enrolled speakers (i.e., only one misrecognition in 400 tri-
als). Thus we have achieved roughly the same error rate as
on YOHO, but only with a much smaller set of speakers.

4. SUMMARY AND FUTURE WORK

In summary, our initial study in biometric fusion for user
verification has demonstrated the benefits of combining face
and speaker identification even when one of the biometric
techniques has superior performance to the other. A 90%
reduction in user verification equal error rate was observed
when our speaker identification system was fused with a
face identification system. This result was achieved with a
system that forces the user to provide a frontal image that
can be automatically detected with a high-level of confi-
dence. By adjusting the confidence-level of the face detec-
tor, the system can reduce the inconvenience of re-capturing
images when the face detector fails, but at the expense of re-
duced user verification accuracy.

Though this study demonstrated the feasibility of our
approach, our current evaluation set is quite small. In fu-
ture work we plan to expand the size of evaluation set and
examine the specific types of errors the system makes. We
also plan to investigate the performance of the system un-
der the conditions where impostors are specifically selected
based on resemblances of their voice or facial properties
(i.e., same gender or ethnicity) to particular enrolled users.
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Abstract

The elements of multi-modal authentication along with system models are presented.
These include the machine experts as well as machine supervisors. These will be
contrasted to human performance. In particular fingerprint and speech based systems will
serve as illustrations of a mobile authentication application. A signal adaptive supervisor,
based on the input biometric signal quality, will be discussed. Experimental results on
data collected from mobile telephones are reported demonstrating the benefits of the
proposed scheme in mobile communication systems. The presentation is based on these
studies, for which the research documented in has been instrumental.
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Telephone: (41) 27-721.77.53 Fax: (41) 27-721.77.12

Abstract—In this paper, several approaches that can be used independent from each another). On the other hand, in the extreme
to improve biometric authentication applications are proposed. case, when they are completely correlated (dependent on each other),
The idea is inspired by the ensemble approach, i.e., the use ofthere will be no reduction in variance at all [6].
several classifiers to solve a problem. Compared to using only In the context of BA, when one combines several biometric
one classifier, the ensemble of classifiers has the advantage ofnodalities or several samples, one indeed exploits the independence
reducing the overall variance of the system. Instead of using of each modality and sample, respectively. In this work, we examine
multiple classifiers, we propose here to examine other possible several other ways to exploit this (often partial) independence, namely
means of variance reduction (VR), namely through the use of via extractors, classifiers and synthetic samples. In short, all these
multiple synthetic samples, different extractors (features) and methods can be termed as follows: Variance Reduction (VR) via
biometric modalities. The scores are combined using the average classifiers, VR via extractors, VR via samples and VR via (biometric)
operator, Multi-Layer Perceptrons and Support Vector Machines. modalities.

It is found empirically that VR via modalities is the best In our opinion, VR techniques have the potential to improve
technique, followed by VR via extractors, VR via classifiers and the accuracy of BA systems because better classifiers or ensemble
VR via synthetic samples. This decreasing order of effectiveness methods, feature extraction algorithms and biometric-enabled sensors
is due to the corresponding degree of independence of theare emerging. Instead of choosing one best technique (best fea-
combined objects. The theoretical and empirical findings show tures, classifiers, etc), VR techniques propose to combine these new
that experts combined via VR techniquesalwaysperform better  algorithms with existing techniques (features, classifiers) to obtain
than the average of their participating experts. Furthermore, in  improved results, whenever this is feasible. The added overhead cost
practice, mostcombined experts perform better than any of their  will be computation time and possibly hardware cost in the case of
participating experts. adding new sensors (as opposed to other VR techniques wtich

not requireany extra hardware).

I. INTRODUCTION

Biometric authentication (BA) is the problem of verifying an
identity claim using a person’s behavioural and physiological char-
acteristics. BA is becoming an important alternative to traditional
authenticatipn methods such as Ifeys (“s_omething one ”ha_ls”, if._, Variance Reduction
by possession) or PIN numbers (“something one knows”, i.e., by
knowledge) because it is essentially “who one is”, i.e., by biometric This section presents a brief findings on the theory of variance
information. Therefore, it is not susceptible to misplacement @eduction (VR). Details can be found in [6].
forgetfulness. Examples of biometric modalities are fingerprints, A person requesting an access can be measured by his or her
faces, voice, hand-geometry and retina scans [1]. biometric data. Let this biometric data e This measurement can

To date, biometric-based security systems (devices, algorithrbg, done by several methods, to be explored later.iLég¢note the
architectures) still have room for improvement, particularly in thei-th extract ofx by a given method. For the sake of comprehension,
accuracy, tolerance to various noisy environments and scalability@se method to do so is to use multiple samples. Thus, in this
the number of individuals increases. The focus of this study is tase,; denotes the-th sample. If the chosen method uses multiple
improve system accuracy by directly minimising the effects of noidgometric modalities, then refers to thei-th biometric modality. Let
via various variance reduction techniques. Biometric data is oftéime measured relationship be denotedyask). It can be thought
noisy because of deformable templates, corruption by environmerdal thei-th response (of the sample or modality, for instance) given
noise, variability over time and occlusion by the user’s accessoridg. a biometric system. Typically, this output (e.g. score) is used to
The higher the noise, the less reliable the biometric system beconmaske the accept/reject decisiap(x) can be decomposed into two

Advancements in biometrics show two emerging solutions: cormsemponents, as follows:
bining several biometric modalities [2], [3] (often called multi-modal
biometrics) and combining several samples of a single biometric yi(x) = h(x) + 1:(x), Q)
modality [4]. These techniques are related variance reduction
(VR). This is a phenomenon originating from combining classifiewhereh(x) is the “target” function that one wishes to estimate and
scores. Specifically, by combining the outputsMfclassifier scores 7:(x) is a random additive noise with zero mean, also dependent on
using an average operator (in the simplest case), one can reducexthe
variance of the combined score, with respect to the target score, by det N be the number of trials, (e.g., the number of samples,
factor of N [5, Chap. 9], if the classifier scores are not correlated (@ssuming that the chosen method uses multiple samples hereinafter).

Il. VARIANCE REDUCTION IN BIOMETRIC
AUTHENTICATION
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The mean ofy over N trials, denoted ag(x) is: —— Genuine pdf
)= o0 ot R
X) = — i (X). [CHEN
Y N i:ly 0.8F averaging " & | —©- Impostor averaged pdf 1
When N samples are available and they are used separately, the.7t 1
average of variancenade by each sample, independently, is:
| X gO-G’OverIapping 1
e area before
— _ . < L 4
VARav(x) = & ;VAR[yz(x)L @) £05 Zeragng
. . —0.4
where VAR[] is the variance ofc.
The variance as a result of averaging Yariance of averagedue 0.3
to Eqn. (2) is defined as:
VARcom(x) = E[(y(x) - h(x)])’], (4)
where Efr] is the expectation of. In our previous work [6], it has
been shown that:

%VARA\/(X) < VARCOM(X) < VARAv(X). 5) Scores
This equation shows that when scomgs: = 1,..., N are uncor- Fig. 1. Averaging score distributions in a two-class problem

related, the variance of average is reduced by a factdr/af with
respect to the average of variance. On the other hand, when the scores
are totally correlated, there is no reduction of variance, with respect
to the average of variance. working ondifferent biometric modalitiesDetails of the experts are
To measureexplicitly the factor of reduction, we introduce, explained in Sec. IV. As can be seen, the scores of the former
which can be defined as follows: overlaps more than the latter, i.e., if a boundary is to be drawn
VAR Av (%) between clients and impostors scores, it would be more difficult _for
= . (6) the former problem than the latter problem. Note that overlapping
VARcom (x) occurs when both experts make the same errors. Thus, there will be
By dividing Eqn (5) by VAR-oxs and rearranging it, we can more classification errors in the former problem than in the latter.
deduce thatl < a < N. D. Exploring Various Variance Reduction Techniques
B. Variance Reduction and Classification Reduction This section explores various variance reduction (VR) techniques
Fig. 1 illustrates the effect of averaging scores in a two-cladat can be applied to the BA problem. A BA system can be
problem, such as in BA where an identity claim could belong eith&fewed as a system consisting of sensors, extractors, classifiers and
to a client or an impostor. Let us assume that the genuine user scéeg!pervisor. Sensors such as cameras are responsible to capture a
in a situation where 3 samples are available but are used separa8yson’s biometric traits. Extractors are responsible for extracting
follow a normal distribution of mean 1.0 and variance (VARx) salient featur_e_s that are useful for discriminating a person from
of genuine users) 0.9, denoted &51, 1/0.9), and that the impostor others. _Classmers (also referred to as “ex_perts“) are responsible for
scores (in the mentioned situation) follow a normal distribution gfomparing the extracted features to previously stored features that
N (—1,1/0.6) (both graphs are plotted with “+"). If for each accessare known to belong to the person. Finally, in the context of multiple
the 3 scores are used, according to Equation 6, the variance of fdalities, features, classifiers or samples, a supervisor is needed to
resulting distribution will be reduced by a factor (which is the valug'erge all the results. A survey of different fusion techniques can be
o defined in Equation 6) of 3 or less. Both resulting distributionfund in [7]. . 3
are plotted with “0”. Note the area where both the distributions This serial concatenation process of sensors, extractors, classn‘le_rs
cross before and after. The later area is shaded in Fig. 1. This a4l & supervisor shows that errors may accumulate along the chain
corresponds to the zone where minimum amount of mistakes will Bgcause each module depends on the previous module. An important
committed given that the threshold is Optiﬂndbecreasing this area finding in Sec. ”-A [6] is that it is beneficial to increase the numb_er of ]
imp”es an improvement in the performance of the System_ pl’OCGSIoS.eS. For Instance, one can_ use more Samples or more biometric
modalities. In these two casey, will be the number of samples and
C. Variance Reduction and Correlation in Input Score Spagsodalities, respectively. This is because by increadiigone can
From the previous section, it is obvious that by reducing tHidécrease the variance further, regardless of how correlated the scores

variance, the classification results should be improved. How mu@Rtained from theseV experts are. Note that in the work of Kittler
variance can be reduced depends on how correlated the input sc8fed! [4], they showed that by increasiny samples up to a limit,
are. The correlation between scores of two experts can be examit{§Rf€ IS N0 more gain in accuracy. When this happens, they deem
by plotting their scores on a 2D-plan, with one axis for each expeHl€ System to be “saturated™. In our context, we expandhrough

This is shown in Figs. 2 and 3. The first figure shows a scatter-p/gfferent methods, as follows:

of scores taken from two experts working on temefeatures. The
second figure shows a scatter-plot of scores taken from two experts

1optimal in the Bayes sense, when (1) the cost and (2) probability of both e
types of errors (i.e., false acceptances and false rejections) are equal.
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Multiple Biometric Modalities . Each modality has its own
feature set and classifiers. In other words, they operate inde-
pendently of each other [7]-[10]

Multiple Samples. Samples could be real [4] or virtually
generated [11].



+ score can be reduced by a factor between 1 Andith respect to
the average of variance.

Instead of using simple averaging, one could have used weighted
| average, or even non-linear techniques such as MLPs and Support
Vector Machines (SVMs) [5]. In the latter two cases however, one
1 needs to select carefully the various hyper-parameters of these models
(such as the number of hidden units in the MLPs or the kernel
1 parameters in the SVMs). According to the Statistical Learning
Theory [17], the expected performance of a model such as an MLP or
an SVM on new data depends on ttegpacityof the set of functions
the model can approximate. If the capacity is too small, the desired
function might not be in the set of functions, while if it too high,

0.8 Impostors
+ Clients

0.6 +

0.2

Face (DCTs,MLP) expert
o
T

04l SEgelny | several apparently good functions could be approximated, with the
risk of selecting a bad one. This phenomenon is often callest-
061 fi o 4 training. Although this capacity cannot unfortunately be explicitely
LR '+ estimated for complex set of functions such as MLPs and SVMs, its
08 . e 1 ordering can be used to select efficiently the corresponding hyper-
+ ‘ ‘ ‘ parameters using some sort of validation technique. One such method
B -6 4 2 0 2 4 6 s is the K-fold cross-validation.
Face (DCTs,GMM) expert Algorithm 1 shows how K-fold cross-validation can be used to es-

timate the correct value of the hyper-parameters of our fusion model,
as well as the decision threshold used in the case of authentication.
The basic framework of the algorithm is as follows: first perform

Fig. 2. Scores from experts of different features
12 T T T T T T T T T

TpoSIors K-fold cross-validation on the training set by varying the capacity
10} + 1 parameter, and for each capacity parameter, select the corresponding
decision threshold that minimises Half Total Error Rate (HTER)
+ then choose the best hyper-parameter according to this criterion and

perform normal training with the best hyper-parameter on the whole
training set; finally test the resultant classifier on the test set [8] with
HTER evaluated on the previously found decision threshold.

There are several points to note concerning AlgorithnZ Is a set
of labelled examples of the fortf®t’, ), where the first term is a set
1 of patterns and the second term is a set of corresponding labels.
The *“train” function receives a hyper-parameterand a training
set, and outputs an optimal classifier by minimising the HTER
on the training set. The “test” function receives a classifieand
a set of examples, and outputs a set of scores for each associated
ol : J example. The “thrgrgr” function returns adecision thresholdhat
minimises HTER by minimisingFAR(A) — FRR(A)| with respect
to the thresholdA (FAR(A) and FRRA) are false acceptance and
2 s O os o o5 I s 2 25 . false rejection rates, as a function Af) while Lyrgr returns the

Speech (LFCC,GMM) expert

Face (DCTb,GMM) expert HTER value for a particular decision threshold. What makes this
] ] ] ] - cross-validation different from classical cross-validation is that there
Fig. 3. Scores from experts of different biometric modalities is only one single decision threshold and the corresponding HTER

value for all the held-out folds and for a given hyper-paraméter
This is because it is logical to union scores of all held-out folds into
« Multiple Extractors . Each feature is classified by a classifiePne single set of scores to select the decision threshold (and obtain
independently of other features [12]-[14]. the corresponding HTER).
« Multiple Classifiers. All classifiers receive the same input . .
features. Heterogeneous types of classifiers can be used. Lljn_Fusmns For VR via Samples
stable homegenous classifiers such as Multi-Layer PerceptronsAll the VR techniques discussed earlier can be treated in a general
(MLPs) trained by bagging or with different hidden units carimanner, except VR via samples. This is because the ordering of scores
also be used. In general, many ensemble methods suchirgiiced by samples are not important. Simply concatenating the
bagging, boosting, via Error-Correcting Output-Coding fall irscores and feeding them to a classifier may not be an optimal solution.
this category [15], [16]. Another problem that might arise is that when there are many scores,
m%ssibly in the range of hundreds (one can generate as many virtual
scores as one wishes), matching should be done in terms of their
distribution instead. We hence propose two solutions to handle this: 1)
. . : . . estimate the likelihood of the set of virtual scores when coming from
E. Fusions in Variance Reduction Techniques either a client or an impostor distribution; 2) estimate the distribution
In Sec. II-A, it has been illustrated that correlation of scores iof the scores so that matching will be performed between a competing
the input space plays a vital role in determining the success of the
resultant combined system. Furthermore, by simple averaging of 2HTER is defined as (FAR+FRR, where FAR is False Acceptance Rate
scores, it has been shown that the variance of the resultant combiaed FRR is False Rejection Rate.

For each method mentioned above, the problem now is to comb
theseN scores. This is treated in the next subsection.
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Algorithm 1 Risk Estimation(©, K, Ztrein Ztest) s > A is used instead, wheré is a threshold chosea priori
REM: Risk Estimation with K-fold Validation. See [8].  a&ccording to the HTER criterion.
O : a set of values for a given hyper-parameter I1l. EXPERIMENTAL SETTINGS

Z': atuple(X?, YY), for i € {train,test} where XM2VTS Database Description

X f rns. Each rn contain res/h hesi
aset of patterns. Each pattern contains scores/hypot es_?h XM2VTS database [18] contains synchronised video and
from base experts

speech data from 295 subjects, recorded during four sessions taken

Y : a set of labelss {client, impostor} at one month intervals. On each session, two recordings were made,

Let UkK:IZk = Ziran each consisting of a speech shot and a head shot. The speech shot

for each hyper-parametére © do consisted of frontal face and speech recordings of each subject during
for eachk =1,...,K do the recital of a sentence.

The database is divided into three sets: a training set, an evaluation

F9 = train@, UJ 1 J#kzj) set and a test set. The training set was used to build client models,
yg = test(Fg, xk) while the evaluation set (Eval) was used to compute the decision
end for thresholds (as well as other hyper-parameters) used by classifiers.
_ Ok K KV K Finally, the test set (Test) was used to estimate the performance.
Ao = thrdyrpr ({y9 b= Y }’“=1> The 295 subjects were divided into a set of 200 clients, 25 evalua-
end for . tion impostors and 70 test impostors. There exists two configurations
0" = argming (LHTER (Ae, {yé“},iil, {yk}kK:1)> or two different partitioning approaches of the training and evaluation
Fg* = train(@* Z“"“”") sets. They are called Lausanne Protocol | and I, denotédPasand
ost _ . test LP2 in this paper. Thus, besides the data for training the model, the
ye = test(Fy-, X*) following four data sets are available for evaluating the performance:
return Lyrpr(Ag-, Vicst, Ytest) LP1 Eval, LP1 Test, LP2 Eval and LP2 Test. Note that LP1 Eval

and LP2 Eval are used to calculate the optimal thresholds that will
be used in LP1 Test and LP2 Test, respectively. Results are reported
only for the test sets, in order to be as unbiased as possible (using
client and an impostor distribution. Both approaches assume that #iea priori selected threshold). Table | is the summary of the data.
scores are generated independently from some unknown distributianshoth configurations, the test set remains the same. However, there
Of course this independence assumption is not true, but it is goagk three training shots per client for LP1 and four training shots per
enough for most practical problems. client for LP2. More details can be found in [19].

The first approach is carried out using Gaussian Mixture Models
(GMMs) to model the scores. First estimate the client and impostBr Feature Extraction
distributions using GMMs by separately maximising the likelihood For the face data, a bounding box is placed on a face according
of the client and impostor scores using the Expectation-Maximisatigt manually located eye co-ordinates. This assumes a perfect face
algorithm [5]. During an access request with one real biometrifetectiod. The face is cropped and the extracted sub-image is down-
sample, a set of synthetic samples and hence a set of scoress@ed to a0 x 30 (rows x columns) image. After enhancement and
generated. These scores will be fed to the client and an imposgeroothing, the face image is represented as a feature vector with a
GMM score distribution. Letlog p(x|fc) be the log likelihood of dimensionality of1200.

the set of scores given the client GMM modebc andlog p(x|6r) In addition to these normalised features, RGB (Red-Green-Blue)
be the same term but for the impostor model. The decision is oftAfstogram features are used. For each colour channel, a histogram is
taken using the so-called log-likelihood ratio: built using32 discrete bins. Hence, the histograms of three channels,
when concatenated, form a feature vector 96f elements. More
s = log p(x|0c) — log p(x|61) details about this method, including experiments, can be obtained

m [20].
In the second approach, we propose to first model the d'St”bUt'onAnotherfeature set derived from Discrete Cosine Transform (DCT)

of these synthetic scores using a Parzen window non paramelligfricients 1211, 1221 h | ; d perf The idea i
density model [5, Chap. 2] and then compute the relative entropy icients [21], [22] has also given good performance. The idea is

of each distribution, which is defined as follows: SHence, even if this is often done in the literature, the final results using face

a(y:) scores could be optimistically biased due to this manual detection step. Note
- Zp(yi) log s (7) on the other hand that due to the clean and controlled quality of XM2VTS,
i p(yi) automatic detectors often yield detection rates of around 99%.

where ¢ and p are two distributions. Entropy can be regarded as a
distortion ofg(y) from p(y). This alone does not give discriminative TABLE |
information. To do so, entropies of a client and an impostor distri-
bution should be used together. Litpc, q) be the entropy of(y)
with respect to a client distribution anp;, ¢) be that ofg(y) with

THE LAUSANNE PROTOCOLS OFXM2VTS DATABASE

respect to an impostor distribution. Then the difference between these| Data sets Lausanne Protocols
two entropies, can be defined as: - LP1 LP2
Training client accesses 3 4
= L(p1,q) — L(pc, q)- Evaluation client accesses | 600 ¢ x 200) | 400 € x 200)
. . . o Evaluation impostor accessds 40,000 @5 x 8 x 200)
Whens > 0, the distortion ofg(y) from an impostor distribution Test client accesses 400 @ x 200)
is greater than that of a client distribution, which reflects how likely a [ Test impostor accesses 112,000 {0 x 8 x 200)

set of synthetic scores belong to a client. In fact, for both approaches,
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to divide images into overlapping blocks. For each block, a subsetuging any of the previously defined feature sets, in practice only
DCT coefficients is computed. The horizontal and vertical deltas ebme specific combinations appear to yield reasonable performance.
several DCT coefficients are also found. It has been shown that thisWhatever the classifier is, the hyper-parameters (e.g. the number
feature set (referred to as DCTmod2) has better performance tlrhidden units for MLPs or the number of Gaussian components for
features derived from Principal Component Analysis [21]. GMMs) are tuned on the evaluation set LP1 Eval. The same set of
For the speech data, the feature sets used in the experimdmnyger-parameters are used in both LP1 and LP2 configurations of the
are Linear Filter-bank Cepstral Coefficients (LFCC) [23], PhaséM2VTS database.
Auto-correlation derived Mel-scale Frequency Cepstrum Coeffi- For each client-specific MLP, the samples associated to the client
cients (PAC) [24] and Mean-Subtracted Spectral Subband Centroais treated as positive patterns while all other sampi¢gssociated
(SSC) [25]. The speech/silence segmentation is done using ttwothe client are treated as negative patterns. All MLPs reported here
competing Gaussians trained in an unsupervised way by maximisingre trained using the stochastic version of the error-backpropagation
the likelihood of the data given a mixture of the 2 Gaussians. Omeining algorithm [5].
Gaussian will end up modelling the speech and the other will end For the GMMs, two competing models are often needed: a world
up modelling the non-speech feature frames [26]. In general, thed a client-dependent model. Initially, a world model is first trained
segmentation given by this technique is satisfactory. from an external database (or a sufficiently large data set) using the
standard Expectation-Maximisation algorithm [5]. The world model
IV. RESULTS is then adapted for each client to the corresponding client data using
In order to analyse the effects due to VR techniques, we firdte Maximum-A-Posteriori adaptation [27] algorithm.
present the baseline experimental results. This is followed by resultsThe baseline experiments based on DCTmod2 feature extraction
obtained by various VR techniques. Note that all results report#re reported in [22] while those based on normalised face images
here are in terms opercentage of HTER the thresholds are all and RGB histograms (FH features) were reported in [20]. Details of
selecteda priori (i.e., tuned on the training set, hence the threshol#ie experiments, coded in the pgieature, classifier) for the face
is completely independemif the test set and is thus unbiased), anéxperts, are as follows:
for the combination strateggnly two experts are usedeach time. 1) (FH, MLP) Features are normalisdéhce concatenated with
Histogram features. The client-dependent classifier used is
an MLP with 20 hidden units. The MLP is trained with
geometrically transformed images [20].
(DCTs, GMM) The face features are the DCTmod?2 features
calculated from an input face image 46 x 32 pixels, hence,
resulting in a sequence of 35 feature vectors each having 18

A. Baseline Performance on The XM2VTS Database
The face baseline experts are based on the following features:

1) FH: normalised face image concatenated with its RGB 2)
Histogram (thus the abbreviatidrH)

2) DCTs: DCTmod?2 features extracted from face images with a - ¢ . -
size 0f40 x 32 (rows x columns) pixels. The DCT coefficients dimensions. There are 64 Gaussian components in the GMM.
are calculated from an & 8 window with horizontal and The world model is trained usingl the clientsin the training
vertical overlaps of 50%, i.e., 4 pixels in each direction. set [22]. e
Neighbouring windows are used to calculate the “delta” fea- 3) (DCTb, GMM) Similar to (DCTs,GMM), except that the fea-
tures. The result is a set of 35 feature vectors, each having a  tures used are DCTmod2 features calculated from an input face
dimensionality of 18.§ indicates the use of this small image image of80 x 64 pixels. This produces in a sequence of 221
compared to the bigger size image with the abbreviation feature vectors each having 18 dimensions. The corresponding
3) DCTb: Similar to DCTs except that the input face image has _ GMM has 512 Gaussian components [22].

(DCTs, MLP) Features are the same as those in (DCTs,GMM)
except that an MLP is used in place of a GMM. The MLP has
32 hidden units [22]. Note that in this case a training example
consists of abig single feature vector with a dimensionality

80 x 64 pixels. The result is a set of 221 feature vectors, each 4)
having a dimensionality of 18.

The speech baseline experts are based on the following features:

1) LFCC: The Linear Filter-bank Cepstral Coefficient (LFCC)

speech features were computed with 24 linearly-spaced filters
on each frame of Fourier coefficients sampled with a window 5)
length of 20 milliseconds and each window moved at a rate of
10 milliseconds. 16 DCT coefficients are computed to decorre-
late the 24 coefficients (log of power spectrum) obtained from
the linear filter-bank. The first temporal derivatives are added
to the feature set.

of 35 x 18. This is done by simply concatenating 35 feature
vectors each having 18 dimensifns

(DCTb, MLP) The features are the same as those in
(DCTh,GMM) except that an MLP with 128 hidden units is
used. Note that in this case the MLP in trained osimagle
feature vector with a dimensionality @21 x 18 [22].

and for the speech experts:

2) PAC: The PAC-MFCC features are derived with a window 1) (LFCC, GMM) This is the Linear Filter-bank Cepstral Coeffi-
length of 20 miliseconds and each window moves at a rate  cients (LFCC) obtained from the speech data of the XM2VTS
of 10 miliseconds. 20 DCT coefficients are computed to  database. The GMM has 200 Gaussian components, with the
decorrelate the 30 coefficients obtained from the Mel-scale ~ Minimum relative variance of each Gaussian fixed to 0.5, and
filter-bank. The first temporal derivatives are added to the  the MAP adaptation weight equals 0.1. This is the best known
feature set. model currently available.

3) SSC The mean-subtracted SSCs are obtained from 16 coeffi-2) (PAC, GMM) The same GMM configuration as in LFCC

cients. They parameter, which is a parameter that raises the
power spectrum and controls how much influence the centroid,

is used. Note that in general, 200-300 Gaussian components

is set to 0.7. Also The first temporal derivatives are added to“This may explain why MLP, an inherently discriminative classifier, has

the feature set.

worse performance compared to GMM, a generative classifier. With high

. . . dimensionality yet having only a few training examples, the MLP cannot

Two different types of classifiers were used for these experimens trained optimally. This may affect its generalisation on unseen examples.
an MLP and a Bayes Classifier using GMMs to estimate the clag$ treating the features as a sequence, GMM was able to generalise better
distributions [5]. While in theory both classifiers could be trainednd hence is more adapted to this feature set.
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BASELINE PERFORMANCE INHTER(%) OF DIFFERENT MODALITIES

TABLE Il

EVALUATED ON XM2VTS BASED ONa priori SELECTED THRESHOLDS

TABLE Il
PERFORMANCE IN(%) OF HTER OF VR VIA MODALITIES ON XM2VTS
BASED ONa priori SELECTED THRESHOLDS

Data sets (Features, FAR FRR | HTER (a) Face experts and (LFCC,GMM) expert
classifiers) Data sets| Face, Joint HTER mean min
Face LP1 Test (FH,MLP) 1.751| 2.000 | 1.875 Experts mean] MLP | SYM | HTER | HTER
Face LP1 Test | (DCTs,GMM) | 4.454 | 4.000 | 4.227 LPI Test | (FH,MLP) 0.399 | 0.366 | 0.381 | 1.507 | 1.139
Face LP1 Test | (DCTb,GMM) | 1.840 | 1.500 | 1.670 LP1 Test| (DCTs,GMM) | 0537 | 0576 | 0.613 | 2.683 | 1.139
Eggg I[Ei %2: ((ggﬁvmtg ﬁig 2-888 gggi LP1 Test| (DCTH,GMM) | 0.520 | 0.483 | 0.475| 1.405| 1.139
Speech LPT Test (LFCC ’GMM) To75 1250 T 1130 LP1 Test| (DCTs,MLP) | 0.591| 0.611| 0.587 | 2.249| 1.139
S[F))eech LP1 Tesl (PAC éMM) 4.608 8.000 6.304 LP1 Test | (DCTh,MLP) 0.497 | 0.489 | 0.485| 3.680| 1.139
Speech LP1 Tes (SSC’GMM) 2'374 2'500 2'437 LP2 Test | (FH,MLP) 0.151 | 0.150 | 0.389 | 1.580 | 1.300
: - - : LP2 Test | (DCTb,GMM) | 0.147 | 0.130 | 0.252 | 0.972 | 0.644
Face LP2 Test (FH,MLP) 1.469 ] 2.250 | 1.860
Face LP2 Test | (DCTh,GMM) | 1.039 | 0.250 | 0.644 (b) Face experts and (PAC,GMM) expert
SpeechLP2 Test| (LFCC,GMM) | 1.349 | 1.250 1.300 Data sets| Face, Joint HTER mean min
Speech LP2 Test (PAC,GMM) 5.283 | 8.000 | 6.642 Experts mean| MLP | SVM | HTER | HTER
Speech LP2 Tesf (SSC,GMM) | 2.276 | 1.750 | 2.013 LP1 Test| (FH,MLP) 1.114 ] 0.856 | 0.970 | 4.090 | 1.875
LP1 Test | (DCTs,GMM) | 1.407 | 1.425| 1.402 | 5.266 | 4.227
LP1 Test | (DCTh,GMM) | 0.899 | 0.900 | 0.923 | 3.987 | 1.670
LP1 Test| (DCTs,MLP) | 1.248| 1.056 | 1.009 | 4.832| 3.359
would give about 1% of diflrence of HTER. | tpyTocr - (Fremtpy | Tomp | 0768 | 0855 | 4251 | T80
3) (SS((j:, GMM) The same GMM configuration as in LFCC iS5 Tast (DCTD,GMM) | 0.243 | 0.222 | 0.431 | 3.643 | 0.644
used.
The baseline performances are shown in Table II. () Face experts and .(SSC’GMM) expert i
. Data sets| Face, Joint HTER mean min
As can be seen, among the face experiments, (DCTh,GMM) E’ter- Experts meanT MLP T SYM | HTER | HTER
forms the best across all configurations while (DCTh,MLP) perfor SLPI Test| (FH,MLP) 0972 | 0.786 | 0.742 2.156 1.875
the worst. In the speech experiments, LFCC features are the WeBpT Test | (DCTs,GMM) | 1.028 | 1.175 | 1.213 | 3.332 | 2.437
features, followed by SSC and PAC, in decreasing order of accuracy.p1 Test | (DCTb,GMM) | 0.756 | 0.704 | 0.742 | 2.053 | 1.670
Regardless of strong or weak classifiers, as long as their correlationP1 Test | (DCTs,MLP) | 1.167 | 0.829 | 0.850 | 2.898 | 2.437
is weak, they can be used in the VR techniques. LP1 Test| (DCTb,MLP) | 2.986 | 1.176 | 1.121 | 4.329| 2.437
LP2 Test | (FH,MLP) 0.901 | 0.302 | 0.404 | 1.937| 1.860
LP2 Test | (DCTb,GMM) | 0.049 | 0.162 | 0.383 | 1.329| 0.644

B. VR via Different Modalities, Extractors, Classifiers

Table 11l shows the results combining scores of two modalities, two
extractors and two classifiers (working on the same feature space). ] ) )
The second to last column shows the mean HTER of each of fgcording to the McNemar's Tésf28] (i.e., with a difference of
two underlying experts while the last column shows the minimu006 HTER% between the two approaches). For LP2, the GMM
HTER of the two experts. The three sub-columns under the head@gProach issignificantly betterthan the mean operator with 99%
operator, MLP and SVM. Numbers in bold are the best HTER amofg betterthan using the simple mean operator.
the three fusion methods. A quick examination of this table reveals . .
that all combined experts via modalities are better than the bddt Evaluation of Experiments
underlying expert (compare min HTER with the scores in the joint | et us define two measures of gain so as to draw a summary of
HTER). However, the combined experts via extractors and classifiefige experiments carried out above, as below:
as shown in Table IV, are not always better than their participating

experts. 3 __ mean(HTER;)
C. VR via Virtual Samples __ min;(HTER;)
ﬂmzn - HTERC ’

The experiments on VR via samples are presented differently than

the rest because they cannot be evaluated using the mean HV&Rre3,,cqn and Bmin Measure how many times the HTER of the
and min HTER. Instead, the combined experts are compared to Bignbined expert is smaller than the mean and the min HTER of
original baseline experts (compare the first row of Table V against th& underlying experts = 1,..., N. Bmean is designed to verify
other rows). The two numbers in bold are the best fusion technigqgg. 6, which is somewhat akin ta. According to the theoretical
for LP1 and LP2 configurations, respectively. The Entropy and GMMnalysis presented in Sec. 11-4&,> 1 should be satisfied. Th&mix,

approaches are discussed in Sec. II-F. The median technique refeigrfahe other hand, is a more realistic criterion, i.e., one wishes to
combining synthetic scores using the median operator which is known

to be robust to outlier scores. We note that the best fusion techniquesrys s done by calculating(nor — n10)2 — 1)/(no1 +nio) > p where
on these datasets are the entropy approach and the GMM approggihe inverse function of’? distribution (with 1 degree of freedom) at a
for LP1 and LP2, respectively. For LP1, the entropy approach d@sired confidence interval (i.e., 90%), angh andnio are the number of
significantly bettewith 90% confidence level than the mean operatafifferent mistakes done by the two systems on #aneaccesses
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TABLE IV TABLE VI
PERFORMANCE IN(%) OF HTER OF VR VIA EXTRACTORS AND COMPARISON OF VARIOUSVR TECHNIQUES BASED ON ALL EXPERIMENTS
CLASSIFIERS ONXM2VTS BASED ONa priori SELECTED THRESHOLDS CARRIED OUT USING Bmean, Bmin AND Breal

(@) Bmean Of all experiments

Data sets| (Features, Joint HTER mean min -
classifiers) mean| MLP | SYM | HTER | HTER NI Table e ___JontHIER
LP1 Test | (FH,MLP) 1641 | 1.379 | 1.393 | 3.051| 1.875 Modalgies 16 1 P EEE9 £390 2164
(DCTs,GMM) (all) +5.879 | +3.287 | +1.474
LP1 Test | (FH,MLP) 1123 | 1.151 | 1.528 | 1.772| 1.670 @) 7 5.680 5.843 4'375
(DCTh,GMM) . . .
LP1 Test | (FH,MLP) 1.475| 1.667 | 1.476 | 2.617| 1.875 (Il_lllz(g)C) 7 iéggg ié;gg iiggi
(DCTs,MLP) PAC +4.459 | +4.686 | +1.869
LP1 Test| (FH,MLP) 1.9487[ 1.933 | 1.938 | 4.048| 1.875 (Ill(a)) - 5910 4326 3422
(DCTb,MLP) (SSC) +9.365 | £2.128 | +0.733
(SSC,GMM) 4+0.269 | £0.313 | +£0.420
LP1 Test | (PAC,GMM) 3.594 | 2954 | 2.663 | 4.370| 2.437 Classifiers vV > 1341 2051 2.044
(SSC,GMM) 40.029 | +0.742 | +0.902
LP2 Test | (FH,MLP) 0.896 | 0.670 | 0.488 | 1.252 | 0.644 Synthetic samples v > 1.154 MLP and SVM
(bCTb,GMM) 40.0002 | not used; see (b)
LP2 Test| (LFCC,GMM) | 1.107 | 1.034 | 1.063 | 1.656 | 1.300
(SSC,GMM) (b) Brear Of VR via synthetic samples
LP2 Test | (PAC,GMM) 2614 | 2316 | 2.125| 4.328| 2.013 Methods Gain ratio
(SSC,GMM) Mean 1.154+ 0.000178
LP1 Test| (DCTs,GMM) | 2.873 | 2.486 | 2.697 | 3.793 | 3.359 Median 1.124+ 0.000002
(DCTs,MLP) GMM 1.130+ 0.002198
LP1 Test| (DCTb,GMM) | 2.898 | 1.532 | 1.471 | 3.946| 1.670 Global Entropy | 1.141+4 0.001422
(DCTb,MLP) Local Entropy | 0.854+ 0.000028
(c) Bmin Of all VR techniques except synthetic samples
VR Table No. Joint HTER
TABLE V techniques of exp. [ mean| MLP | SVM
PERFORMANCE IN(%) OF HTER OF DIFFERENT COMBINATION METHODS Modalities | 1l(a) 21 3.043 | 3.109 | 2.459
OF SYNTHETIC SCORES Extractors | 1lI(b) 9 1.009 | 1.067 | 1.120
Classifiers | 111(c) 2 0.873 | 1.221| 1.190
Method HTER
LP1 LP2
Original | 1.875 | 1.737
Mean | 1.612| 1518 of accuracy of participating experts, as long as they are weakly
Median | 1.667 | 1.547 correlated, highB,...» can be achieved. Although the mean operator
GMM | 1.709 | 1.493 seems to perform the best in the overall VR via modalities based on
Entropy | 1.606 | 1.559 Bmean, it should be noted that out of the 27 experiments in Table lIl,

4 experiments are best combined with the mean operator, while there

are 10 and 7 best results for MLPs and SVMs, respectively. Moreover,

the standard deviation of the mean operator is much larger than that
obtain better performance than the underlying experts, but thereofsMLPs and SVMs. In these experiments, MLP turns out to be a
no analytical proof thafy,,., > 1. good candidate for fusion in most situations for VR via modalities.

The Bm.ean for each experiment are shown in Table Vi(a) for VRt should be emphasized that the success application of MLPs or

via modalities, extractors and classifiers, (b) for VR via syntheti8VMs in this fusion problem depends largely on the correct capacity
samples and (c) for the gain rati®... Note that VR via synthetic estimate of cross-validation.
samples cannot be evaluated with thg;,, criterion. It can only be Note that Table VI(a) shows thaB,... > 1 for all fusion
compared to its original method (i.e., with real samples). This gaiachniques but in (C)3mi» > 1 is only true for MLPs and SVMs,

ratio can be defined as: but not for the mean operator, which we cannot guarantee. According
HTER,..; t0 Bmean ON the mean operatorVR via modalities achieves the
Breal = “HTER, highest gain, followed by VR via extractors, VR via classifiers

and VR via synthetic samples. A similar trend is observed in (c)
wherereal is the expert that takes real samples and the expert according toS...». Such ordering is not a coincidence. It reveals
that combines scores obtained from synthetic samples (in additionthat the correlation is greater and greater in the list just mentioned.
the real sample). In other words,G,.cqn iS inversely proportional to the correlation of

Note that thefS,..qan for VR via modalites are sub-divided into the underlying experts. However, with MLP and SVM as non-linear
3 parts according to the 3 baseline speech experts (LFCC,GMMN)sion techniques, this ordering is slightly perturbed because both
(SSC,GMM) and (PAC,GMM) in aignificantlydecreasing order of the B,.cqan andGrmin show that VR via classifiers ateetterthan VR
accuracy. In such situations, th&,... for these 3 baselines still via extractors. Clearly, in highly correlated problems such as these,
have comparable range of values, which are bigger than other WiBn-linear fusion techniques are better than the simple mean operator
technigues. One possible conclusion is that regardless of the dedimé they come at an increase in complexity).
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V. CONCLUSIONS [8]

Variance reduction (VR) is an important technique to increase
accuracy in regression and classification problems. In this studjgl
several approaches are explored to improve Biometric Authentication
systems, namely VR via modalities, VR via extractors, VR vi?lo]
classifiers and VR via synthetic samples. The experiments carried
out on the XM2VTS database show that the combined experts dddl
to VR techniquesalways perform better than the average of their
participating experts, which can be explained by VR using thH&2]
mean operator. Furthermore, all combined experts via modalities
outperform the best participating expert based on the HTER. %]
means of non-linear variance reduction techniques, i.e., the use of
MLPs and SVMs for combing scores obtained from participating
experts, empirical study shows that, in average, these techniqyﬁg
could produce better results than their participating experts, in the
context of VR via extractors and classifiers. In the context of VR vid®!
samples, exploiting the distribution of synthetic scores using GMM Ple]
Parzen-windows is better than the mean operator. In short, this study
shows that non-linear fusion techniques using MLPs and SVMs, aﬁ@]
incorporating othea priori information (i.e., distribution of synthetic ]
scores in the case of synthetic samples) are vital to achieve high gain
of fusion. In highly correlated situations (i.e., VR via extractors and
classifiers), non-linear fusion techniques are very useful. In weakly
correalted situations (i.e., VR via modalities), the mean operatd®]
could be feasible but non-linear fusion techniques are still useful if tiufo]
capacity search using cross-validation is reliable. As new and more
powerful extraction and classification algorithms become available,
they can all be integrated into the VR framework. Therefore, vl
techniques are potentially very useful for biometric authentication.
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Abstract

Typically, biometric systems authenticate the user at
a particular moment in time, granting or denying ac-

moved in a hostile environment, the system continues to
provide access to the resources that should be protected.
Continuous biometrics attempts to improve on this situ-
ation by addressing these assumptions and making user

cess to resources for the complete session. This model authentication an ongoing process, rather than a one-

of authentication does not appropriately address envi-
ronments where a different individual may take over a
system from the original user (either willingly or other-
wise). We propose a multimodal system that performs
authenticationcontinuouslyby integrating information
temporally as well as across modalities. Such continu-
ous authentication provides ongoing (rather than one-
time) verification and can easily be coupled with an-
other system for dynamically adjusting access to privi-
leges accordingly.

We present an initial approach for temporal inte-
gration based on uncertainty propagation over time
for estimating channel output distribution from recent
history, and classification with uncertainty. Our method
operates continuously by computing expected values
as a function of time differences. Our preliminary
experiments show that temporal information improves
authentication accuracy. These empirical results are
promising and justify further investigation.

1. Introduction

Biometric user authentication is typically formulated
as a “one-shot” process, providing verification of the
user when a resource is requested (e.g., logging in to a
computer system or accessing an ATM machine). Once
the user’s identity has been verified, the system re-
sources are available for a fixed period of time or, more
typically, until the user logs out or exits the session.
While perhaps appropriate for short sessions or low-
security environments, this model for authentication is
flawed, as it is based on two strong assumptions: (1) a
single verification is sufficient, and (2) the identity of
the user is constant during the complete session. If the
user leaves the work area for a while, or is forcibly re-
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time, point-of-access occurrence.

One way to approximate continuous biometrics is
to require active user authentication on a regular basis,
e.g., requesting a password or thumbprint verification
every few minutes or so. In most environments, this is
not an acceptable requirement. Passive verification, via
modalities such as face recognition, can be used to au-
thenticate at a much higher rate, perhaps several times
per second, without requiring active user participation.
This raises other questions that affect usability: What if,
due to a lighting change, noise, or any of several other
conditions, the verification fails momentarily? What if
the modality in use cannot provide any authentication
report for a time?

To be truly useful, continuous biometrics requires
temporal integration. In general, a continuous biomet-
ric authentication system should be able to provide a
meaningful estimate of authentication certainty at any
time. This requires analyzing the temporal characteris-
tics of biometric modalities and user behavior to pro-
vide a model of user identity that is a continuous func-
tion of time (or a discrete function with a reasonably
small update rate). Intuitively, the certainty of an au-
thentication result should be relatively high at the mo-
ment the score is reported (depending on the character-
istics of the modality), and then decrease monotonically
over time, until a new report is received.

Temporal integration is particularly relevant and use-
ful in the case of multimodal biometrics. When mul-
tiple modalities are used in concert to provide user au-
thentication, there is usually an implicit temporal model
— even though the different modalities may report at
slightly different times, the results are treated as if they
had arrived simultaneously. This is equivalent to as-
suming a constant user model during this short period.



The most interesting and potentially useful case is when
there are multiple modalities in use, where the char-
acteristics of the various modalities may differ signif-
icantly.

For example, consider a high-security workstation
situation where the biometric modalities are fingerprint,
face, voice, and keyboard (keystroke pattern), repre-
senting a range of temporal characteristics (frequency
and regularity of reports) and accuracies. Keystroke
pattern recognition is likely to be the least reliable as
an authentication technique, but at times it will give al-
most continuous output, while the other modalities may
have nothing to report. Fingerprint recognition may be
quite accurate, but will only be available occasionally.
In this situation, we envision a system that monitors all
the modalities and makes the best possible decision at
any given point in time — even if there has been no in-
formation in the recent past. With this model of contin-
uous authentication, a system can constantly commu-
nicate the degree of belief in a user’s identity, and a
monitoring system can implement an appropriate pro-
gram of action for the particular security environment.
A slight decline in authentication certainty may cause
certain sensitive areas to be made inaccessible to the
user (in many cases not at all disturbing the benign ac-
tivity of the user), while a large decline may result in
the system shutting down access.

Integrating biometric modalities into decision-
making has produced successful results in terms of ac-
curacy and robustness [1, 5, 8]. Still, this model of au-
thentication fails to address the temporal nature of the
problem. The main goal of this work is to present a tem-
poral integration method to investigate potential bene-
fits of time information for the realization of a contin-
uous authentication system. As such, the system could
generate continuous results in terms of confidence in the
identity of the user, which would enable adjusting the
security level accordingly in real time. In relation with
behavioral traits, which are under investigation as ad-
missible biometrics [7], temporal integration would be
useful for detecting gradual or abrupt changes or varia-
tions in fitness to perform a task.

2. Multimodal Biometrics

There has been a good deal of research in recent
years on integrating multiple modalities to identify or
authenticate a user. In such a multimodal biometric sys-
tem, the method of integration is very important, as the
accuracy of a strong biometric could suffer when inte-
grated with a weaker biometric [3, 6]. To our knowl-

edge, there has been no published research in the bio-

metrics community to date that focuses on temporal in-

132

Without Tempeoral Integration

5-— a-‘_"'—"'——-_._.—-—\/—-_/ 1 ,
=~ ——— oy SERRST - = ~—
=]

& — — — - ~

=

[X]

[-4

o

% -y e ams " P L L
1 {

2

c

= time E b

With Temporal Integration

ﬁ-— /___""'—-._-—'—\_/\/ e ”
o

= — —_— .~ ™~

c

o

B —— P ——
5

E.]

c

- time E b

Figure 1: A static multimodal system (op) vs. one
with temporal integration (bottom). Normalized
scores from three channels are shown, with the inte-
grated authentication score below. The multimodal
system at top can not integrate information from all
channels. For most of the time froma to b, the static
multimodal system cannot perform authentication.

tegration as formulated here.

Figure 1 shows a qualitative comparison between
a multimodal system that performs integration across
modalities (without integration over time) and one
which does temporal integration as well. The first sys-
tem would be ineffective when there is no channel re-
porting — e.g., for most of the time betweerandb.
Through the entire sequence, the system would have to
make decisions based on only partial observations, ex-
cept where all channels are reporting an opinion (as in-
dicated by arrows in Figure 1). In reality, due to the
nature of biometric modalities involving lengthy com-
putations or sample collection times, this should not be
expected to happen frequently.

Interestingly, most accurate biometrics (iris scan, fin-
gerprint, DNA matching and the like) are either lengthy
procedures in collection or verification, or they are in-
trusive and cannot be performed frequently. A static
multimodal system can only use such accurate indica-
tors once they are observed.



2.1. Channel Integration

A multimodal biometric system can integrate modal-
ity information (“vertical” integration) afeature score
andfigurethredevels [1, 11, 5, 9]. In general, the most
information is available at the feature level; integrat-
ing at this level is considered to be “early” integration.
However, training at this level can be very complex and
require an inordinate amount of data; later (higher) lev-
els of integration are easier to build and often yield
higher degrees of robustness. For decision level inte-
gration, it can be shown analytically that a strong bio-
metric can achieve better accuracy alone than combined
with a weaker biometric if both are operating at their
cross-over points [6]. Unless the cross-over point of the
weaker biometric is shifted, integration at the decision
level would not be more accurate. Incorporating tempo-
ral information could change this limitation by shifting
the cross-over point of weaker biometrics.

Since modality integration can be handled indepen-
dent of temporal integration, it is possible to use vari-
ous channel integration methods to improve overall ac-
curacy of the system. In this work, channel integra-
tion is not our primary goal, so we chose a simple
naive Bayes classifier to handle channel integration as a
binary classification problem incorporating uncertainty

observations in that instant. For example, if we made
observations milliseconds ago, then the system should
be able to make decisions based on recent observations
as we would not expect the user to be away in such a
short interval. Our method addresses all of these chal-
lenges.

Logically, we have the choice of first integrating
temporally or over channels (horizontally or vertically).
If we first integrate over channels, then the problem is
equivalent to temporal integration using a single bio-
metric channel. On the other hand, integrating tempo-
rally first enables us to work with asynchronous biomet-
ric channels, since within some neighborhood in time of
an observation we will have very good estimates from
that observation. For making decisions in the absence
of observations at a given point in time, we use expected
values of observations from channels with varying de-
gree of uncertainty. Perhaps the best approach, but also
the most complex to formulate, is to integrate in both
directions (across channels and across time) simultane-
ously, rather than sequentially.

3. Method

Just as in integrating channels, for temporal inte-

measures. Similarity scores from individual biometric gration we can choose to integrate information at level
channels are normalized to the interi@l1] € R and of features, scores, or decisions. Our method works
integrated using the Bayes classifier. Our temporal inte- in continuous time by computing expected values of
gration method generates an expected score distribution scores as a function of time difference between the last
and an estimated related uncertainty about this distri- observation and currenttime. The main idea is based on

bution. We weight class priors by the associated un-
certainty before classification. It should be noted that
weighting class priors would not scale well with larger

data sets [4] presenting a potential limitation, especially
since we are concerned with real-time operation.

2.2. Temporal Integration

There are several challenges for temporal (“horizon-
tal”) integration of a multimodal authentication system.
First, as mentioned in the introduction, individual bio-
metric channels cannot always provide simultaneous
observations. One channel might provide information
at a much higher frequency than another channel. Sec-
ond, some channels might only provide sporadic obser-
vations over time. For example, we could not expect the
user to provide a fingerprint at certain times. Third, for
sporadic channels alone, temporal integration could be
useless or statistically meaningless, if not impossible, to
formulate, since there might be unexpectedly long inter-
vals between observations. Fourth, the system should
provide a way of making decisions during time inter-
vals even if none of the individual channels provide any
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the assumption that an authentication score is still valid
for some amount of timejt. As time passes, we should
be less and less certain about this value. To formulate
this idea as a function of time we estimate an uncer-
tainty measure of scores per channel from the recent
past, until a new observation is recorded. The joint pos-
terior distribution of a score is approximated and then
propagated over time until we obtain a new score from
that channel. Due to the propagation of the score dis-
tribution over time, we use a degeneracy model for the
uncertainty measure of each score.

The most important reason in favor of working with
scores, rather than at the feature or decision level, is the
way of modeling uncertainty of channel opinions. In
lower levels, uncertainty has a related physical mean-
ing. For example, at the physical measurement level,
uncertainty is related to signal noise, which might not
necessarily map well into an uncertainty about the deci-
sion. Treating scores as random variables is in fact this
mapping, statistically backed by the Central Limit The-
orem. Another reason to work with scores, aside from
the underlying mathematical difficulty of using many
features, is the fact that feature selection is still as much



art as it is science. Naturally, we would prefer our in-
tegration method to be as general as possible. On the
other hand, the later the integration, the more informa-
tion is discarded, so early integration may achieve bet-
ter results, using an appropriate set of features. After
establishing promising results with scores, we plan to
continue investigating such directions in the future.

Each channel is assumed to provide a normalized
similarity scores, and an expected varianee;, as a
characteristic parameter of the channel.clf, is not
provided, it is computed for each channel offline. This
measure is equivalent to inherent uncertainty in a chan-
nel's decisions. This variance is only used as the default
variance of the channel if computing the channel vari-
ance is not possible from recent past. For examplg,
is needed for initial few scores or for channels which
provide scores at longer intervals. One might ask that if
the uncertainty is known, why compute it from the past
again? The reason is that thg, measure itself varies
over time. For example, if lighting conditions were the
underlying reason for the face recognition channel to re-
port highly variable scores over the pasteconds, this
variability should be corrected in par with the lighting
conditions.

We normalize channel scores[tg 1] € R, wherel
indicates perfect similarity to the user model @niddi-
cates an unknown person. For channels with higher fre-
guency, we compute the uncertaintyfrom past scores
within a 7, time period. Note that this duration is the
crucial part of our method and it has a different value
for each channel.

We model each channel with a Gaussiﬁ(w, Och)
or N(u, 0,), wherey is the reported score for the chan-
nel, as discussed above. (We will refertg, ando, as
o from now on.) Consequently, scores are random vari-
ables withs ~ N(u, o). This distribution is propagated
over time with increasing uncertainty in the score value
as a function of time.

Figure 2 shows conceptually how a sceiie treated.
The darker lines over the Gaussian show the change in
shape of Gaussian over time.

When a score is recorded, a timestahigpgenerated
and the uncertainty is computed over the past- T, if
applicable, otherwise = .. The idea is that we will
be less and less certain about this score and probabilities
of all possible scores will increase as time passes by.

The increase of uncertainty over time is computed
as a function of time from the last score. We used an
exponential degeneracy functier{r) to estimate the
mode (——) of theN(u,o—) att 4+ 7. The degeneracy

oV2m

function¢(7) = kexp®”™ depends only o which we
take as the mean variability over the lagt time period.
Once an estimate of score distributidi{u, o) att+
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Figure 2: Propagation of scores and associated un-
certainties over time. As time passesg increases
from a recently computedo,,.

7 is obtained, we compute the expected value of a score
att + 7 from this distribution by evaluating

ENpast,{Nnow(s)} = /_Oo Nnow(s) Npast(s)ds

Note that the limits of the integral we are interested
in are not—oo andoo, but0 and1. Hence the distribu-
tion att + 7 is not a proper Gaussian anymore. How-
ever, the error resulting from ignoring the tails of this
distribution is insignificant. Although we could opt for
a proper distribution, such as a triangular distribution,
this would introduce a larger modeling error. Alterna-
tively, this Gaussian can easily be scaled to cover unit
area, which would not change the expected value of the
score. To evaluate the expected value we use the fol-
lowing approximation.

SupposeX = { X1, Xo, ..., X,, } is the set of random
variables that characterize the model, with values
Z1,%a,...,T,. The expectationF(a), of a function
a(X1,Xs, ..., X,,) can be approximated by

Za(wh vy Tn)P(X1 =21, .0, Xy = )

Tn

N—

i

1 k k
N a(xy, ..., z)
k=0
wherez? are the values for poirit in a sample of size
N.

It should be noted that we want to minimize the fil-
tering effect of our method, where occasional false pos-
itives and false negatives acerrectedby subsequent
scores. Therefore a predictor-corrector style modeling,
such as a Kalman Filter, is not a model of choice. Also,



the choice of the exponential function was based on life-
time modeling studies, which could be better modeled Table 1: Recognition rates of individual channels vs
with (1 — tanh(z)) or a similar function. The crucial ~ temporal multimodal integration.

heuristic of our method is the length of considered past,

and how many correct scores it includes. Clearly, the Integrated|| 304 | 47.50%
degeneracy model leaves room for refinement. Incor- Face 210 | 32.81%
porating contextual information successfully into the Integrated|| 173 | 97.74%
model and learning appropriate parameters from data \oice 171 | 96.61%

are possible refinements.

4. Experiments Table 2: Correct recognition at variable history

] ] ) o lengths.
We chose face, voice, and fingerprint as individual

biometric modes for simulating channels with different History length (secs)| 0.5 | 1.0 | 2.0 | 5.0
temporal characteristics. The lack of a suitable multi- Correct recognition || 304 | 310 | 318 | 301
modal corpus with face recognition, voice verification, Recognition rate (%)| 47.5 | 48.4 | 49.7 | 47.0

and fingerprints of individuals forced us to simulate in-
dividuals by matching independently collected data into
virtual identities for24 individuals. Scores from each ) )
channel are obtained as detailed below. Our goal is to 4.3. Fingerprint

a.ChieVe Continuous mu|tim0da| authentication Wh|Ch iS A Subset Of fingerprint data was Obtained from the
more accurate than the component channels and gives pyvc2002 fingerprint verification competition. A demo
meaningful results at any point in time. A second set version of fingerprint identificatiofverification soft-

of experiments was run with different lengths of past ware [14] was used to obtain similarity scores between
scores in consideration. fingerprints. The software extracts minutiae-based fea-
tures. It handles rotation and intensity variations. For
successful operation it requires a minimum of 10 fea-

4.1. Face Recognition tures for each fingerprint.

This is the channel with the highest reporting fre-
quency. Face scores are obtained from a face recognizer4.4. Results

based on Eigenfaces [12]. Images are obtained using a e expect that temporal integration would be useful
face detector built on [13] from 20fps video. For each py enabling continuous authentication and by improv-
individual, there is @ min video containing-80 frames ing accuracy of a multimodal biometric system. Figure

at (near) frontal pose20 images from frontal images 3 shows decisions made by our method over a period of
were used for training. The data does not have frontal 32 seconds (each tick = 1 frame). The simulated user

pose throughout the entire video sequence, hence the s the authentic (virtual) identity over the entire period,
recognition does not provide good scores eveny:s. so that al indicates a correct authentication, and a
marks where the system fails to authenticate the iden-
. e tity correctly. The varying face recognition scores are
4.2. Voice Verification dtli/e to faceymotion, V\i/he?e it becomg(las frontal 6 times
A subset of the TIMIT database [10] was used. The during the 32 second period. Better recognition scores
subset contains LPC cepstrum feature vectors. The are obtained when the face became full frontal in view.
energy in all recordings was normalized to compen- The top three graphs show individual channel scores.
sate for possible differences in loudness. After pre- The bottom graph shows the decisions obtained by our
emphasis]6th-order LPC-cepstra were calculated for method with a history length @f.5 second for all chan-
32ms frames centered dims intervals. The feature  Nels. The first few points are not affected by temporal
vectors are the rows of the resultant matrix. Each frame integration due to insufficient history. In the case of a
is used as an independent sample drawn from the dis- Non-temporal multimodal system, all (if any) decisions
tribution of that speaker. Each speaker is modeled as Would have to be based on what is observed at that point

a Gaussian. In total just undebs of training data per ~ in time, regardless of what happened in the instant be-
speaker are available. Log-likelihoods are the scores for fore. We can poll our system at any time for an authen-
voice verification. tication.
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Figure 3: Temporal integration over a period of 32
seconds. Individual channels report scores in real
time as they become available; note the single finger-
print score in frame 141. The bottom graph shows
binary verification decisions made at every frame, a
1 being valid authentication.

To verify that integrated results are actually com-
parable to individual channel rates, we compared the
correct recognition counts of integrated and individual
channels. Table 1 shows this comparison over the peri-
ods when each individual channel is active.

Table 2 shows the effect of history length on recog-
nition. The history length is applied to all channels.
Our results suggest that there is a cross-over point for
the length of relevant history, although more extensive
study is necessary.

Figure 4 shows an enlarged sequence between
frames 205 and 220 (0.75 seconds). Vertical lines show
the variances of propagated distributions around the
means since the last score. Fingerprint channel is omit-
ted from both Figure 4 and Figure 5 since the only score
lies beyond the relevant history of 0.5 seconds. An au-
thentication result was requested 10 times within each
frame. Our method is only limited by the underlying
hardware in terms of temporal resolution, and an au-
thentication score can be obtained given any point in
time.

Figure 5 shows the same enlargement for a system
that only integrates channels. Authentication is only
possible when at least of the channels report an opinion.
Note that in Figure 4 and Figure 5 the authentication is
based only on face recognition scores for the first half
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Figure 4. An enlarged version of Figure 3 between
frames 205 and 220. Each frame is polled 10 times
within the frame. Vertical lines show the variances
of propagated distributions around the means since
the last score. Fingerprint channel is not shown since
the only score is beyond the history window of 0.5
seconds. Circles show actual scores from Figure 3.

ate what has been seen within the lasieconds even if
there were no scores reported from any channel, which
would be impossible without temporal integration.

5. Conclusion

We have introduced a new model for temporal in-
tegration in biometric user authentication and devel-
oped an initial method for a continuous authentication
system. Our temporal integration method depends on
the availability of past observations, which makes the
length of relevant history an important heuristic. An-
other important design choice is the degeneracy func-
tion. The existence of a cross-over point in the history
suggests further investigation of the degeneracy.

We have shown on simulated data that our prelimi-
nary system can provide continuous authentication re-
sults which are consistently better than individual com-
ponents of the system. Clearly, gathering a true multi-
modal database is very important for continued work in
this field.

When the history length is set ti the system ig-
nores temporal integration and degenerates into a mul-
timodal system. Although our approach attempts to
minimize the filtering effect of false positives and false
negatives, our temporal integration method would suf-

of the sequence as no previous data was recorded from fer from this smoothing behavior to some degree as it

other channels within the last 0.5 seconds. Depending
on the length of relevant history, our system can evalu-
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stands. The net effect of this behavior is integration of
positive decisions, as well as negative ones, as expected.
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Figure 5: An enlarged version of Figure 3 between
frames 205 and 220. Channel integration only, no
temporal integration was performed. The system
can perform authentication only when a score was
reported by at least one channel.
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Abstract

In this paper we present a method of automatic color
correction of face images and its application in a face
detection algorithm. The color correction method is based
on the phenomenon of color constancy observed in human
visual perception. This technique is further applied in a
face detection system, which draws upon the analogy to
the parallel organization of visual neural pathways, the
magno- and parvocellular channels. Presented method
proved to be efficient in diverse background and
illumination conditions, including face images with
background chromatically close to human skin and where
prominent facial features are obscured by adverse
illumination conditions.

1. Introduction

Processing of human face images is an important
research area with many applications, ranging from image
enhancement to automatic face recognition in security
systems. Beside the face itself, most face images contain
background that must be discarded before subsequent face
recognition process. Thus in most cases the first step in
the image-processing task is the detection and localization
of the face in the image.

A comprehensive overview of state-of-the-art face
detection methods is presented by Yang et al. [1].
Particularly the knowledge-based, feature invariant, and
template matching algorithms are listed as the most
frequently used ones.

Human skin color can be regarded as an invariant
feature and so are the skin color based methods classified
by Yang et al. In fact, the skin color is an easily
accessible,  computationally  inexpensive  feature.
Therefore it has been used in various face detection and
recognition systems [2,3,4].

Despite the apparent skin color variations between
different ethnic groups the actual skin chromaticity
parameters can be clustered into a surprisingly compact
set, which allows very accurate modeling [5]. The
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resulting skin color model can be used for color-based
image segmentation focused on locating the skin-colored
areas. This method of segmentation can deliver very
precise distinction between the face and non-face areas of
the image, provided that the background differs
chromatically from the skin tone. The skin colored areas
considered for further face recognition (verification or
identification) can be accurately cropped out from the
original image.

Skin model-based segmentation can result in precise
skin area detection only if the model was created using
the same spectral content of the skin illuminant as in the
processed face image. Usually the information about skin
illuminant is unknown for an arbitrary color image.
Therefore a mismatch can occur between the model
assumptions and the chromatic properties of skin depicted
in the actual image. To avoid this mismatch it is necessary
to normalize the image chromatically by introducing a
chromatic frame of reference, common to both the model
and the segmented image.

Precise retrieval of the spectral content of the
illuminant in an arbitrary visual scene is an ill-posed
problem [6]. Therefore a few heuristic methods have been
proposed to normalize the chromaticity of the image [7].

Humans are known to cope well with the problem of
color discrimination under varying illuminants thanks to
the mechanism of color constancy observed in the natural
visual processing [8]. In order to process a color face
image acquired under unknown lighting conditions it is
necessary to first employ a color correction mechanism,
which would do what the phenomenon of color constancy
does in humans.

The classical two assumptions that most color
correction methods are based on are the “white world
assumption” and the “gray world assumption” [9]. The
first one assumes that there is a part of each image that is
white. The second one postulates that all colors in the
image should average to gray.

Hsu et al. [10] presented an interesting approach
toward color correction of face images. They proposed an
automatic color correction based on the localization of
pixels with top 5% of luminance in the image, and assume



those pixels to be ‘white’ (the “white world assumption™).
Based on the chromatic distance between the white color
and the actual color of the selected pixels the entire
picture is being corrected. This method works with
images that contain no specular reflections. However, in
non-controlled environment or where the illumination
control is limited, the specular reflections of the face
appear very frequently.

The “gray world assumption” is not applicable to face
images either, taking into consideration the fact that face
images normally contain large skin-colored areas.

In this paper, we propose a new method of color cast
removal from face images based on the inherent
chromatic features of the face itself. In order to take full
advantage of the method we incorporate it into a new
robust face detection algorithm inspired by the
organization of the human visual pathways (magno-and
parvocellular channels) [8].

The rest of the paper is organized as follows: firstly,
the general assumptions and details of the proposed
method are explained. Then the proposed method is
employed in a face detection algorithm. Results and final
remarks conclude the paper.

2. The concept of image color correction
inspired by the color constancy phenomenon

In order to be compliant with the assumption that the
skin model must be built around a common frame of
reference with processed face image we propose to use
the chromatic information contained in the eye area as
such a reference. We use this reference to perform the
chromatic correction of the entire image. This process can
be interpreted as a chromatic normalization.

The vast majority of images that are otherwise suitable
for face verification (frontal pose, no occlusions etc.)
show the face in such a way that both or at least one of the
eyes are clearly visible. The image of an open eye
contains normally the pupil, the iris, the eye-white and the
eyebrow. A close inspection of eye images reveals that
the eye-whites and the pupil areas are the locations, which
are chromatically close to gray. The concept of the
chromatic normalization can be best formulated as
“bringing to gray what is closest to gray”.

The proposed method is to find in the image of the eye
pixels that are closest to gray. Consequently the chromatic
coordinates of such pixels are modified to match gray,
and same transformation is applied to the entire image. In
order to perform this normalization procedure it is
necessary to: localize the eye areas in the image, crop out
the eye images and find the appropriate pixels for
correction.
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3. Color correction algorithm and creation of
the skin color model

We build the skin color model using samples from face
images from the VIDTIMIT database [11]. Before we
take the samples, the images have to be chromatically
normalized. To do that, we first locate the eye areas in the
image. In our experiments we found them manually. We
select for correction the areca of left or right eye,
whichever has the lower mean luminance. We assume that
if the specular reflections are present, they will be more
prominent in the overall “brighter” eye image.

For each pixel in the cropped eye image a distance
from gray is calculated, using the formula:

Dy= abs(R-G) + abs(G-B) + abs(B-R), €]

where D, is the distance from gray and R G, B are
corresponding red, green and blue chromatic coordinates
of the pixel. The pixel whose D, is smallest is selected as
the normalization reference and this pixel will be brought
to gray. Next, the target gray coordinates C, (equal for all
three RGB channels) of the pixel are calculated as the
rounded average of its actual coordinates:

C,=round(R+G+B)/ 3. 2)
The difference between the original RGB coordinates

of the pixel and its new target gray coordinates is
calculated as follows:

Dr= R - C,, 3)
DG: G- Cg,
DB: B - Cg.

The calculated values of Dy, Dg, and Dp are
respectively subtracted from corresponding red, green and
blue chromatic coordinates of every pixel in the original
image. Should the resulting coordinate exceed the allowed
range, its value is set to the extreme allowed value.

The described color correction was performed on 13
face images from the VIDTIMIT database. Then, from
each image a 30 by 30 pixels patch containing skin from
the face was cropped out. Each of the patches (initially in
RGB format) has been converted into YCbCr color space,
and the Y coordinate discarded. Resulting Cb and Cr
coordinates have been clustered and their distribution
modeled by a sum of two normal distributions (Figure 1).
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Figure 1. Skin color model in the YCbCr color space.
The graph represents a probability density distribution of
Cr and Cb coordinates of pixels that belong to skin-
colored areas of the image.

4. Skin-color oriented image segmentation

For the processed image, the probability that each
pixel’s color belongs to the skin model distribution is
calculated. The calculated probability values are stored in
a new grayscale image, further referred to as the “skin
map”.

Performance of the model has been tested on a set of
images different from those used for the creation of the
skin color model. For each of the images the coordinates
of the eyes were found manually, like during the model
training. The test images were treated using the color
correction procedure as described in Section 3. The
model was tested for segmentation on images with and
without the proposed color correction procedure. Example
results are presented in Figure 2:

5. Application of the color correction method
to face detection

Color information is used in many face detection and
tracking algorithms. If all of the images originate from the
same camera type and the spectral content of the
illuminant is known, color-based segmentation is a way to
quickly and robustly localize skin-colored areas without
applying any prior chromatic correction. Typically,
precise shape-based face detection techniques are applied
after the color-based image segmentation [1].

However, if the face in the image is illuminated with a
light source of unknown spectral power distribution,
or/and the illumination is highly non-uniform, this
approach often produces errors. Frequently the skin area
in the image is not detected, or even worse, erroneously
labeled.
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(c) (d)

Figure 2. Results of the skin-color segmentation of the
face images: (a) original image, (b) skin map of the
original image, (c) original image after color correction,
(d) skin map of the image after color correction.

In order to be able to use the color information to
detect face in any image, we draw upon the analogy to the
natural human visual system, which is known to
successfully cope with the task of distinguishing colors in
the presence of various illuminants.

Firstly, we revert to the idea of two separate neural
pathways in the human visual system, the parvocellular
and the magnocellular pathways [8] (further referred to as
P-channel and M-channel, respectively). The M-channel
conveys the generic shape, motion and intensity
information, while the P-channel is responsible for the
transmission of fine detail and color information.

As shown in numerous studies in visual search tasks,
humans use the information from both neural pathways to
find the desired information from a visual scene. For a
given scene, the information from the channel that
conveys the more discriminating data is used. If the object
of interest stands out chromatically from the rest of the
scene the color information is predominantly used. In a
chromatically uniform scene the shape information
prevails.



Therefore, we propose to use the color information
simultaneously ~ with  shape-based face detection
techniques for robust detection of faces in images as a
high-level analogy to the M/P-channel visual processing
in humans.

6. M/P-channel inspired face detection

Since the M- and P-channel processing is responsible
for processing qualitatively different information about
the image we propose to reproduce this dichotomy in a
face detection system. In particular, we design a shape
processing routine to model the M-channel, and a color
processing routine to model the P-channel.

7.1 M-channel-based search

To model the M-channel search for faces in the visual
scene (image) we use a template-matching approach. As a
template a general grayscale ‘average face’ image is used
(Figure 3).

Figure 3. Average face template, resolution 115x119
(columnsxrows).

The search process is performed as follows: the
original image is converted into its grayscale version.
Both the resulting grayscale image and the face template
are high-pass filtered to reduce high contrasts in the face
caused by non-uniform lighting distribution, specular
reflections and self-shadows. Filtered image is divided
into highly overlapping windows (5 pixels overlap) of the
same size as the face template. For every window a 2D
correlation coefficient with the face template is
calculated. Negative correlation coefficient values are
changed to null. Resulting values from the range (0,1) are
regarded as probabilities of finding the face at a given
window.

7.2 P-channel-based search

For each monochromatic window processed as
described above, a corresponding window of identical
size and location is cropped out of the original color
image. Since each window is expected to contain a face
image, we process them as if they would indeed contain a
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face. Figure 4 shows an example of this procedure. Figure
4(a) shows a chosen window before correction. Using the
geometry of the average face template we automatically
designate the areas that are most likely to contain the eyes
in each window, presuming that the face is indeed there.
Those areas are shown in Figure 4(c) and (d). Selection of
the chromatic reference point for normalization is
depicted in Figure 4(e). Consequently we perform color
correction procedure described in Section 3, but the
correction is applied to the current window only, rather
than the entire image. The color-corrected window is
shown in Figure 4(b).

(e)

Figure 4. Automatic color correction of the image
window; (a) original window, (b) window after color
correction, (c) right eye area, (d) left eye area, (e)
selection of the chromatic point of reference for color
correction. Window taken from an image acquired from
an USB camera (IBM), resolution 320%240. Window
resolution 60x60.

Following the correction, a skin map is calculated for
each window using the skin model as described in
Sections 2 and 3.

Calculating the skin map for every window is a high
computational burden. In order to speed up this stage,
after the color correction step every window is
downsampled by the factor of 4, and the skin map is
calculated on the downsampled window.

The probabilities calculated for every pixel of the
window are then averaged, which gives a mean likelihood
measure that the given window contains the image of
human skin.

7.3 Combining the M- and P-channel information

The procedure eventually returns two probability
values for every window: P;, probability that the shape in
the window has a shape of a human face, and Pg,
probability that the window contains object colored like
human skin.



Since the information used in shape and color
processing are obtained independently we calculate the
joined probability that the window contains a face Pg; by
multiplication of probabilities:

PS,L=PS'PL- (4)

The window with the highest Pg; is a candidate to be
the actual detected face in the image. However, the exact
size of the face in the image is not a priori known, so it is
necessary to perform the face search as described above
for a few scaled versions of the face template. For each
run with a different template size, we obtain a new Py
and the window that corresponds to it. We choose the
window wit the highest overall value of the probability
Ps;.

The presented method of color correction for face
detection has been tested on high quality images from the
VIDTIMIT database, pictures with adverse lighting
conditions taken from a web-cam, and scanned
photographs. Figures 5-9 show the results of the
experiments. Figure 5 shows an example of a good quality
picture taken from the VIDTIMIT database. Figures 6, 7
and 8 show the images acquired from a computer USB
camera (IBM), taken in our laboratory, where the walls
and the ceiling are chromatically close to the color of the
skin. The face in Figure 6 is illuminated from its right side
with daylight (coming from a window). Due to this
condition the right side of the face shows strong
reflections while the left side remains in the shadow.
Figures 7 and 8 have the same daylight illuminant as
present in Figure 6, additionally augmented by warm-
white light originating from the fluorescent lamps
overhead. In those pictures, top left part of the head shows
highlights and the entire scene is illuminated by sources
of two distinctly different spectral contents. Finally,
Figure 9 shows a picture scanned from a paper
photograph and saved in low resolution. In this figure, the
background is chromatically very close to the skin tone.

Figure 5. Image from VIDTIMIT database (res. 512x384)
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Figure 6. Image acquired from an USB camera (res.
320%240)

Figure 7. Image acquired from an USB camera (res.
320%240)

Figure 8. Image acquired from an USB camera (res.
320%240)

Figure 9. Image scanned from paper photograph,
resolution of the jpeg compressed image 157x221.



7. Conclusions

In this paper we propose a method that successfully
performs color correction of face images. We presented a
way to incorporate this method into a generic algorithm
that detects faces in images of various resolution and
quality, where the face image may be distorted by adverse
illumination. The advantage of the technique is that it
detects a face if it is present; if it is not this fact can be
inferred from the probability measures obtained during
the detection process.

The algorithm may produce erroneous detection only
in rare cases where neither the shape, nor the color can
deliver reliable information about the location of the face.
This can happen when the shape of the face is heavily
distorted by adverse lighting conditions and at the same
time the color of the background is indistinguishable from
the skin tone. In such cases, due to lack of reliable color
clues the system relies entirely on the template matching
to find the best face candidate. In order to improve the
system performance in such cases more appropriate
filtering method than simple high-pass filter should be
applied.
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Abstract

We present two novel methods for extremely low-
dimensional representation of facial images that achieve
graceful degradation of recognition performance. e have
observed that if data is well-clustered into classes, fea-
tures extracted from a topol ogically continuous transforma-
tion of the data are appropriate for recognition when low-
dimensional features are to be used. Based on this idea,
our methods are composed of two consecutive transfor ma-
tionsof theinput data. Thefirst transformation isconcerned
with best separation of the input data into classes and the
second focuses on the transformation that the distance re-
lationship between data points before and after the trans-
formation is kept as closely as possible. We employ LDA
(Linear Discriminant Analysis) for the first transformation,
and SOFM (Self-Organizing Feature Map) or MDS (Multi-
Dimensional Scaling) for the second transformation. We
have evaluated the recognition performance of our meth-
ods. LDA combined with SOFM method and LDA combined
with MDS method. Experimental results using Yale, AT& T
and FERET facial image databases show that the recogni-
tion performance of our methods degrades gracefully when
low-dimensional features are used.

1. Introduction

In computer vision research, dimensiona reduction is one
of the most important problem. Especially, in face recogni-
tion research, statistical methods for feature extraction such
as PCA (Principal Components Analysis) [1] [2], ICA (In-
dependent Components Analysis) [3] [4] and LDA (Lin-
ear Discriminant Analysis) [5] [6] are widely used for
dimensional reduction. The problem on extremely low-
dimensional image representation for face recognition has
little been investigated while many researchers study on
face recognition robust to illumination [7] [8],posture [9]
and facial expression changes [10]. When facial feature
data need to be stored in low capacity storing devices such
as bar codes and smart cards, extremely low-dimensional
image representation of facial datais very important.

In this research, we present two novel methods for low-
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dimensional data representation of which the recognition
performance degrades gracefully. The technique reduces
dimension of high-dimensional input data as much as pos-
sible, while preserving the information necessary for the
pattern classification. The algorithms like PCA, LDA and
ICA can be used for reduction of the dimension of the input
data but are not appropriate for low-dimensional representa-
tion of high dimensional data because their recognition per-
formance degrade significantly. For low-dimensional data
representation, SOFM (Self-Organizing Feature Map) [11],
PP (Projection Pursuit) [12] and MDS (Multi-Dimensional
Scaling) [13] are proposed. These techniques suitable for
data representation in low-dimensions, usually two or three
dimensions. They try to represent the data points in a such
way that the distances between points in |ow-dimensional
space correspond to the dissimilarities between points in
the original high dimensional space. However, these tech-
niques do not yield high recognition rates mainly because
they do not consider class specific information. Our idea
is that these methods incorporated with class specific infor-
mation can provide high recognition rates.

We have found that if data is well-clustered into classes,
features extracted from atopologically continuous transfor-
mation of the data are appropriate for recognition when ex-
tremely low-dimensional features are to be used. Based on
this idea, we first apply a transformation to the input data
to achieve the most separation of classes, and then apply
another transformation to maintain the topological continu-
ity of the data that the first transformation produces. By
Topological continuity [11], we mean that the distribution
of data before and after dimensional reduction is similar in
the sense that the distance relationship between data points
is maintained.

To experimentally prove our claim, we have proposed
two novel methods for extremely low-dimensional repre-
sentation of data with graceful degradation of recognition
performance. It is composed of two consecutive transfor-
mations of the input data. The first transformation is con-
cerned with best separation of the input data into classes
and the second focuses on the transformation in the sense
that the distance relationship between data points is kept.
Our methods are implemented as the following. The first



method employs LDA and SOFM for the transformations.
SOFM preserves the distance relationship before and after
the data is transformed. This way, it is possible to repre-
sent data in low-dimensions without serious degradation of
recognition performance. The second method applies LDA
and classical MDS. The MDS preserves the distance rela-
tionship before and after the data is transformed as closely
aspossible.

The following section gives a brief overview of the
feature extraction and dimensional reduction methods that
have preciously been used for object recognition. In section
3, we describe the proposed LDA combined with SOFM
method and the LDA combined with MDS method, respec-
tively. (Let us call them ‘LDA+SOFM’ and ‘LDA+MDS
methods, respectively.) We report the experimental re-
sults on the recognition performance of LDA+SOFM and
LDA+MDS methods in section 4.

2. Dimensional Reduction and Topo-
logical Continuity

Facia images of high resolution exhibit significant correla-
tion between neighboring pixels. There have been reported
many algorithms for dimensional reduction and feature ex-
traction. Dimensiona reduction methods can be catego-
rized into topologically continuous map and topologically
discontinuous map methods. Among the former methods
are SOFM, MDS and GTM (Generative Topographic Map-
ping) [14] and these methods are used mainly for data vi-
sualization. LDA, Kernel LDA [15] and multi-layer neural
networks are examples of the latter category and are mostly
used for pattern classification [16].

2.1. Difficulty of Extremely L ow-Dimensional
Data Representation

We can achieve very low-dimensional data representation
with graceful degradation of performance by using a topo-
logically continuous map method when the dataiswell clus-
tered into classes. However, the typical facial image datain
real environments do not have well-clustered distribution as
shown in Fig. 1. Fig. 1 shows an example that within-class
variance is much higher than between-class variance. In
such case, it is ot guaranteed to achieve high classification
performance by atopologically continuous map method al-
though we can get alow-dimensional data set. Accordingly,
we haveto focus more on the discriminant power rather than
dimensional reduction in the case of Fig. 1. Since LDA
yields a linear transformation that minimizes within-class
variations while maximizing between-class variations, we
can apply LDA tofacial imagesin real environments[5] [6].

In an LDA method, the dimension of feature spaceisre-
lated to the number of classes. It means that we might not
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(b) (© (d)

Figure 1: Facial imagesin the case of illumination changes.
The images show that within-class variances are much
higher than those between-class variances. For example,
the cosine distance between (a) and (b) is0.622 though they
are from the same person. On the other hand, the cosine
distance between (a) and (c) is 0.933 though they are from
different persons. The value closer to 1.0 represents more
similarity in the case of cosine distance.

@

be able to achieve dimensional reduction lower than the di-
mension of input space depending on the number of classes.
In addition, blind dimensional reduction using just afew ba-
sis vectors that correspond to large eigenvalues drastically
degrades the recognition rate [17].

3. Our Methods for Low-Dimensional
Data Representation

3.1. Two-Stage Dimensional Reduction

We present two methods for extremely low-dimensional
data representation by applying two different transforma-
tions in a row. The first stage is only concerned with
best separation of classes. Once the data is rendered well-
separated into classes by the first stage transformation, the
second stage transformation only focuses on preservation
of topological continuity before and after the transforma-
tion of the data. As previously described, the idea is based
on the fact that if data is well-clustered into classes, fea-
tures extracted from atopologically continuous transforma-
tion of the data are appropriate for recognition when ex-
tremely low-dimensional features are to be used. Fig. 2 il-
lustrates the idea of our method. In the example, the two-
stage dimensional reduction method solely makes a low-
dimensional feature space appropriately for classification.

3.2. Method I: LDA+SOFM

Letusx, € RY. kK = 1,---, M be aset of training data.
LDA produces alinear discriminant function f(x) = WTx
which maps the input data onto the classification space. We
have employed FLD (Fisher’slinear discriminant) asanin-
stance of LDA techniques. FLD findsamatrix W that max-
imizes

WIS, W|

T WS, Wi v



Figure 2. Conceptual illustration of dimensional reduction
of 3D datainto 1D data: (&) shows the input data distribu-
tion in a 3D input space. The curve represents interpol ated
weight vectors of atrained SOFM. Although we can reduce
its dimension into 1D using the SOFM, the datain 1D fea-
ture space become not clustered. An LDA-like method can
map 3D input space onto 2D space so that the data may be
well classified as shown in the figure (b). If any basis vector
of the 2D space were eliminated, we would not classify A,
B and C appropriately using the 1D data projected onto the
remaining axis.

where

c
Sy, i= ZZ (x —m;)( x—mi)T. (©)]
i=1 xex

S, and S, are between- and within-class scatter matrices,
respectively. ; represents i*” class and the mean of class
Xi,» m; iS computed as m; = % > xex, X M denotes the
total mean. W is computed by maximizing J(W). That
is, we find a subspace where, for the data projected onto
the subspace, between-class variance is maximized while
minimizing within-class variance. As a result of the first
transformation, we obtainz = W7''x.

After the stage of LDA, the next stage maps z onto a
low-dimensiona feature space f = G(z) by SOFM. SOFM
is a kind of competitive network. SOFM first determines
the winning neuron using a competitive layer. Next, weight
vectors for all neurons within a certain neighborhood of the
winning neuron are updated using the Kohonen rule [11].
When avector is presented, the weights of the winning neu-
ron and its neighbors move toward the input pattern. After
learning, the neurons of the output layer will be a feature
map revealing a distance relationship within input patterns.
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3.3. Method I1: LDA+MDS
3.3.1 Classical MDS

Given M points and the corresponding dissimilarity ma-
trix, classical MDS is an algebric method to find a set of
points in low-dimensional space so that the dissimilarity
are well-approximated by the interpoint distances. Let us
x; € RN,k =1,---, M beaset of observations and

di1 -+ dmn
D= o : 4)
dipg -0 duwm

be a dissimilarity matrix, where d;; is a squared Euclidean
distance, dij = ||Xl — Xj”2 = <X1‘ — Xj,X; — y]> In sum-

mary, the inner product matrix of raw dataB = XTX can

be computed by B = ——HDH where X isthe data matrix
X = [x1, --,Xp] € RNXM and H is a centering matrix
H=1- —1T1 B isreal, symmetric and positive semi-

definite. Let the eigendecompositionof BbeB = VAV,
where A is a diagonal matrix and V is a matrix whose
columns are the eigenvectors of B. The matrix X for low-
dimensional feature vectors can be obtained as

X = A/?VE ®)

where A,/ isadiagonal matrix of k largest eigenvalues and
V. isits corresponding eigenvectors matrix. Thus, we can
compute a set of feature vectors, X, for alow-dimensional
representation. See [18] for a detailed description.

3.3.2 Mapping onto an MDS subspace via PCA

We could not map new input vectors to features by using
the classical MDS because the map is not explicitly defined
in the classical MDS[19]. We used a method that achieves
mapping onto an MDS subspace via PCA based on the re-
lationship between MDS and PCA. Let Ynips be a set of
feature vectorsin an MDS subspace and Ypca be a set of
feature vectorsin a PCA subspace. Let Anipg denotes the
digonal matrix of eigenvalues of inner product matrix B.
Then, the relationship between PCA and MDS is

Ypca = Amps/?Yups. (6)

The derivation of equation (6) is described in the fol-
lowing [20]. For centered data, the covariance matrix is
¥ = E{XXT} = #;XXT. PCA is concerned with the
eigendecomposition of the covariance matrix as follows;

1
YVpca = MXXTVPCA = VpcaApca. (7)

MDSis concerned with the eigendecomposition of theinner
product matrix B = XTX asfollows;

BVwups = XTXVups = VmpsAwmbps:  (8)



Using equations (7) and (8), we have
XXT(XVups) = (XVMmbps)AMbps 9)

and Vpca = XVups, where Apca ~ Amps. Thefea
ture vector set of PCA subspaceis

VicaX
= (XVwmbs)TX
= VupsB (10

T
= AMDSVMDS

Ypca

1
= Afps YMDs:

Note that, whereas the classical MDS computes inner
product matrix B from the given dissimilarity matrix D
without using input patterns X, in this dimensional reduc-
tion problem for pattern recognition, we can obtain B di-
rectly from the input patterns X. For the purpose of low-
dimensional feature extraction, we need to compute projec-
tionsonto LDA and M DS subspaces. Let p be an input pat-
tern, then the feature vector in LDA+MDS space becomes

foa+mps = (Apda) WEcAWELD p- (11)

4. Experimental Results

We have evaluated the recognition performance of the pro-
posed LDA+SOFM and LDA+MDS methods as follows.

4.1. Experiment |: LDA+SOFM with Yaleand
AT& T Databases

We have compared the recognition performance of PCA [2],
LDA [6], SOFM and the proposed L DA+SOFM method us-
ing three different facial image databases.

4.1.1 Facial Image Databases

Wehave used Yale[21] and AT& T [22] databases. The Yale
database consists of facial images captured in simple back-
grounds. Facial images are gathered under variations of lu-
minance, facial expressions, glasses and timeintervals. The
database contains 165 images of 15 persons. The facial im-
ages of the AT& T database are gathered under variations of
postures. The database contains 400 images of 40 persons.
We tightly cropped and normalized all the facial imagesin
each database for the experiment.

4.1.2 Trainingand Testing

Inthe FLD stage, we compute the linear transformation ma-
trix for FLD and then transform the entire patternsin train-
ing sets into feature vectors using the matrix. In the test
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Table 1. Correct Recognition Rates (%) (C: number of
class)

Yae | AT&T

Dimension| Methods | (C=15) | (C=40)
2 PCA 16.4 119
LDA 41.8 119

SOFM 64.3 71.3
LDA+SOFM | 96.4 86.2
C1 PCA 87.3 94.0
LDA 98.2 94.8

stage, each input pattern was also transformed into its cor-
responding feature vector using that matrix. We have used
anearest neighbor classifier for recognition.

In the SOFM stage, the entire training patterns are rep-
resented by the indices of neurons corresponding to two-
dimensional map. In testing, only the node that is the most
similar to the giveninput patternisactivated. Asaresult, in-
put patterns are classified into classes of the activated nodes.
In the proposed method, the number of input neurons in
SOFM is the same as the dimension of feature vectors ob-
tained from the FLD stage. The output layer represents a
two dimensional square map. Table 1 shows the recogni-
tion performance in the case of dimensional reduction to
two dimensions.

4.1.3 CrossValidation

The performance of the SOFM algorithm varies depending
on the initial parameters. Hence, we have applied cross
validation to correctly evauate the performance of SOFM.
We have partitioned the training set into two subsets. One
set is for learning and the other for validation. First, we
change the number of grids. After learning using multiple
SOFMs, we evaluate the performance using the validation
set. We have decided the number of neurons as the number
of grids that have the highest average recognition perfor-
mance. Secondly, after the number of neurons is settled,
multiple SOFMs with various initial parameters are learned
by the learning set. Then we select the SOFM that has high
performance corresponding to the upper 10% in the valida-
tion set.

414 Resaults

We show initial experimental results for extreme dimen-
sional reduction to two dimensions. As shown in Table 1,
LDA+SOFM method performs better than the othersin the
case of very low-dimensional representation. The recogni-
tion rate of LDA is high (98.2%) when a sufficient number,
C-1, of features are used. However, the recognition rate de-



graded significantly to 41.8% when only two dimensional
representation of the data is used. The recognition rate of
SOFM is higher than that of LDA when two dimensional
representation is employed. The experimental results show
that very low-dimensional data representation with grace-
ful degradation of recognition performance can be achieved
by using atopologically continuous transformation after the
input data is rendered well clustered into classes.

4.2. Experiment I1: LDA+MDS with FERET
Database

We have compared the recognition performance of LDA [6]
and the proposed LDA+MDS method using a part of
FERET database [23].

4.21 FERET Database and Experimental Method

The FERET Database is a set of facial images collected by
NIST from 1993 to 1997. For preprocessing, we closely
cropped all images in the database which include internal
facia structures such as the eyebrow, eyes, nose, mouth and
chin. The cropped images do not contain the facia con-
tours. Each face image is downsampled to 50x50 to reduce
the computational complexity and histogram equalizationis
applied.

Thewhole set of images, U, used in the experiment, con-
sists of three subsets named ‘ba’, ‘bj’ and ‘bk’. Basically,
the whole set U contains images of 200 persons and each
person in the U has three different images within the ‘ba,
‘bj" and ‘bk’ sets. The ‘ba’ set is asubset of ‘fa’ which has
images with normal frontal facial expression. The'bj’ setis
asubset of ‘fb’. Theimages of ‘fb’ have some other frontal
facial expressions. The‘ba and ‘bj’ set contain 200 images
of 200 persons, respectively. The‘bk’ setisequal tothe‘fc’
of which images were taken with different cameras and un-
der different lighting conditions. The ‘bk’ set contains 194
images of 194 persons.

For the experiment, we have divided the whole set U into
training set (T), gallery set (G) and probe set (P). In order
to get an unbiased result of performance evaluation, no one
within the training set (T) isincluded in the gallery and the
probe sets. i.e. TN {G U P} = (). The experiment con-
sists of two sub-experiments; The first experiment is con-
cerned with evaluation regarding normal facial expression
changes. We use the ‘ba’ set as the gallery and the ‘bj’ set
as the probe. The second experiment is to evaluate the per-
formance under illumination changes. We have assighed the
‘ba set to the gallery and the ‘bk’ set to the probe. In ad-
dition, we randomly selected 50% of the whole set in each
sub-experiment in order to reduce the influence of aparticu-
lar training set because afacial recognition algorithm based
on statistical learning depends on the selection of training
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images. Thus, a training set contains 100 persons in each
sub-experiment.

We have compared the recognition performance of our
LDA+MDS with that of LDA. In each algorithm, we have
computed alinear transformation matrix that contains a set
of basis vectors for a subspace using the training set, and
then have transformed the entire patterns in the gallery set
into feature vectors. For the test, each input pattern in the
probe set was transformed into its corresponding feature
vector. We used a nearest neighbor classifier for recogni-
tion.

4.2.2 Resaults

As shown in Figures 3 and 4, LDA+MDS method per-
forms better than the others in the case of |ow-dimensional
representation. The experimenta results show that low-
dimensional data representation with graceful degradation
of recognition performance can be achieved by using an
inter-distance preserving transformation after the input data
isrendered well clustered into classes. The recognition rate
for agiven number of features in these figures was obtained
by averaging thirty experiments.

Figures5 and 6 show therecognition rates of LDA+MDS
for three different distance measures, L1, L2 and cosine. We
can see that there is no significant performance difference
between the three distance measures.

5. Conclusion

This research features novel methods for low dimensional
reduction of facial data that do not give significant degra-
dation of the recognition rate. The LDA+SOFM method
achieves very accurate recognition rates although only
two dimensional features are used for recognition. The
LDA+MDS method also outperforms LDA method when
represented in a low-dimensional space. These results ex-
perimentally prove that if datais tightly clustered and well
separated into classes, afew features extracted from a topo-
logical continuous mapping of the data are appropriate
low dimensional features for recognition without significant
degradation of recognition performance.

Our methods are practically useful for face recognition,
especially when facial feature data need to be stored in low
capacity storing devices such as bar codes and smart cards.
It is also readily applicable to real-time face recognition in
the case of alarge database.
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Abstract

Face recognition and verification is an important
problem for many real-world tasks, such as user access
control. In this paper, we describe and evaluate an
automatic face recognition and verification (FRV) system
that has been developed to support user access control
for a shared-use vehicle system program which operates
under real world conditions. In this application, three
important FRV issues are discussed: 1) recognition of
faces over time (i.e., months); 2) user verification using
temporal image sequences; and 3) recognition across
different kiosks. In order to perform robust recognition
over time, a unique feature update method has been
developed and implemented. Further, a method has been
developed to select the best face image among an image
sequence acquired in one vehicle-trip registration session
for verification purposes. The implemented system has
been operated for several months and carefully
evaluated. Under real-world conditions, the proposed
methods achieve 13% improvement in recognition and
15% improvement in verification compared to standard
principal component analysis based techniques.

1. Introduction

Face recognition from still and video images is an
important problem, which has many commercial and law
enforcement applications [1]. Face recognition can be
defined as the task of computing the similarity between
two faces and matching a face with one or more subjects
in a database. On the other hand, face verification
(authentication) can be viewed as a one-to-one system
that compares the biometric information presented by an
individual with the biometric information stored in a
database corresponding to that individual [2]. Although
considerable progress has been made in the field of FRV
[5-10], not many methods have been tested with data sets
from real-world applications that have variable lighting
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and other conditions. Outside some exceptions (e.g., [3]),
FRV algorithms are typically tested on a collection of a
few hundred images, where the pictures are taken under
well-controlled conditions.

In this work, the focus has been to develop and
evaluate a face recognition and verification system by
maintaining and updating a training set operating under
real world conditions. The system supports user access
control for vehicle registration as apart of alarger shared-
use vehicle system program [L3, 14]. In this program,
subscribers utilize smartcards for multiple purposes. The
goal is to identify the mismatches between smartcard-
based user-IDs and the card users to prevent fraudulent
usage. This is an important task not only for this
particular project, but also for wider-scale applications
such as automated teller machines (ATMs), building
access, entry into secure areas, etc. In this framework, the
FRV system is also used for user authentication and has
been tested on a large data set of over 5000 images of
approximately 100 people acquired over several months,
where the collection of images consists of difficult
recognition cases. The difficulty posed by this data set
stems from the fact that the images are taken under
different lighting conditions, at different times and
locations, with different viewing of face directions and
facial expression when the users perform their normal
trip-registration process. For the face recognition stage, a
feature update method has been developed to make it
possible for the system to perform robust recognition over
time. Further, for the face verification stage of the system,
a new method has been developed that chooses the best
face for verification and discards the rest of the images
acquired in one trip registration session to improve the
performance.

2. System description
The application domain of the developed face

recognition/verification system is a shared-use vehicle
system operating on the University of California-



Riverside campus caled UCR IntelliShare. This
intelligent car-sharing system allows multiple users to
easily access a fleet of electric vehicles in order to
improve mobility on campus. In this system, users utilize
smartcards to gain access small kiosk buildings, check out
vehicles with a touchscreen display, and then gain access
to assigned vehicles. At the touchscreen kiosks in the
station buildings, a user swipes his/her smartcard at the
card reader to start the trip registration process. The user
touches the screen to enter information such as
anticipated destination, estimated trip distance, and
number of occupants on the trip. Each time the user
touches to screen to make a selection, a digital picture of
the person is taken via a camera located at the top of the
touchscreen kiosk. The image database for the FRV
system is collected a two of five kiosks. The two
registration kiosks with the camera systems are illustrated
inFigure 1.

Figure 1. System touchscreen kiosks at two different
locations used in the experiments

3. UCR IntdlliShar e face database

A large database of face images and/or image sequences
is an important part of any FRV system. The content of
such a database depends mostly on the purpose of the
system. The UCR IntelliShare database is constructed by
imaging the users via the cameras embedded in the
touchscreen kiosks. The database has over 5000 images
of 99 subjects (76 male and 23 female). The images of
subjects were captured over three months at two separate
kiosks (Figure 1). The acquisition of the images is
performed with minimal cooperation from the users, as
they only perform their typical trip registration process
through the touchscreen display in the kiosks, which takes
approximately 20 seconds. Since special instructions were
not given to the users during the imaging process, the face
pose and distance of the subjects to the camera varies
greatly (e.g., see Figure 2). Therefore the conditions that
the proposed FRV system operates are difficult to work
with than those found in controlled laboratory conditions.
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Figure 2. Example images from IntelliShare face
database

4. Face recognition methodology

The entire FRV system is composed of three stages:
automatic face detection, face normalization, and feature
extraction. The overall effectiveness of the system
strongly depends on the first stage of the system. In this
stage, the face is extracted from the scene and
approximate eye coordinates are located. For face
detection, a combination of color and motion information
is used which is followed by a template-based face search
[15]. The motion change detection map in the face
detection system is obtained by differencing two
consecutive image frames, which are approximately 3
seconds apart on average. Simple differencing however
cannot be used alone for locating faces due to noise,
global illumination changes, and other moving objects in
the scene. For this reason, skin color segmentation [5] is
added as another cue for face location. The skin color
model is obtained by training pixels from face regions,
and applying a line fit model in normalized RGB color
space to pixel color data. After obtaining a tighter face
search area based on motion and color information, the
face search map is downscaled to reduce the face search
time. The search is carried out by using correlation over
different-sized templates to compensate for size changes.
After extracting the face from the refined search map, the
primary facia marks are located and all the faces are
normalized to a standard size to perform recognition and
verification more efficiently.

The second stage is face normalization. The statistical
approach that is used for face recognition requires a face-
in-the-face-in-the-box model, where the extracted face is



registered to the system in an 80x80 pixel box. To obtain
the face-in-the-box model, each image is rotated
automatically based on the eye centers found in the
previous step. Accordingly, the line that passes through
the central points of two eyes is kept horizontal. Then
each face is normalized to a fixed scale to guarantee that
the distance between the two eyes is kept constant to 40
pixels and each face fits in the same box. After face
normalization, histogram equalization is performed for
gray level normalization to partly reduce the effect of
variable illumination strength.

The feature extraction stage of the proposed FRV
system is based on the eigenface approach. This method,
which was originally presented by [4], finds the principal
components of the face image distribution or the
eigenvectors of the covariance matrix of the set of face
images. It is important to note that state of the art in face
recognition has moved on since the eigenface approach,
and many algorithms have been proposed [5-10]. Since
our objective isto study training set maintenance, update
over time and recognition across kiosks, we used the
recognition algorithm given in [4] for the ease of its
implementation.

To obtain recognition models, the proposed system
goes into an off-line mode training stage. The training set
used in this application, which has approximately 150
faces, is a subset of the larger UCR IntelliShare face
database. The images in the training set are also acquired
under uncontrolled conditions, and are manually selected.
These 150 facesin the training set include at |east one and
at most three sample face of each subject. To obtain the
basis vectors for recognition, principal component
analysis is performed on the training set. Each subject’ s
face is projected onto these basis vectors. The resulting
coefficients with Euclidean distance measure are used as
features in recognition and verification. Detailed
explanation of these stages can be found in [15].

4.1. Updating features over time

The performance of face recognition algorithms degrades
vastly over time even when tested with images that are
taken under uncontrolled conditions [3]. To improve the
performance over time, a feature update method is
proposed as illustrated in Figure 3.

Let U be the unknown face to be tested, X be the
feature vector of the unknown face and T be the feature
vector of a known face in the training set. Tj is the jth
feature vector of the i subject in the training database,
where 1Ei £99, 1£]j £ 3. ] varies between 1 and 3, since
for some subjects more than one sample has been used in
the training set. Let p=E(X,T) be the Euclidean distance
between X and T and let |; be the updated feature vector.
In the proposed method, for each day k of a certain week
(inthis application, the 8" week was used after the start
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Figure 3 Feature Update Algorithm Oy represents the
image set acquired on Day k. l,.q represents the best
match for subject n for k™ day. E(l.q) selects the best
match “I,” for subjectn for days fromk=1,..,5)

of image database collection), and for each user i, the best
match is selected based on p as follows: pj=E(Xik,Ti) is
calculated for al days (k with 1£ k£ 5) of the updating
period. Then |= ml'(n (pik) is selected as the new feature

vector. For subjects that has more than one instance (.e.
feature vector) in the training set the update is given as

lilj]= mi'(n (pix) where kt previous k found in Ii[j-1],li[j-
2], ..l

4.2. Face verification through an image sequence

Conventional methods perform face recognition and
verification on single face images. To improve the
verification performance, a method has been developed
that uses image sequence as given in Figure 4. The
system does not need to be trained by an image sequence.
The same training set can be used for verification of both
single and multiple images.

In this method, each image is considered as a classifier
[16]. The distance measure p, which has been defined asa
match score, is calculated for all images in the sequence
acquired in one trip registration session. The one with the
minimum score (i.e. max probability) is chosen as the
best face for verification. If the test image is taken under
different lighting conditions with different pose variances,
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Figure 4. Combining image sequence for face verification
(X represents the images in image sequence acquired for
one subject in one session, P, represents the match score
of X. S(P) selects the best face F to use for identity
verification)

then the distance measure increases. Another reason for
the greater distance measure is due to the failures in the
automatic eye localization and normalization stage. If the
eye centers cannot be located correctly and the face
normalization is carried out inaccurately, the face
recognition performance as well as verification
performance degrades. However, by using the proposed
method in verification, it is possible to compensate for
some of the illumination and pose problems as well as
possible incorrect automatic eye localization and
normalization problems.

5. Test resultsand analysis

In the testing protocol, the testing and the training sets
were separated, so that the images in both sets are
distinct. The testing set (which includes more than 4000
images) is divided into separate subsets based on the time
period that they have been acquired (e.g., March weekl,
May week 1, May week 2, etc.). Each subset has images
taken on different days of the week, and even within each
day there are many variations of the images of the same
subject. The training set (which has about 150 images) is
composed of the images which are acquired only in
March week 1 and May week 1 (that is the first two
weeks that the FRV system is up and running). The
closed universe model was used for testing recognition
performance, and the open universe model was used for
testing verification performance [3]. In the closed model,
every subject (i.e. every person) in the testing set is
trained upon, but in the open universe model, the subject
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in the testing set may not have been trained upon and
could be used as an impostor to test the verification
performance.

5.1 Face recognition performance over time

In the first test, recognition performance degradation was
analyzed over time. The rank n (Figure 5) represents the
number of images that needs to be examined to get the
desired level of performance. The statistics are given by
percentage of correct identification as a function of rank.
The horizontal axis represents the rank, and the vertical
axis represents the percentage of correct matches. For the
ease of visualization, the recognition results are given in
terms of weekly time frames. When the recognition rates
for each individual weekly set are examined, it is apparent
that the performance degrades over time. The
performance degrades from 52% to 36% in the best match
and from 89% to 79% in the top 15 matches after a two
months period.
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Figure 5. Face recognition performance in successive
weeks

To illustrate the improvement obtained with proposed

time-based feature update method, a recognition
experiment was designed on an image set acquired during
the tenth week after the start of system operation. The
recognition experiment is performed by using both
automatically and manually updated training sets
obtained from the data set acquired in the ninth week. The
difference between manual update and automatic update
is that in the manual update method, the images of each
subject in the database are chosen manualy from the

image data set, whereas in the automatic update method,

the images of each subject used for training are chosen
automatically by the proposed feature update algorithm.
As can be seen from Figure 6, a 13% improvement can be
obtained in the first match, and a 5% improvement in the
top 15 matches. The improvement in the case of manual

update is 5% more than that of the automatic update. The



o o o o
m o

o
T

Recognition Rate
()
[hy]

o
i

' -4 - standard training set
----------------------- b-----1 - 8- manualyupdated training set H
i -@- automaticallyupdated training set

o
[

o
T
'
'
'
'
'
'
'
'
'
4
'
'
'
'
|

[

Rank

Figure 6. Face recognition performance after training set
update

reason is that in manual update, the images from the data
set are chosen by considering the quality of image, such
as being fully frontal, having acceptable face size, not
having occlusion or uneven illumination, etc.

To ensure that the improvement is due to proposed
technique, face detection results are checked manually.
The face detection decision is given if eye coordinates are
found correctly within a +5 pixel range. The face
detection performance stays same over time. For the same
testing period, detection rates are as follows: March week
1= 94%, May week 1= 97%, May week 2= 89%, May
week 3= 91%, June weekl= 91%. So if we fix the
detection rate, than the overall performance increase is
due to proposed feature update method.

52 Face recognition
different locations

performance across

The purpose of this experiment is to show that the
recognition performance depends strongly on the
correlation of the training data to the testing data. In other
words, if the recognition system is trained with images
taken with the same physical set-up under consistent
conditions with the testing data, superior recognition
performance can be achieved.

To demonstrate this effect, we have conducted a
recognition experiment by using two training sets (CE-
CERT images and COE images) together with the
manually labeled COE image data. The COE image set
has different characteristics than the CE-CERT image and
acquired  with a different camera set-up. The best
recognition performance of 81% on COE database is
achieved by building the training set with the images
from the same COE image data set as shown in Figure 7.
On the other hand, if recognition tests are performed on
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Figure 7. Face recognition performance in COE kiosk by
using COE and CE-CERT training sets

COE data by using the training test built with CE-CERT
image data, the recognition performance degrades to as
low as 20% using the best match, and 56% using the first
ten matches.

5.3 Face verification performance

The verification performance results are given by FRR
(False Rejection Rate) and FAR (False Acceptance Rate)
curves. The FRR is defined as the probability that a
person is not authenticated to access the trip registration
system even though you are the proper user. On the other
hand, the FAR is the probability that someone other than
the correct person is granted access to the system by
using the person’ s account or card. The performance of a
verification system is judged by the Equal Error Rate
(EER), which is the point in the Receiver Operating
Characteristics (ROC) curve where FAR = FRR.

Figures 8 and 9 illustrate the ROC curves obtained by
using standard verification method and the proposed
method respectively. Both figures are obtained by using a
data set of 274 images acquired in June week 1, from
kiosk 1. For that specific set, 32 trip registration sessions
were made. The False Rejection Rate is found by FR =
EC/C, where EC is the number of client rejections, and C
is the number of client clams. To find the False
Acceptance Rate, impostors were introduced as follows:
For each trip registration session, the actual user is
excluded from the training set and given a false identity,
where the false identity is found by a random number
generated among the system users. Then the False
Acceptance Rate is found by FA = El/I, where El is the
number of impostor acceptances, and | is the number of
Impostor claims.

When a comparison is made between the standard



method where a single face shot is used for verification
with the proposed method where an image sequence is
used, it is apparent that EER falls from 30% to 15.4 %.

6. Conclusions

In this research, an automatic FRV system has been
designed, implemented, and evaluated, operating under
real world conditions. In particular, focus was placed on
the problem of face recognition/verification over long
periods of time by training set maintenance. A new
method to update the feature space was introduced to
make it possible for the system to perform robust
recognition over time. Further, a verification strategy is
described which uses image sequences. Using a temporal
image sequence instead of a single image helps to
overcome some of the problems such as pose,
illumination, and incorrect face and eye coordinate
location, which greatly affect the robustness of the
performance. The effectiveness of both proposed
strategies is demonstrated through experimental results. It
has also been shown that recognition performance
degrades vastly when a system is trained with face images
taken in another location.
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Abstract

We recently introduced a novel approach to face recogni-
tion which consists in modeling the set of possible trans-
formations between face images of the same person. While
our previous work focused on geometric transformations to
model facial expressions, in this article we consider feature
transformations as a means to compensate for illumination
variations. Although this approach requires to learn the set
of possible illumination transformations through a training
phase, we will show experimentally that the trained param-
eters are very robust. Even in the challenging case where
the databases used to train the transformation model and
to assess the performance of the system are very different,
the proposed approach results in large improvements of the
recognition rate.

1. Introduction

Pattern classification deals with the general problem of in-
ferring classes from observations [1]. Hence, the success
of a pattern classification system is based on its ability to
distinguish between inter- and intra-class variabilities. Face
recognition is a very challenging task as different faces have
the same global shape while face images of the same person
are subject to a wide range of variabilities including facial
expressions, pose, illumination conditions, presence or ab-
sence of eyeglasses and facial hair, aging, occlusion, etc.
Illumination, which will be the focus of this paper, remains
one of the toughest variabilities to cope with as shown dur-
ing the FERET evaluation [2] and the facial recognition ven-
dor test 2000 [3].

It is possible to deal with the illumination at three differ-
ent stages: during the preprocessing, the feature extraction
or the classification.

Preprocessing algorithms for illumination compensation
include general image processing tools such as histogram
equalization and gamma correction [4]. A simple but very

This work was supported in part by France Telecom Research & De-
velopment.

effective preprocessing, which is based on Weber’s law, con-
sists in applying a logarithm transform to the image inten-
sity [5, 6]. Another class of preprocessing algorithms con-
sists in separating an image into its reflectance and illumi-
nation fields [7]. An assumption which is generally made
for this type of approach is that the luminance varies slowly
across the image while sharp changes can occur in the re-
flectance.

At the feature extraction stage, the goal is to derive fea-
tures that are invariant to illumination. Edge maps, deriva-
tives of the gray level and Gabor features were compared
in [5] and an empirical study showed that none of these
features was sufficient to overcome the variations due to
changes in the direction of illumination. Another idea is
to learn features which are insensitive to illumination vari-
ations such as the Fisherfaces [8].

Finally, various algorithms have been proposed to cope
with the illumination variation at the classification stage.
The idea underlying [9] is that the set of images of an object
in fixed pose, but under all possible illumination conditions,
is a convex cone in the space of images that can be approx-
imated by low dimensional linear subspaces. [10] proposed
an approach based on 3D morphable models which encode
both shape and texture information and an algorithm that
recovers these parameters from a single face image.

We recently introduced a novel approach to face recog-
nition which consists in modeling the set of possible trans-
formations between face images of the same person [11].
While our previous work focused on geometric transforma-
tions to model facial expressions, we introduce in this ar-
ticle feature transformations as a means to compensate for
illumination variations. This approach to illumination com-
pensation, which works at the classification stage, involves a
training phase to learn the set of possible illumination trans-
formations. While approaches based on learning can suffer
from poor generalization when the training and test sets are
different, we will show experimentally the good generaliza-
tion ability of our approach.

The remainder of this paper is organized as follows. A
brief review of the probabilistic model of face transforma-
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tion is given in the next section. Section 3 introduces our
model of illumination transformation. Section 4 focuses
on how to find jointly the best set of geometric and feature
transformations between two face images. Finally, section
5 summarizes experimental results for a face identification
task. While it is common to train and test a system on the
same database, to assess the performance of our novel illu-
mination compensation algorithm we used two very differ-
ent databases. We think this is a much more realistic ap-
proach as, in practice, one never has access at training time
to the exact test conditions. Even in this challenging case
the proposed approach results in large improvements of the
recognition rate.

2. A modéd of face transformation

2.1. Framework

While most face recognition techniques directly model the
face, [11] models the set of possible transformations be-
tween face images of the same person. The global face
transformation is approximated with a set of local transfor-
mations under the constraint that neighboring transforma-
tions must be consistent with each other.

Local transformations and consistency costs are embed-
ded within the probabilistic framework of a 2D HMM. At
any position on the query face image, the system is in one
of a finite set of states where each state represents a local
transformation. Emission probabilities model the cost of lo-
cal transformations and transition probabilities relate states
of neighboring regions and implement the consistency rules.

A major assumption in our system is that the intra-class
variability is the same for all classes and, thus, that the
model of face transformation is shared by all individuals.
Hence, it can be trained on pairs of images of persons that
are not enrolled in the system.

2.2. Local Transformations

Let us assume that we have two face images: a template
image Fr and a query image F. Feature vectors are ex-
tracted on a sparse grid from F¢ and on a dense grid from
Fr. We then apply a set of local transformations at each po-
sition (4, j) of the sparse grid. In our previous work, these
transformations were limited to geometric transformations
and, more precisely, to translations. Each translation maps
a feature vector of F with a feature vector in Fr.

Let o, ; be the observation extracted from F, at position
(i,7) and let ¢; ; be the associated state (i.e. local deforma-
tion). If 7 is a translation vector, the probability that at posi-
tion (4, j) the system emits observation o; ;, knowing that it
isinstate ¢; j = 7,is b] ;(0i,;) = P(0i lg:,; = 7, A) where
A = (A, Anm). We separate X into face dependent (FD)

parameters A7 which are extracted from Fr and face inde-
pendent transformation (FIT) parameters A, i.e. the pa-
rameters of the shared transformation model M. The emis-
sion probability b7 ;(o;,;) represents the cost of matching
0;,; With the correspondmg feature vector in Fr that will be
denoted m7 ;. b7 ; (o ;) is modeled with a mixture of Gaus-
sians as Imear comblnatlons of Gaussians have the ability to
approximate arbitrarily shaped densities:

b‘rk
01] wl]Tj O’LJ

b;”“(ol’j) s are the component densities and the w; ;s are
the mixture weights and must satisfy the following con-
straint: V(i,7), >y wfj = 1. Each component density is

a D-variate Gaussian function of the form:

T,k .k
o {=J0ous ~ 7T Vo i)
(2m) % 2k, |2

&
biT,j (0ij) =

where ;f * and E’“ are respectively the mean and covari-
ance matrlx of the Gaussian, D is the size of feature vectors
and |.| is the determinant operator. We use a bi-partite model
which separates the mean into additive FD and FIT parts:
k
pij = mi;+ o @)
where m7 ; is the FD part of the mean. w} ;, 6F; and XF ; are

FIT parameters Intuitively, b7 ; should be approxmately
centered and maximum around m7 ;.

2.3. Neighborhood Consistency

The neighborhood consistency of the local transformations
is ensured via the transition probabilities of the 2D HMM.
We explain in the next section that a 2D HMM can be ap-
proximated by a set of interdependent horizontal and verti-
cal 1D HMMs. The transition probabilities of the horizontal
and vertical 1D HMMs are P(¢; ; = 7|¢; j—1 = 7', A) and
P(g;; = Tlgi—1; = 7', A). They model respectively the
horizontal and vertical elastic properties of the face at po-
sition (¢, j) and are part of the face transformation model
M.

2.4. Turbo-HMMs

While HMMs have been extensively applied to 1D prob-
lems, the complexity of their extension to 2D grows expo-
nentially with the data size and is intractable in most cases
of interest. [12] introduced Turbo-HMMs (T-HMMs), in
reference to the turbo error-correcting codes, to approxi-
mate the computationally intractable 2D HMMs. A T-HMM
consists of horizontal and vertical 1D HMMs that “commu-
nicate” through an iterative process by inducing prior prob-
abilities on each other. The T-HMM framework provides
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efficient formulas to 1) compute efficiently P(Fq|Fr, M),
i.e. the probability that F and F¢ belong to the same per-
son knowing the face transformation model M, and 2) train
automatically all the parameters of M.

The computation of P(Fg|Fr, M) is based on a mod-
ified version of the forward-backward algorithm which is
applied successively and iteratively on the horizontal and
vertical 1D HMMs until they reach agreement.

The Maximum Likelihood Estimation (MLE) of the pa-
rameters of M is based on a modified version of the Baum-
Welch algorithm. To train M, we present pairs of pictures (a
template and a query image) that belong to the same persons
and optimize the transformation parameters A\, to maxi-
mize the likelihood of the pairs of pictures.

3. Modeling theillumination variation

In this section, we will first show how to transform the il-
lumination into an additive variability in the feature domain
and then, how to constrain the illumination variation.

3.1. Theillumination as an additive variability

The starting point of our approach is the well-known as-
sumption that an image I can be seen as the product of a
reflectance R and an illumination L [13]:

I(z,y) = R(z,y) x L(z,y)
Applying the logarithm operator, we obtain:
log I(,y) = log R(z,y) + log L(z, y)

and the illumination turns into an additive term in the pixel
domain. If the feature extraction involves only linear op-
erators, such as the convolution, the illumination remains
additive in the feature domain. Denoting F); the linear fea-
ture extraction operator for the d-th dimension of the feature
vectors and o; ; = {0; ;[1], ...0; ;[ D]} the feature vector ex-
tracted at position (3, j), we get:

0ijldl = Fa{logI(z,y)}
Fy{log R(z,y)} + Fa{log L(z,y)}

Hence, if the illumination was constant in each feature
component across the whole face, subtracting in each com-
ponent the average value o[d] would be a simple approach
to removing the undesired additive illumination term. How-
ever, the illumination is unlikely to be perfectly constant in
each component. Moreover, when subtracting o[d], one may
also discard useful reflectance information. Nevertheless,
this simple combination of logarithm transform in the pixel
domain and mean normalization in the feature domain, that
will be referred to as the Log-Mean Normalization (or LM-
Norm), and which, to the best of our knowledge, has never

been suggested, will be tested in the section on experimental
results.

Our goal is now to alleviate the unrealistic constraint
of a constant illumination in each frequency band. As the
system described in section 2 is designed to model additive
variabilities, as expressed by equation (1), a first idea would
be to train the Gaussian mixtures parameters, i.e. w’s, 6’s
and X’s, not only to model the facial expression variations,
but also the various possible illumination conditions. Al-
though this approach might first sound appealing, we be-
lieve it is suboptimal for two main reasons :

e A very large number of Gaussians would be neces-
sary to model all the possible variabilities, increasing
unreasonably the memory and CPU requirements.

e The choice of Gaussians at adjacent positions would
be unconstrained, which is not satisfying as the illu-
mination cannot vary in an arbitrary manner over the
face.

However, the performance of this approach will also be eval-
uated in the section on experimental results and will serve
as a baseline for our novel model of illumination transfor-
mation.

3.2. Constraining theillumination variation

The idea is to introduce feature transformations to model
the illumination variation and to enforce consistency be-
tween feature transformations at adjacent positions in the
same manner we enforced consistency between geometric
transformations. Hence, our states which represent both lo-
cal geometric and feature transformations are now doubly
indexed: ¢;; = (g ;,47;)- 4, is the geometric transfor-
mation part of the state and qf’ ; 1s the feature transformation
part. If ¢; ; = (7, ¢), the emission probability b;’f is still
modeled with a mixture of Gaussians:

, k 37,0,k
by =D wiibiy
k
where the b#"**s are D-variate Gaussians with means y.]¢"*
and covariance matrices Eiﬁ ;- The new means are of the
form:
¢,k ok _
pift =y o =m0+ o
In [11] we only separated parameters into FD and FIT pa-
rameters. Here, we go one step further by separating the
FIT parameters into geometrical transformation parameters
and feature transformation parameters.
If we assume that geometric and feature transformations
model respectively differences in facial expression and il-
lumination between images, and that facial expression and
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illumination variations are mostly independent (i.e. a fa-
cial expression change between two adjacent positions has a
limited impact on the illumination change between the same
positions and vice versa), then the horizontal and vertical
transition probabilities can be separated as follows:

1

P(Qi,j
1

P(qi,j

P(gijlgij-1) =
P(gijlgi-1) =

Qil,j—l) X P(‘Ji?,j|q7:2,j—1)
qilij) X P(qz’27j|qi271,j)

While the choice of a discrete number of geometric trans
formations is natural due to the discrete nature of the feature
extraction grid of the template image, it is easier to deal
with the illumination with an infinite continuous set of il-
lumination states. We choose the horizontal and vertical il-
lumination components of the transition probabilities to be
D-variate Gaussians:

P(gi; = ¢la; ;-1 = ¢') = P(a;; = bl ; = ¢')

_exp{—5(¢— ¢TSS (g - ¢}
(2m)% 9|2

In the following we will assume that the covariance matrix
S is diagonal and therefore, that the components of the fea-
ture vectors are independent from each other. S is the only
parameter of our illumination transformation model.

4. Findingthe best transfor mation

Let O = {o0;,;} and Q = {g; ; } denote respectively the set
of all observations and states, with ¢ € [1,I]and j € [1, J].
Finding the best transformation between two face images
requires to find the sequence of states @*, which satisfies:

Q"= argmgxlog P(Q|O,\) = arg mgxlog P(O,Q|N)

where Q = (T, ®) and T = {r; ;} and & = {¢, ;} corre-
spond respectively to the set of geometric and feature trans-
formations. A central idea in our approach is to apply it-
erative passes to find successively the geometric and fea-
ture transformations that best explain the transformation be-
tween the two face images.

Let @, = (T}, ®,,) be the best set of states after the n-th
iteration. Assuming for instance that we start by decoding
geometric transformations, the steps of the algorithm are as
follows:

1. Initialize ®¢: V(3, ), ¢:,; = 0, i.e. we assume there
is no illumination variation between the two images.

2. T, = argmj@xlogP(O,T\fI)n,h)\), i.e. T, maxi-

mizes the joint probability of observations and geo-
metric transformations knowing ®,, 1, the set of pre-
viously obtained feature transformations.

3. ¢, =arg max log P(O, ®|T,, \), i.e. @, maximizes
the joint probability of observations and feature trans-

formations knowing T, , the set of geometric transfor-
mations previously obtained.

4. Go back to step 2 until 7}, and ®,, converge.

We will now detail the steps 2 and 3 of this algorithm.

4.1. Finding T,

To find the best sequence of geometric transformations 7,
one applies the modified version of the forward-backward
algorithm introduced in [12] and estimates the occupancy
probabilities v; ;(t) = P(q}; = t|O,®,_1,), ie. the
probability of being in state q}’j = ¢ at position (7, ). At
each position (i, j), we look for the best state 7:

T = argmax i (t)

Although choosing the sequence of locally optimal states
may not lead to the sequence of globally optimal states, this
approximation is valid in the case where the best sequence
of states accounts for most of the total probability.

If v, ;(7,n) is the probability of being in state 7 with
the n-th mixture component accounting for o, ;, the best
Gaussian index & is given by:

k = argmax -y, ;(7,n)

If 7 and k are respectively the indexes of the best state
and Gaussian at position (¢, 7), we introduce the quantity
WF = (0;,; — puiF) which can be interpreted as the vari-
ability that is left unexplained by the geometric transforma-
tions. Let X} ; be the covariance of the best Gaussian at
position (7, 7). In the following, for simplicity, we will drop
the 7 and & indexes and replace the notation \If{f with U, ;

and £ ; with 3, ;.

4.2. Finding @,

To find the best sequence of feature transformations ®,,,
we can pursue two different approaches: either apply di-
rectly the Viterbi algorithm, or a modified version of the
forward-backward. In both cases, as 3; ; and S the co-
variances of the emission and transition probabilities are as-
sumed diagonal, it it simple to show that finding the best
state sequence ® can be done independently in each of the
D dimensions. Therefore, if ¥; ; = [1; ;[1],...¢; ;[ D]]7,
% = diag{o;;[1]°, ..o ;[D]*} and S = diag{s[1]’, ...
s[D]?} in the following, we drop the dimension indexes and
use the notations t; ;, o7 ; and s>,
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4.2.1. Viterbi variant

We assume that transition probabilities are separable, i.e.:

P(Qij|qz’271,ja%'2,jfl) X P(qu,j|Qi271,j)P(qi2,j|vqi2,j71)

(see [12] for more details on this approximation). The joint
likelihood P(O, ®|T,,, A) can be written as a product of
emission probabilities and horizontal and vertical transition
probabilities. For one given dimension, to find the best se-
quence of states ®,,, we set dlog P(O, ®|T),, \)/0¢;; =
0, V¥(4,) and obtain:

Gi—1,j + Piv15 + Gij—1+ Pij1 —

52 52 .
®ij FJ+4 = —;; ;2] V(i 7)

with obvious modifications for i = 1 or I and j = 1 or J.
This is a linear system of I x J equations with I x J un-
knowns. If equations are ordered properly, this system is
banded with bandwidth min(Z, J). Hence, the complexity
of solving this system is in O((I x J) x min(1, J)*). We
recall that there are D such systems to solve, one per dimen-
sion of the feature vectors.

At training time, to find the optimal s? which maximizes
log P(O, ®|T,,, \), we set dlog P(O,®|T),,,\)/ds*> = 0
and obtain:

o iy (B — bim1)” + (diy — ¢ij-1)%]
5 T-D)xJ+Ix(J—1)

In the previous formula, s2 is estimated with one pair of im-
ages. The extension to multiple pairs of images is straight-
forward.

4.2.2. Forward-backward variant

A complexity in O((I x J) x min(Z,.J)?) is much lower
than the complexity of solving a general linear system of
I x J equations with I x J unknowns which is in O((I x
J)3). However it might still be too demanding if 7 and .J are
large. Therefore, we explored an alternative approach which
is based on our modified forward-backward algorithm, as
applied to T-HMMs [12]. The extension from discrete states
HMMs to continuous states HMMs (also referred to as state
space models or SSMs) consists mainly in replacing sums
with integrals.

We define i j(¢) = P(¢i; = ¢l0, Ty, N), ie. the
probability of being in state ¢ at position (¢, 7). To find the
states that best explain the illumination transformation, we
choose the sequence of locally optimal states @, i.e.:

¢, = arg MAX i (®)

We introduce the following vertical forward, backward and
occupancy probabilities:

O‘yj(gb) = P(Ol,j7 ---Oi,j7qz’2’j = ¢|Tna )‘)
V(@) = P(oit1,--015l60; = & Tns N)
%Vg(ﬁb) = (q’LJ ¢‘01,j7' ~01,j7Tn7)‘)

Defining the corresponding horizontal quantities is straight-
forward. As the emission and transition probabilities are
Gaussians, if we initialize the occupancy probabilities ~’s
in a Gaussian manner, one can show that the forward, back-
ward and occupancy probabilities are Gaussian shaped. The
parameters of these Gaussians, i.e. their means and vari-

ances, will be respectively denoted ¢, i)', 17 and aev?,
2
oY, ZV It is easy to show that we have:
ay 5 BV? + aV a2 V2
WV = Pij 9 “ o2 = Zig %i
] 2 2 b g 2 2
aV + O—Lﬁ;} av + 0-/87}}

Successive horizontal and vertical passes of our modi-
fied forward-backward (extended to T-HMMs with an infi-
nite continuous set of states) are applied iteratively to esti-

mate 2V 5 Y, o¢v? and aﬁ;’ until convergence of the

'ym and yw probability densities. As we do not have access
to ;,; but to 4% and ~)’;, a simple combination rule based
on the minimum divergence criterion is to set:
V2 v
7] lu’z ,J + U 'LL;Y,]
V2 H2
W]

¢ij =

g

The complexity of this algorithm is clearly in O(I x J x N)
where N is the number of horizontal and vertical passes.
The optimal parameter s? is given by:

2o Sij oo (0= 07 [€]5(0, ')+ EY;(0,0')] dpdg!
I-1)xJ+Ix(J-1)
where £74(¢,¢') = P(q};_, = 6,47, = ¢/|0, T, \) and
Vi(d,¢) = Plgl,; = ¢,4}; = ¢’|O,Tn,>\) Intro-
ducing the notations p¢** = s%/(s® + crffJH ) and pgY =
s2/(s? +a§j}’ ), we get:

H H % \%
Zi,j [(MZ]' - MZj—l)z + (NZJ' - /ﬂ_l,j)ﬂ
I-1)xJ+Ix(J-1)
2 c 2 ~H
sz[p7j 1U,J1 +pL)¢3—[10”7] :|
(-1 xJ+Ix(J-1)
2 2 P2
Z i, [Pz 1JU?V13 pia—vl,j UZ;‘ }

T-D)xJ+Ix(J—1)
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The term (17" — 7% )2 + (u]Y — ¥ ;)? corresponds
to (¢i; — dij—1)* + (dij — ¢i—1,)? in the re-estimation
formula of the Viterbi variant (c.f. the previous section).
The additional terms are due to the fact that the forward-
backward algorithm integrates over all paths to estimate s2
while Viterbi only takes into account the best path.

5. Experimental results

In this section, we will first introduce the databases used
to train and test our system and briefly describe Gabor fea-
tures. We will then evaluate the performance of the LM-
Norm introduced in section 3.1 and finally the performance
of our novel model of illumination transformation.

5.1. Databases
5.1.1. TheFERET face database

To train our transformation model, we used the FERET face
database [2]. 500 individuals were extracted from the FAFB
set which contains frontal views that exhibit large variations
in facial expressions but very little variability in terms of il-
lumination. There are two images per person in the FAFB
set. We also used the 200 individuals in the FAFC set which
contains frontal views that exhibit large variations in illu-
mination conditions and facial expressions. There are three
images per person in the FAFC set. All the FERET im-
ages were pre-processed to extract 128x128 pixels normal-
ized facial regions.

5.1.2. TheYALE B face database

The YALE B face database [9] was used to assess the perfor-
mance of our system. It contains the images of 10 subjects
under 9 different poses and 64 illumination conditions. As
the focus of this paper is on illumination compensation, we
used only the set which contains frontal face images. We
divided the database into the four traditional subsets Sy, So,
S3 and S, according to the angle the light source makes with
the axis of the camera (less than 12°, between 12° and 25°,
between 25° and 50° and between 50° and 77°). For each
person, the 7 images in S; were successively used as the en-
rollment image and the images in Sy, S3 and S, were used
as test images which made a total of 26,600 comparisons.
The same pre-processing that was applied to the FERET im-
ages was applied to the Yale B face images.

5.2. Gabor features

In our experiments, we used Gabor features which have
long been successfully applied to face recognition and fa-
cial analysis. Assuming polar coordinates (p, 8), the spec-

tral half plane is partitioned into M frequency and N orien-
tation bands [14]:

Gi,j(p,e) = exp{_% [(p ;;upi)Q N (e—jej)Q]}

pi 99,

withs € [1, M]and j € [1, N]

The parameters wy,,, 0,,,, we; and oy, are defined as follows:

_ SHDfI—2 _ i—1
Wp;, = Wmin + 00( ;_1 0p; = 0o f"
_ (=D~ __ TWp;
Wo; = TN 06; = 3N

After preliminary experiments, we chose wy,;, = 7/24,
Wimaz = T/3, f = /2, M = 4and N = 6, which resulted
in 24 dimensional feature vectors. Gabor responses are ob-
tained through the convolution of an image and the Gabor
wavelets. We use the modulus of these responses as feature
vectors which introduces a non-linearity in the computation
of our features. Thus, the illumination cannot be considered
as a perfectly additive term in the feature domain.

Feature vectors were extracted every 16 pixels of the
query images and every 4 pixels of the template images in
both horizontal and vertical directions.

5.3. Performance of the LM-Norm

The goal of this section is to assess the performance of the
LM-Norm introduced in 3.1. In this first set of experiments,
we applied straightforwardly the face transformation model
introduced in [11] which does not make use of feature trans-
formations.

When the LM-Norm is associated to Gabor features, the
feature extraction consists of 3 steps:

1. logarithm transform in the pixel domain
2. Gabor features extraction
3. mean normalization in each frequency band

Gabor features combined with LM-Norm will be denoted
LM-GB features. We compared the performance of these
features to Gabor features that will be referred to as GB fea-
tures and to features that combine steps 1 and 2 and that will
be denoted L-GB features.

The face transformation model was trained on the FAFB
data only. Hence, no information on illumination variations
could be learned at training time. The transformation model
was trained as described in [11] up to 8 Gaussians per mix-
ture (Gpm). Figure 1 shows the results.

Averaging the performance over the 3 subsets, the iden-
tification rate is 68.0% for GB features compared to 74.0%
for L-GB features and 84.8% for the LM-GB features. Note
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Fig. 1. Performance of GB (Gabor), L-GB (log + Gabor)
and LM-GB (log + Gabor + mean normalization) features
when the transformation model is trained solely on FAFB.

that with L-GB features the performance decreases signif-
icantly compared to GB features on the simple Sy subset
which seems to indicate that the log transform has a nega-
tive impact on the recognition when there is little illumina-
tion variation.

We performed similar tests (not shown in this paper)
with the GB, L-GB and LM-GB features on the popular
Eigenfaces [15] and Fisherfaces [8] algorithms and observed
similar trends. We would like to underline that, although we
tested the combination of Gabor features and LM-Norm, we
believe that LM-Norm could benefit to other “linear” fea-
tures such as DCT features.

5.4. Performance of our novel approach

The goal of this second set of experiments is not only to
assess the performance of our novel model of illumination
transformation but also to assess the performance of the
simple approach discussed in section 3.1, which is based
solely on the transformation model introduced in [11] and
which does not make use of any feature transformation. The
latter algorithm will be referred to as the baseline.

For both algorithms, we applied a logarithm transform
in the pixel domain prior to the extraction of Gabor features
(L-GB features) as both methods require the illumination to
be an additive term in the feature domain.

For our novel approach, we first trained our system up
to 8 Gpm using only the FAFB data as explained in [11].
Then, using this model, we trained the covariance matrix
S, which is the only parameter of the illumination transfor-
mation model, on the FAFC data only. The assumption is
that, as the transformation model trained on FAFB already

mm baseline
I V-variant
- FB-variant

identification rate

3
subsets

Fig. 2. Performance of the baseline system compared to the
Viterbi and forward-backward variants (resp. V- and FB-
variant) of our novel illumination compensation algorithm.

accounted for variations due to facial expressions, all the
variability that remained unexplained was due to illumina-
tion. The diagonal elements of S were initialized to values
close to 0 and then, 3 training iterations were applied. At
both training and test time, the number of iterations of the
decoding process described in section 4 was set to 3. To find
®,, with the forward-backward variant of the algorithm de-
scribed in section 4.2, we applied 5 horizontal and vertical
passes.

For the baseline, we simply trained the system on both
the FAFB and FAFC data up to 16 Gpm, instead of 8 Gpm,
as more data was available.

Figure 2 shows the performance of the baseline com-
pared to the Viterbi and forward-backward variants of our
novel approach (resp. V-variant and FB-variant). Compar-
ing Figures 1 and 2, one can see that adding the FAFC data
increases on the average the identification rate of the base-
line system from 74.0% to 84.1%. However, both variants
of our novel approach clearly outperform the baseline, es-
pecially for the harder S; and S subsets.

It is also interesting to notice that the FB-variant out-
performs the V-variant. Actually, the latter one is optimal
in the Maximum-Likelihood framework while our modified
forward-backward based on the T-HMM framework is not
guaranteed to be optimal. However, while Viterbi only takes
into account the best path, i.e. the one that best explains
the data, the forward-backward algorithm integrates over all
paths. As explained in 4.2.2, this choice has an impact on
the re-estimation of S and we believe that the difference
in performance is mainly due to the difference in the re-
estimation formula. The average identification rate of the
V-variant and FB-variant over the three subsets are respec-
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tively 89.1% and 90.8%.

We also compared our novel approach with the eigen-
faces [15] and Fisherfaces [8]. Especially Fisherfaces were
shown to compensate for illumination variations if trained
with the appropriate data. To carry out a fair comparison, we
did not apply these algorithms directly on the gray level im-
ages but on their LM-GB representations. A feature vector
was extracted every four pixels of the images in both hori-
zontal and vertical directions. The eigen- and Fisher-spaces
were trained on the FAFB and FAFC sets as was done for
our baseline system. The best identification rates we ob-
tained for eigenfaces and Fisherfaces are respectively 87.1%
and 83.1%. The fact that eigenfaces outperform Fisherfaces
is not surprising considering the small number of training
observations per class and the mismatch between training
and test conditions [16].

Finally, we would like to stress the fact that our novel
algorithm is very efficient as it takes on the average to our
best system less than 25 ms to compare two images on a
2 GHz Pentium 4 with 1 GB RAM.

6. Conclusion and future work

In this paper, we introduced a novel approach to illumina-
tion compensation, which consists in modeling the set of
possible illumination transformations between face images
of the same person. This approach is naturally embedded
in a face recognition system which already models transfor-
mations between face images due to facial expressions. We
showed experimentally that, even in the challenging case
where we trained and tested our system on two different
databases, our novel approach to illumination compensation
resulted in large improvements of the recognition rate. Note
that our results are competitive with state of the art results
recently published on the YALE B database [7].

However, much work remains to be done to perfectly
compensate for illumination variations. For the challeng-
ing S, subset, the best identification rate we obtain is close
to 80%. Although this corresponds to an almost 70% rela-
tive error rate reduction compared to the same system with-
out any illumination compensation, we are still far from the
almost perfect recognition rate we get for the simpler S,
subset. We believe that one limitation of our current ap-
proach is the fact that the covariance matrix S in our illu-
mination transformation model is fixed for all pairs of im-
ages. We think that S should incorporate both some a priori
knowledge learned off-line through a training phase, as is
currently the case, but also some information which is de-
pendent on the pairs of images that need to be compared.

Finally, we would like to point out that, while our model
of illumination compensation has been introduced in the
context of face recognition, it could benefit to other research
areas. As our original approach to face recognition has a lot

in common with motion estimation algorithms, and espe-
cially MAP estimation of dense motion [4], we think that
our approach could be applied to the difficult problem of
motion estimation in the presence of illumination variations.
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Abstract the eyes and nose) is rigidly kept (with the advantage of robust-
. ness to compression artefacts & additive noise [28]). Conversely, the
In this v_v(_)rk we propose to address th_e_pro_blem O_f non'_fromalDCTmodZIGMM approach is an extreme example of a non-holistic
face verification when only a frontal training image is available ;pnach: here, the spatial relation between face characteristics is
(e.0.a p_asspo_r_t photograph) _by augmenting a client's fro_ntal faceeffectively lost (which results in robustness to translations [4]). In
model with artificially synthesized models for non-frontal views. Inyotveen the two extremes are systems based on multiple template
the framework of a Gaussian Mixture Model (GMM) based ClaSSiﬁermatching [3], modular PCA [20, 22], Pseudo 2D Hidden Markov

two techniques are proposed for the synthesis: UBMiff and LinRegy;qe|s (HMMs) [10, 26] and heuristic approaches such as Elastic
Both techniques rely on a priori information and learn how face mOd'Graph Matching (EGM) [8, 16].

els for the frontal view are related to face models at a non-frontal  Generaly speaking, an appearance based face recognition system
view. Th_e synthesis and_a_lugr_nentatlon approach is evaluated tB’an be thought of as being comprised of:

applying it to two face verification systems: Principal Component o i

Analysis (PCA) based and DCTmod2 [29] based; the two systems % ﬁ%ﬁqg)”cza;{izgr?on and segmentation

are a representation of holistic and non-holistic approaches, respec- 3’ Fgeature extraction

tively. Results from experiments on the FERET database suggest that 4. Classification

;2C?;n;grstbsltlhcsassetz}nfg)r;ﬁiel rr;(l)sdoeIszjugrenscir'l[tha;[otr;]ehiisngeene:‘écclﬁlnie fThe second stage (normalization) usually involves an affine transfor-
(which is based):)n mult,ivarizlte regres%gion of classifier pargmeterS)qi%iﬁ ation (to correct for size and rotation), but it can also involve an il-
more suited to the PCA based system and that the UBMdiff techniqL#'mmatlon normalization (however, illumination normalization may

(which is based on differences between two general face models) ot be necessary if the feature extraction method is robust). In this
. 9 saper we shall concentrate on the last stage (and thus postulate that
more suited to the DCTmod2 based system. The results also sup- di h b f d |
ort the view that the standard DCTmod2/GMM system (trained on e preceding steps have been performed correct y). Lo
fprontal faces) is less affected by out-of-plane rotations than the correr, Some approaches to addressing the single training image prob-
sponding PCA/GMM system: moreover, the DCTmod2/GMM syste lem involve the synthesis of new face images (at various angles)

using augmented models is, in almost all cases, more robust than tl ased orm priori information (€.g. [2, 21]). In these approaches,
g augm ’ ! QRe image synthesis comes before the usual step of feature extraction.
corresponding PCA/GMM system.

A question thus arises: if we are only interested in recognition and
) hence we are going to extract features from synthesized images, why
1.Introduction not synthesize the features instead? If we follow this line of think-

In the context ofrontal faces, recent approaches to face recognitionin.g’ a n_atural foIIowu_p questipn is: ins?gad of synthe_sizing features
j ith which we are going to train a classifier, why not directly synthe-

(here we mean both identification and verification) are able to achiev‘gZe the classifier's parameters? This is in fact the central idea of our
very low error rates (e.g. [19]). A more realistic and challenging p ’

task is to verify a face at a non-frontal view when only one (frontal)pmpos.ed extt_an§|_ons, ske_tchgd below. .
training image is available (e.g. a passport photograph). Usinga priori information in the form of a set of faces at different

. LM e views (these faces will never be used during performance evaluation),
While the task of view-independent recognition has been ad- e w .
we construct face models for specific views (by “model” we mean a

dressed through the use of training images (for the person to be re{::"MM)' we then find thalifferencedetween the model for the frontal
ognized) at multiple views (e.g. [22]), the much harder task of us- ’

ing only one training image has received relatively little attentionVieW and, say, the model for th@3” view. Let us now suppose that
g only 9 9 y cer wish to enroll a new client in our face verification system and we
only have their frontal view; given a face model created from their
centrate on extending two well understood 2D based techniques. nfrqont.al view, we can synthesf|ze,a model faz5¢ by applying the
a priori differences to the client's frontal model. In order for the

particular, we will extend the Principal Component Analysis (PCA)S stem to automatically handle the two views, we then augment the
based approach [30] and the recently proposed DCTmod2 based ag-_ -, y TR gmer
ient’s frontal model by concatenating it with the newly synthesized

roach [29]. In both cases we employ a Gaussian Mixture Model _, : .
?GMM) t[)as]ed classifier [25], which iFs), cgntral t0 our extensions. +25? model. We can of course repeat this procedure for other views.

The PCA/GMM system is an extreme example of a holistic syst The proposed synthesis and augmentation approach thus differs

; . - rom the approach presented in [2, 21] where actual face images for
tem where the spatial relation between face characteristics (such ASn-frontal views were synthesized; the synthesized images shown

) ) ) ) _in [2] have considerable artefacts, which we believe can easily lead
The authors thank the Swiss National Science Foundation for supportin - .
RS) a decrease in performance. The proposed approach is somewhat

this work through the National Center of Competence in Research (NCC ; .
on Interactive Multimodal Information Management (IM2). The authors félated to [18] where a feature transformation approach is employed
also thank Andrzej Drygajlo, Daniel Gatica-Perez, Sebastien Marcel, Alexein the context of an EGM based classifier. We note that in [18] man-

Pozdnoukhov and Alessandro Vinciarelli for helpful suggestions. ual intervention is required, while our proposed approach is auto-
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Fig. 2. Extracted face windows from images in Fig. 1.

Overlap (Np) | Vectors (Ny) | Spatial width

Fig. 1. Images of subjed0647 from the FERET database for (from 0 30 24
left to right) —60°, —40°, —25°, —15° and0° views; note that the 1 35 22
angles are approximate. 2 56 20

3 80 18
matic; moreover, unlike [18], our approach is based on a statistical 4 143 16
framework. The augmentation part of our proposed approach is re- 5 255 14
lated to [14]; the main difference being that in [14] features from the 6 621 12
client's manyreal images are used to extend the client’s face model, l 2585 10

sent the face of a client at various non-frontal angles, without havin able 1 Num_ber Of_ DCTmodZ_feature ve.ctors extracted from a
access to the client's real images. 6x 64 face usingVp=8 and varying overlap; also shows the effec-

The rest of the paper is organized as follows. In Section 2Iive spatial width (& height) in pixels for each feature vector.

we briefly describe the database used in the experiments and the .
pre-processing of the images. In Sections 3 and 4 we overviews. Feature Extraction: DCTmod2 Based Sys.

the DCTmod2 and PCA based feature extraction techniques, r¢n pCTmodz2 feature extraction [29] a given face image is analyzed
spectively. Section 5 provides a concise description of the GMMyn a block by block basis; each block Xpx Np (here we use
based classifier and the different training strategies used when dea\r,=g) and overlaps neighboring blocks B pixels. Each block is
ing with DCTmod2 and PCA based features. In Section 6 we degecomposed in terms of 2D Discrete Cosine Transform (DCT) basis

scribe two techniques used for synthesizing non-frontal models aginctions [13]. A feature vector for each block is then constructed
well as a method to address the problem of correspondence betwegg:

two GMMs. Section 7 details the process of concatenating two or

; ; ; ; T
more GMMs. S(_ectlon 8 is devoted to experiments evaluating the two [AhCO Ao Niey Aoy Niey Aoy cs cy ... CM—l] 1)
synthesis techniques and the use of augmented models. The paper is
concluded and future work is suggested in Section 9.

while in our proposed approach we synthesize the models to reprg—

wherec,, represents the-th DCT coefficient, whileAc,, and A%,

; . represent the horizontal & vertical delta coefficients respectively; the
2.FERET Database: SetUp & Pre-Processmg deltas are computed using DCT coefficients extracted from neighbor-
In our experiments we utilized face images from the FERETing blocks. Compared to traditional DCT feature extraction [10], the
database [23]. In particular, we used images fromkhgebb, bc, first three DCT coefficients are replaced by their respective horizon-
bd, be bf, bg, bh andbi subsets, which represent views of 200 per-tal and vertical deltas in order to reduce the effects of illumination
sons for (approximately)° (frontal), +60°, +40°, +25°, +15°, -15°, changes, without losing discriminative information. In this study we
-25°, -40° and 60°, respectively; thus for each person there are nineuse M=15 (choice based on [29]), resulting in 48 dimensional
images. Example images are shown in Fig. 1. feature vector for each block.

The 200 persons were split into three disjoint groups: group A,  The degree of overlap\p) has two effects: the first is that as
group B and impostor group; the impostor group is comprised of 2@verlap is increased the spatial area used to derive one feature vector
persons, resulting in 90 persons in groups A and B. Throughout this decreased; the second is that as the overlap is increased the num-
experiments, group A is used as a sourca pfiori information while  ber of feature vectors extracted from an image grows in a quadratic
the impostor group and group B are used for verification tests (i.emanner. Table 1 shows the amount of feature vectors extracted from
clients come from group B). Thus in each verification trial there is56 x 64 face using our implementation of the DCTmod2 extractor.

90 true claimant accesses andx@®=1800 impostor attacks; more- As will be shown later, the larger the overlap (and hence the
over, in each verification trial the view of impostor faces matched thesmaller the spatial area for each feature vector), the more the system
testing view. is robust to out-of-plane rotations.

In order to reduce the effects of variations possible in real

life (such as facial expressions, hair styles, clothes and ornamentg) Feature Extraction: PCA Based System

closely cropped faces are used instead of full face images [5]. In par-

ticular, we used the location of the eyes to normalize the inter-ocula! PCA based feature extraction [30], a given face image is repre-

distance and extract a 54 (rowsx columns) face window con- sented by a matrix containingﬁgrey level pixel values; the matrix is
taining the area from the eyebrows to the nose (inclusive). Examplthen converted to a face vectgt, by concatenating all the columns;

face windows are shown in Fig. 2. a D-dimensional feature vectar, is then obtained by:
Since in this paper we are proposing extensions to existing 2D ap- . e
proaches, we obtain normalized face windows for non-frontal views E=U"(f-fu) 2

exactly in the same way as for the frontal view; this has a significant . ) .
side effect: for large deviations from the frontal view (such@ae-  Where'U containsD eigenvectors (corresponding to tiig largest

and #60°) the effective size of facial characteristics is significantly €igenvalues) of the training data covariance matrix, #nds the
larger than for the frontal view. The non-frontal face windows thusmean of training face vectors. In our experiments we use frontal faces
differ from the frontal face windows not only in terms of out-of-plane from group A to findU and f,.. If robustness to illumination changes
rotation of the face, but also scale. is required, an extension suchethanced PCAan be utilized [28].
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It must be emphasized that in the PCA based approach, one featufbe UBM and all client models (for frontal faces) are constrained to
vector represents the entire face, while in the DCTmod2 approachave only one component (i.e. one Gaussian). As for the DCTmod2

one feature vector represents only a small portion of the face. system (described above), the parameters for the UBM are found by
running the EM algorithm on all data from group A. Instead of MAP
5.GMM Based Classifier estimation, each client model inherits the covariance matrix from the

clijBM; moreover, the mean of each client model is taken to be the

The distribution of training feature vectors for each person is modeled. L .
Single training vector for that client.

by a GMM. Given a claim for clienC’s identity and a set of (test)
feature vectorsX = {fi}ﬁv:"l supporting the claim, the average log i _ -
likelihood of the claimant being the true claimant is found with: 6. Synthesmng Models for Non-Frontal Views

6.1. UBMdiff Technique

1 Ny - o +25° .
L(X|Ao) = o Zv_l log p(Zi|Ac) (3)  Let us suppose that we have two UBME), . and \}2>° (trained
v usinga priori data) that describe a general face for a view‘aand
where: p(E|\) = ZNC w; N (Z; i, ) (4)  +25°%, respectively. Let us define the set of parameters which de-
J=1 scribes the difference between the two UBMs as:
_ 7. 2 Na
A= {wi i B1S ®) +25° +25° 250 _to250 | VG
A =194 WA, » HAi 5 OAGi ) 9
Here, NV (#; i, 2) is a D-dimensional Gaussian function with mean i=1
i1 and diagonal covariance mati: The parameters are defined as:
1 1 B +25¢ _  +25° 0%
N(@RB) =5 exp(—2 @ p)'s @ - ﬁ)) (®) WA= Wi/ Wab i (10)
(271—) : |2‘ : ﬁA?? = ﬁub%i,,i - ﬁ?l,bm,i (11)

Ac is the parameter set for cliett, N¢ is the number of Gaussians (5+2;°)T = loasal?, = [E+250_ /=0 ]D (12)
anduw; is the weight for Gaussiay (with constraintsy ¥ w; = 1 4 e Jd=1 ubm,i,(d,d)/ Subm,i,(dd) |, ¥
andV j : w; > 0).

+25° .
Given the average log likelihood of the claimant being an imposWhereX i, ; (a,a) denotes the element at rawand column (i.e.

tor, L(X|Ag), an opinion on the claim is found using: d-th diagonal) ole:f,?:i. Since the two UBMs are a good represen-
tation of a general face at the two views, and each client model is
A(X) = L(X[Ao) — L(X]Xg) (7)  derived from thed® UBM, it is reasonable to assume that we can ap-

. L ) ply the above difference to cliedt’s 0° model to synthesize a25°
The verification decision is reached as follows: given a threshold model. Formally, the parameters for the5¢ model are:

the claim is accepted whek(X') > ¢ and rejected wheA(X) < t.
In our experiments we use a global threshold to obtain performance A0 _ +25° _+25° +25°) NG 13
as close as possible to the Equal Error Rate (EER) (i.e. where the ¢ T Wei sHoa & } 1 (13)
false rejection rate is equal to the false acceptance rate), followin

the popular practice used in the speaker verification field [7, 11]. &ind are synthesized using:

Methods for obtaining the parameter set for the impostor model Wi _ @+25°/ (14)
(\g) and each client are described in the following sections. Ca = Wou /7
_+25° _ 50° —+25°
Hei = et HaG (15)
5.1.Classifier Training: DCTmod2 Based System 4950 |D 0° +o50
. . . . . 35 = 3¢, oA (16)
First, a Universal Background Model (UBM) is trained with a form of Ciy(dd) | Ci(dd)PAid|
the Expectation Maximization (EM) algorithm [6, 9] usialj 0° data Y
from group A; here the EM algorithm tunes the model parameters t#here the non-diagonal elements3§2*” are set to zero and
optimize the Maximum Likelihood (ML) criterion (i.e. so that the 4250 00 4250
likelihood of the training data is maximized). Wei = Woi WA, (17)
The parameters\] for each client model are then found by using Ng
the client’s training data and adapting the UBM (the number of Gaus- v o= @g?;“ (18)
sians is varied in the experiments); the adaptation is accomplished i1

using a different form of the EM algorithm, often referred to as max- . .
imum a posteriori(MAP) estimation [12, 25]. The two instances of As can be seen, theis a scale factor used to ensure that synthesized

the EM algorithm are summarized in appendixes A and B. weights sum to unity. We can of course use the above procedure to
Since the UBM is a good representation of a general face, it iSYNthesize models for angles other tha5:

also used to find the likelihood of the claimant being an impostor, ) )
6.2.LinReg Technique

i.e.
L(X|Ag) = L(X | Aubm) (8) Let us suppose that we have the following multi-variate linear regres-
sion model:
5.2.Classifier Training: PCA Based System Y=XB (19)
The image subset from the FERET database that is utilized in this T 2T 1
) = Y1 Ty B, Ba,p)

work has only one frontal image per person; in PCA-based feature ~ T =T

. H . N . Y2 Ty 1 5(2,1) B(Q,D)
extraction, this results in only one training vector, leading to neces- i - ) i ] i (20)
sary constraints in the structure of the classifier and the classifier’s : : : : :
training paradigm. 7T | Bio+1,1y -+ Bo+1,p)

167



wheren > D + 1, with D being the dimensionality of eaghandZ. from a particular “parent Gaussian” through the process of adapta-
B is a matrix of unknown regression parameters; under the sum-ofion. moreover, let us define the distance between two Gaussians as

least-squares regression criteri@can be found using [15]: the Mahalanobis distance [9] between their means:
-1 M (fia, fiv) = (fla — fiv)" Sy (o — fiv) (25)
B= (XTX) xTy (1) _ _ "
whereX;; is the overall covariance matrix of the “parent UBM”; we

shall assume that it is a diagonal matrix. It can be shown thai-the

Given a set ofa priori models (from group A), representing faces at . - :
P ( group A), rep 9 glagonal elementX;; (4,4)) is found using:

0° and +25°, we can thus find the relation between the means (an

diagonal covariances) for the two angles; specifically, we g Ng

andBsx; (i=1,2;--,Ng). We can then synthesize model parameters Xl (d,d) = —uiu,(d) + Z w; (Ei,(d,d) + Ni,(d)) (26)

for +25° [c.f. Egn. (13)] from clieniC"s 0° model using: i=1

+o50 00 wherepq;, (q) is thed-th element ofi,i;, which is in turn found using
we. - Wou (22) T =SNG wijt; H )l D e th ts of th
4950 00 T Bau =35 wifli. Here {w, [i;, 3;} ;.S are the components of the
fici = [(dci) 1]Bu (23)  “parent UBM".
diag(EZ?f’o) _ [diag(Eoco,i)T 1]Bx. (24) Lastly, let us define a measure which will be used for check-

ing whether any “child Gaussian” is closer to someone else’s parent

where the non-diagonal elementsﬁﬁ?fo are set to zero. It must rather than its own parent:

be noted that unlike the UBMdiff technique (Section 6.1), there is no
guarantee that the diagonal elementsSR?>” are> 0; thus after _ - child - parent  child — parent
synthesis, any diagonal elements which dre) are set to a small v = ZZS kM, 0 ) = MU 1 )>
positive value {~2°). By the same token, the weights for thg5® i=1J=1

Ng Ng

model are merely copied from t19& model (while this seems drastic, —2Ng (27)
the weights have only a minor influence on performance [25]). wherek > 1 and

S(a) :{ +1 if a>0 (28)
6.3. The Model Correspondence Problem -1 if a<o0

The UBMdiff and LinReg synthesis techniques pre-suppose that therg jesignates how close a “child Gaussian” can be to someone else’s
Is a correspondence between components of the clightidel, the  5rent- ifk=2, then it is closer than two times the distance between
_0 UBM, the +25° UBM and all models for group A (Ioosely speak- the parent in question and the parent's true child.

ing, by correspondence we mean that corresponding components In' 15 54dress the “wandering” problem we modify the EM algo-

all three quels descrlbg th.e same areas of the face). This is 'Yghm for MAP estimation (shown in Appendix B) by introducing an
when there is one Gaussian in each model (as for the PCA based sy stopping criterion: from the second iteration onwards, we check
tem). However, under traditional training paradigms (as describegt > 2 after each maximization step: if the condition is satisfied
in Section 5.1), this is generally not true when there is two or morgy e restore the parameters from the last iteration and deem that we
Gaussians. . . . __have converged. The check is enabled from the second iteration on-
_ To address this issue, we propose the following modified trainy,,rys since we wish at least for some adaptation to occur (otherwise
ing paradigm. Instead of training the3” UBM directly using the i \y1d be possible for the “child UBM” to be the same as the “par-

ML criterion, we instead adapt th# UBM using a modified form ., UBM"). In this work we uset=2 (choice based on preliminary
of MAP estimation; moreover, whenever adapting any client mOdeExperiments).

from any UBM, the modified MAP estimation is also used.

Traditional MAP estimation by itself will not help with the corre- ;
spondence problem, as for GMMs it is a form of probabilistic cluster-7' Augm_entmg Frontal _MOdeIS ) )
ing (albeit constrained clustering). During clustering, the Gaussiand composite model for client’ is created by augmenting the client's
tend to “wander” around before converging to a solutiowe il-  frontal model @) as follows:
lustrate the wandering problem as follows: let's say we have a 32 AGUg — \0% |\ F60% | | \FA0% o403 -60°
Gaussiard)® UBM and we adapt it to create 23° UBM; after con- c ¢ =7 ¢ © ©
vergence, it is quite possible for, say, the tenth Gaussian of26& + = LUieade (29)
UBM to be the “closest” to the first Gaussian of e UBM; more-
over, it is also possible to have more than one Gaussian in1be +
UBM that is the “closest” to a given Gaussian in thfeUBM. Due A ={0%+60%,+40°,+25%, +15°,-15%,-25°,-40°,-60° }  (30)

to the “wandering” problem, there is no guarantee that the first Gaussnqy | is an operator for joining GMM parameter sets. Let us suppose
sian from the 25° UBM corresponds to the first Gaussian from the \ye have two GMM parameter sets, and.\,, comprised of param-

0% UBM (or in other words, the first Gaussian from the5® UBM  eters forN,  and N, ¢ Gaussians, respectively. Theoperator is
may be modeling a completely different area of the face when comgefined as follows:

pared to the first Gaussian from the UBM).
Before describing the modification to the MAP estimation, let us Az = Az LI Ay

where

i i “ ” “chi - N _ N,
first cieflne a “parent UBM” as the UBM to.be agapted and a (;hlld = {0Wa i, flais Saibi U {Bwyi, fiyi, Syi}nk® (31)
UBM” as the UBM that resulted from adapting a “parent UBM”; in a .

similar vein, let us define a “parent Gaussian” as a Gaussian from théhere: a = Nic/(Ne+ Nyc) (32)
“parent UBM" and a “child Gaussian” as the Gaussian that resulted 8 = l—a (33)

11t must be noted that this observed behaviour is counter-intuitive; it isHere the non-frontal models can be synthesized from the client’s
under further investigation. frontal model using the UBMdiff or LinReg techniques (Section 6).
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Fig. 3. Performance of PCA based system (trained on frontal facedyig. 4. Performance of various PCA based systems: standard,

for increasing dimensionality and the following angle€0*, -40°,
-25°, -15° and0° (frontal).

UBM(diff, LinReg and augmented; the standard system used origi-
nal frontal client models only; UBMdiff and LinReg systems used

client models synthesized specifically for a given test angle; the aug-
mented system used client models comprised of original frontal and

8. Experiments and Discussion synthesized side models (via LinReg technique).

8.1.PCA Based System

In the first experiment we studied how the dimensionality of the fea-
ture vectors used in the PCA system affects robustness to varying
pose. The higher the dimensionality, the more accurately the face
image is represented; we conjecture that as more accurately the facew
is represented, the more the system will be affected by varying pose.
Client models were trained on frontal faces and tested on faces fromg s
-60° to +60° views; impostor faces matched the testing view. Results & ,
for -60° to 0° are shown in Fig. 3 (the results f6f to +60°, not 2
shown here, have very similar trends). o

As can be observed, a dimensionality of 40 is required to achieve
perfect verification on frontal faces (this agrees with results presented
in [26]). For non-frontal faces at60° and+40°, the error rate gen-
erally increases as the dimensionality is increased, saturating when
the dimensionality is about 15; hence there is somewhat of a trade- OVERLAP
off between the error rate on frontal faces and non-frontal faces, cor=i9. 5. Performance of standard DCTmod2 based system trained and
trolled by the dimensionality. Since in this work we are pursuingtésted on frontal faces, for varying degrees of overlap and number of
extensions to standard 2D approaches, the dimensionality has beERussians.
fixed at 40 for further experiments (using a lower dimensionality of,
say, 4, offers better (but still poor) performance for non-frontal faces
however '.t comes at the a CO.St of an EER pf apout 10% on fronte\I_inReg technique uses information from two covariance matrices in-
faces, which is unacceptable in real life applications). stead of 180.

In the second experiment we evaluated the performance of mod- |, the third experiment we augmented each client’s frontal model
els synthesized using UBMdiff and LinReg techniques; The clientith models (for the eight non-frontal views) synthesized by the
models were synthesized for a given test angle; this pre-supposes tri_"i‘ttwReg technique; since each frontal model was constrained to have
we know what the test angle & priori, but is nevertheless useful e Gaussian, each resulting augmented model had nine Gaussians.
for comparing performance with augmented models. As can be segfyom the results shown in Fig. 4, we can see that there is little differ-
from the results presented in Fig. 4, both techniques perform befsnce petween using client models specifically synthesized for a given
ter than the standard system and the LinReg technique offers signifsst angle and the augmented models, which cover all the test angles.

icantly better performance than UBM(iff. We conjecture the reasoRrpege results thus support the use of frontal models augmented with
for the betterness of the LinReg technique as follows: the UBMd'ffsynthesized models.

technique only utilizes the difference between two general models,
while the LinReg technique utilizes the differences between two sets
of models (90 models for a frontal view and 90 models for a non-8-2-DCTmod2 Based System

frontal view); in effect, the LinReg technique utilizes more informa- In the first experiment we studied how the overlap setting in the
tion than the UBMdiff technique (in the form of 180 mean vectorsDCTmod2 feature extractor and number of Gaussians in the classi-
instead of two) and is thus able to synthesize the non-frontal modfier affects performance & robustness. Client models were trained on
els more accurately. While the LinReg technique does not guarantdeontal faces and tested on face®atind +0° views; impostor faces

that valid covariance matrices will be generated, for the case of thenatched the testing view. Results are shown in Figs. 5 and 6.

PCA based system no such problem occurred; we conjecture that this As we can see, when testing with frontal faces, the general trend

is due to the constrained training strategy (Section 5.2), where clieris that as the overlap increases more Gaussians are needed to decrease

@

7 32

GAUSSIANS

models inherited their covariance matrix from the UBM; in effect the
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7w GAUSSIANS Fig. 7. Performance of various DCTmod2 based systems: standard
Cwsing original & modified training) and UBM(diff (also using original
& modified training).

OVERLAP
Fig. 6. Performance of standard DCTmod2 based system trained
frontal faces and tested o8 faces, for varying degrees of overlap
and number of Gaussians.

modified MAP estimation reduces the error rate in almost all cases.
the error rate (which can be interpreted as follows: the smaller th&hese results thus suggest that the model correspondence problem
spatial area used by the features, the more Gaussians are requi(eldscribed in Section 6.3) is effectively addressed via the modified
to adequately model the face). When testing with non-frontal facesMAP estimation; the results also suggest that the UBMdiff technique
the general trend is that as the overlap increases, the lower the erigruseful for synthesizing models.

rate; there is also a less defined trend when the overlap is 4 pixels |n the fourth experiment we evaluated the use of the LinReg tech-
or greater: the more Gaussians, the lower the errof ratéhile not  nique for synthesizing models: results are presented in Fig. 8. It can
shown here, the DCTmod2 based system obtained similar trends f@e seen that the performance is worse than the UBMdiff technique;
non-frontal views other than46°. a possible cause of this has been alluded in Section 6.2: there is no
The best performance for$° faces is achieved with an overlap guarantee that valid covariance matrices will be generated. Indeed,
of 7 pixels and 32 Gaussians, resulting in an EER close to 10%. Thiguring model synthesis it was found that many elements of the co-
is quite impressive. considering that the EER of the standard PC&ariance matrices had negative values, and were thus set to a small

based system is around 35%; for the PCA system utilizing synthepositive value; this obviously has the effect of making any model less
sized models the EER is around 15%. The robustness of the standajgbcise, leading to worse performance.

DCTmod2/GMM system can be attributed to two aspects: In the fifth experiment we augmented each client's frontal model

1. The small spatial area (especially with an overlap of 7) usedvith models synthesized by the UBMdiff technique for the follow-
by each feature vector, results in out-of-plane rotations havingng angles:+60°, £40° and+25°. Synthesized models fat15°
a smaller effect on DCTmod2 features when compared to PCAvere not used since they provided no performance benefit over the
based features (which describe the entire face). 0° model. Since each frontal model was set to have 32 Gaussians,
2. The loss of spatial relation between face characteristics (duéach resulting augmented model had 224 Gaussians. From the results
to use of the GMM classifier), resulting in the “movement” shown in Fig. 8, we can see that there is little difference between us-
of facial characteristics (due to out-of-plane rotations) having
relatively little effect. 25

' ' ' ' A UBN;DIFF ‘
. . . ) -0 LINREG
For further experiments we have chosen the configuration of 7 pixel

overlap and 32 Gaussians. While this does not achieve perfect verifi-
cation rate on frontal faces, the EER is quite low at 1.67%; moreover, 4
as will be shown in the next experiment, the EER is close to zero

when the modified MAP estimation is used (described in Section 6.3). 15

In the second experiment we evaluated the effects of modified £
MAP estimation. From the results presented in Fig. 7 we can see tha
utilizing the modified training has no adverse effects on the perfor-
mance when compared to original MAP estimation.

In the third experiment we evaluated the performance of mod-
els synthesized via the UBMdiff technique, using both original and
modified training. In order to provide a fair comparison with the
LinReg technique in later experiments, synthesis of weights was not oL — — — =
done; instead, the weights for non-frontal models were copied from ANGLE
the frontal model. As shown in Fig. 7, using original training cause
the UBMdiff technique to fall apart (the results are worse than th
standard approach); in contrast, using the UBMdiff technique wit

10

sk

L L L
15 25 40 60

SFig. 8. Performance of various DCTmod2 based systems: UBMdiff,
ﬁ_inReg and augmented; UBMdiff and LinReg systems used client
models synthesized specifically for a given test angle; the augmented
2This is true up to a point: eventually the error rate will go up as there willSystem used client models comprised of original frontal and synthe-

be too many Gaussians to train adequately with the limited amount of data. Sized side models (via UBMdiff technique).
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ing client models specifically synthesized for a given test angle ané less affected by out-of-plane rotations than the corresponding
the augmented models, which cover all the test angles. Like in thBCA/GMM system; moreover, except for the extreme views @i,
case for the PCA based system, these results support the use of frorttaé DCTmod2/GMM system using augmented models is more robust
models augmented with synthesized models. than the corresponding PCA/GMM system.

Currently in the DCTmod2/GMM approach each Gaussian often
models disjoint face areas that are similar in texture (see Appendix A

8.3.PCA/GMM vs DCTmod2/GMM . . : xture:
Since in this work we have evaluated two significantly different face!" [27]). Th's may not be optimal when dealing with out-of-plang
ce rotations as different parts of face may very well undergo dif-

verification systems (PCA based and DCTmod2 based), it would b A ¢ r Bett ; be obtained if th
interesting to compare their performance. The results shown in Fig. rent transtormations. - Betler periormance may be o .ame It the
aussians are constrained to model non-disjoint areas; to some ex-

gglrliilvtﬁ%:by reusing results from previous experiments) suggest ttent this could be achieved by incorporating positional information in
each feature vector (i.e. augmenting each DCTmod2 vector with the
1. The standard DCTmod2/GMM system (trained on frontalrow and column of where it comes from); another possibility it to use
faces) is less affected than the corresponding PCA/GMM sysa 2D Hidden Markov Model (HMM) based classifier [10, 26] in place
tem. of the GMM classifier.
2. In almost all cases, frontal model augmentation has beneficial ~Finally we note that, in the context of generative models (such as
effects for both systems. the GMM), there are probably more principled ways (than UBMdiff
3. Except for the extreme views &t60°, the DCTmod2/GMM  and LinReg) of utilizinga priori information; however, the tech-
system using augmented models is more robust than the coniques presented here show that it's possible to effectively utilize
responding PCA/GMM system. a priori information directly in the model domain, rather than in the
image domain.

9.Conclusions and Future Work

In this work we proposed to address the problem of non-fronta
face verification when only a frontal training image is available
(e.g. a passport photograph) by augmenting a client’s frontal fac
model with artificially synthesized models for non-frontal views. In
the framework of a GMM based classifier, two techniques were pro-

posed for the synthesis: UBMdiff and LinReg. Both techniques rely L . .
on a priori information and learn how face models for the frontal The estimation problem can be solved using a form of the Expectation

view are related to face models at a non-frontal view. The syntheMaximization (EM) algorithm [6, 9]. The EM algorithm for GMMs

sis and augmentation approach was evaluated by applying it to tw comprised of iterating two steps: thrpectatiorstep, followed by

face verification systems: PCA based and DCTmod2 based; the tw§€ maximizationstep. GMM parameters generated by the previous

: ; old ; :
systems are a representation of holistic and non-holistic approachdi€ration °) are used by the current iteration to generate a new set
respectively. of parametersX™"), such that:

Experimental results suggest that in almost all cases, frontal
model augmentation has beneficial effects for both systems; they
a_1|so_ suggest th‘f’“ the LinReg technique (Wh'.Ch IS baseq on rnulI"he process is usually repeated until convergence (the parameters
tivariate regression of classifier parameters) is more suited to th

- - L ave not changed from one iteration to the next), or until the in-
PCA based system and that the UBMdiff technique (which is basecrease in the likelihood after each iteration falls below a pre-defined

on differences between two general face models) is more suited E%reshold, or until the number of iterations is equal to a pre-defined

the DCTmod2 based system. The results also support the view . X
. aximum. Reynolds [24] showed that the EM algorithm generally
that the standard DCTmod2/GMM system (trained on frontal facesg:)nverges in 10 to 15 iterations, with further iterations resulting in

only minor increases of the likelihogd X |\); this has also been the

Appendix A. EM: Maximum Likelihood

biven a set of training vector’ = {a‘c‘i}f\;‘{, the GMM parameters

g\) are estimated using the Maximum Likelihood (ML) principle:

A = arg max p(X|\) (34)
A

P(X|A™") > p(X A7) (35)

45

40

— PCA
© AUGMENTED PCA
—0— DCTMOD2

A AUGMENTED DCTMOD2

authors’ experience with various types of data. In our implementa-
tion we have therefore limited the number of iterations to 20. The

algorithm is summarized as follows:

Expectation step:

fork=1,---, Ng:

fori=1,---, Ny:

weN (245 i, i)

=251 i
g Ik = —— (36)
Ezo—\ /ffx 2531 wnN(-ri; fin, Xn)
151\\\\\o o © ///// B fork=1,---,Ne
O //// N
10 \\N\\\ o .y 1 Lk = Z Vllk,z (37)
AL N / 1=
s Tl L @e = Li/Ny (38)
T~ 2 \\3‘\: R (e - N 1 Ny .
%o s s —fs AA;?;LE 15 25 20 60 He = fk Zi:l i lk,l (39)
Fig. 9. Performance comparison of standard PCA, augmented PCA, S 1 Ny =T A A 40
standard DCTmod2 and augmented DCTmod2. L (Zizl Lili ’“) — Hkf (40)
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Maximization step: [6]

{we, fin, SrInC, = {0, i, Eetn s,

The initial estimate (i.e. the seed) is typically provided by the
k-means clustering algorithm [9]. It must be noted that the above
implementation of EM can also be interpreted as an unsupervised[B]
probabilistic clustering procedure, wifkic being the assumed num-

ber of clusters.

Appendix B. EM: MAP Estimation

The main difference between ML and MAP estimation is in the use
of a priori distribution (f(A)) of the parameters to be estimated
[c.f. Eqn. (34)]:

41
(41) -

[9]
[10]

[11]

A = argmax p(XIA) F(N) (42)

[12]
The above estimation problem can be also solved using the EM
algorithm, albeit in a different form to the one described in Ap- [13]
pendix A; this form is often referred to as maximumposteriori
estimation [12, 25], and is summarized as follows. 4]

Given UBM parameters i, = {wx, fix, =}, and a set of
training feature vectors for a specific cliet¥, = {fi}f’:"l, the esti-
mated weightsx), meansilk), and covariances{;,) are found as
per Egns. (38)-(40). The maximization step (fo=1,--- , Ng) is
then defined as:

[15]

[16]
(43)
fir = iy + (1 — a)fik (44)
3= [Oz(f]k + ﬁkﬁg) + (1—a)(§~3k + ﬁkﬁg))]—ﬁkﬁg (45)

wy = [oabg + (1 — a)wg] v
(17]

(18]

where~ is a scale factor to make sure the weights sum to one.
a= LijT is a data-dependent adaptation coefficidnt [s found us- [19]
ing Eqgn. (37)], where is a fixed relevance factor [25]; in our exper-
iments we used=256 (choice based on preliminary experiments).

As can be seen, the new parameters are simply a weighted suff®]
of a priori statistics and new statistics. Heke,can be interpreted
as the amount of faith we have in the new statistics. The choice of;;
a= Lff;r causes the adaptation of only the Gaussians for which there
is “sufficient” data; in other words, the MAP estimation approach
for finding GMM parameters should be robust to limited amount of [22]
training data.

Since the ML EM algorithm for GMMs is a form of unsupervised 53
probabilistic clustering, the MAP EM algorithm is also a form of
unsupervised probabilistic clustering, albeit it is constrained.
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Abstract

The iris is potentially a very distinct and useful
biometric because of its intricate patterns. One way to
extract information about these patterns is through
texture analysis using Gabor wavelets. However, such
analysis does not explicitly handle within-class variation
among iris textures. Correlation filters offer a different
approach by working on the spatial frequency spectrum
of an iris. Correlation filters can be designed to give
sharp peaks in response to authentic iris images and no
such peaks in response to impostor iris images. The
spatial frequencies that make up a correlation filter can
be optimally selected to maintain these peaks in the
presence of within-class distortions. This paper
compares the iris recognition capability of the Gabor
wavelet analysis method and the correlation filter method
on an iris image set with a range of introduced
distortions.

1. Introduction

Biometrics are useful in distinguishing between
subjects for identity recognition purposes. A good
biometric should be present throughout the lifetime of an
individual, be distinct enough to identify one individual
from others with certainty, and be readily accessible to
some kind of outside sensor. The iris has these
properties, and therefore has potential as a very effective
biometric.

The iris is the colored part of the eye that surrounds
the pupil and dilates or constricts the pupil opening (see
Fig. 1). The visual patterns of the iris are set before birth,
and empirical evidence suggests that they remain stable
over a person’s lifetime. The patterns are thought to be
unique to each eye (right and left) of every individual,
providing enough information to recognize someone with
confidence. In addition, an iris image can be recorded
externally and without contact with a subject (in contrast
to retinal scanning), although subject cooperation is
generally necessary to get an image of good enough
quality.

An iris recognition system must take an eye image,
separate the iris from the rest of the image, and extract
information from the iris that can be used to identify it.
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Daugman has pioneered the use of Gabor wavelet
analysis to characterize the local textures of an iris [1].

Figure 1. Example of iris image

This method involves filtering the iris image with 2-D
Gabor wavelets at different scales, orientations, and
locations.  Only the phase values of the wavelet
processing are kept as reliable information, and are
quantized into two bits per phase value. These bits taken
together form the “iris code”, and can be stored as the
representation of an iris. Because an iris code is created
from a series of local texture analysis computations, it is
not completely corrupted when part of the iris is occluded
or otherwise invalid. In this sense, the iris code degrades
gracefully with partial occlusion (like from an eyelid).
However, this technique does assume that local textures
remain highly consistent across within-class images,
which can be problematic in the case of within-class
distortions.

The use of correlation filters [2] may offer an
attractive alternative for the task of distortion-tolerant iris
recognition. Correlation filters are designed in the spatial
frequency domain, one for each class. When an input
image belonging to the authentic class is filtered, a peak
results in the correlation output; when the input image
does not belong to the authentic class, filtering should
produce no such peak. Correlation filters offer several
advantages. First, they are naturally shift-invariant, so
translation of the input image does not affect recognition.



Thus, the input images do not have to be centered. Also,
they can be designed, using multiple within-class images,
to handle within-class distortion. In addition, the
performance of correlation filters degrades gracefully in
the presence of noise and occlusions. This is because
correlation is an integrative operation and thus no
particular input image pixels are important by themselves.
The authors have recently reported results from
preliminary studies on iris recognition using correlation
filters [13].

This paper focuses on the use of correlation filters
(specifically the type of correlation filters that allow us to
optimally trade-off correlation peak sharpness for noise
tolerance) as an alternative to Gabor wavelet analysis in
performing iris recognition. Section 2 discusses the pre-
processing employed. Section 3 explains our
implementation of the Gabor wavelet analysis technique
to produce the iris codes introduced by Daugman.
Section 4 discusses distortion-invariant correlation filters
and their design. Section 5 presents our testing procedure
and the results of both recognition algorithms; this
includes verification (also known as 1:1 matching where
the system compares the live biometric to a stored one
and accepts or rejects the claimed identity) and
identification (also known as 1:N matching where the
live biometric is compared to a database of biometrics to
determine the identity of the subject). Section 6 provides
a summary.

2. Iris image preprocessing

In order to use only the texture information from the
iris patterns and to avoid unreliable information from
uninteresting regions in the eye image (such as the pupil),
the iris must be separated from the rest of the eye. It is
important to segment all irises into a normalized form in
order to make analysis consistent.

Segmentation and normalization are required
preprocessing for the iris code method. On the other
hand, correlation filters are shift-invariant and so are
capable of operating on entire eye images without
explicitly defining the iris region. = However, the
preprocessing described in this section does improve
correlation filter performance for two reasons. If
correlation filters are designed to recognize entire eye
images, they may emphasize information that is not
specific to the iris and therefore not a stable characteristic
(such as the contour of the eyelid or the presence of
eyelashes). In addition, the correlation filters applied in
this paper are not designed to handle scale changes. The
normalization of the iris assures that scale changes will
not affect performance. For these reasons, all iris images
used by either algorithm are preprocessed as follows.
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2.1. Detecting iris boundaries

Both the inner and outer iris boundaries can be
modeled as circles with a fair amount of accuracy. This
simplifying assumption helps to make the segmentation
process computationally manageable. However, the two
circular boundaries need not be concentric. The location
of the boundaries are indicated by a sudden change in
image intensity from darker (inside the circular boundary)
to lighter (outside the boundary), and can be found using
some form of radial gradient operator. This approach
towards locating the iris boundaries is very effective and
has been described by Daugman in his earlier work [3].

However, finding the boundaries within a reasonable
computation time is tricky. This is because for each
boundary, the algorithm must find the center location that
yields the highest radial gradient. This is not a trivial
search. In order to find the maximum radial gradient, the
algorithm must approximate circular integration of the
image for every possible combination of center and radius
values. The standard way to accomplish this is to
perform a polar transform around every possible center,
and project each transform onto its radial axis. But the
interpolation involved with a discrete polar transform is
computationally costly, even at coarse scales.

Instead, our algorithm relies on cross-correlation to
approximate circular integration. Take an image that
contains only a single circle of radius p against a zero-
valued background, and compute its inner product with
an iris image; the result can be considered an
approximation to integrating the iris image along a
circular contour with radius p. If the cross-correlation is
computed, it gives a set of shifted inner products. So the
result is an approximation of circular integration at radius
p across all center locations. If the iris image is cross-
correlated with a set of circles of every possible radius (as
shown in Fig. 2), all the necessary circular integrations
have been approximated.

Computing a series of cross-correlations is more
efficient than computing a series of polar transform
interpolations. This is because cross-correlation can be
computed in the frequency domain via a simple conjugate
multiplication, and the Fast Fourier Transform algorithm
offers an efficient way to transform in to and out of the
frequency domain.

Our algorithm first downsamples an iris image to 100
by 100 pixels. Then it computes the cross-correlation
between the coarse image and a bank of 100 circles of
different radii. A gradient operator is applied to the
resulting circular integrations to find the maximum radial



gradients, one for the inner boundary and one for the
outer boundary.

cross-correlation
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Figure 2. Computing circular integrations using
cross-correlations

2.2. Normalized segmentation

When the iris boundaries have been selected, the final
step is to segment the iris. The goal is to project the iris
onto an unwrapped polar coordinate system with a
uniform radius. At each discrete angle in the image, there
is a radial line from the center of the pupil that crosses the
inner and outer boundaries of the iris. The length of the
line segment that intersects the iris varies with angle,
because the two boundaries are not concentric. For radial
normalization, the same number of intensity samples are
taken along every radial line, equally distributed. The
resulting unwrapped and segmented iris has a uniform
radius across all angles, as depicted in Fig. 3.

This iris segmentation method automatically takes care
of translation because the iris region is located by
boundary detection. It also takes care of scale changes
because the radius is normalized. All irises are projected
onto the same rectangular area, which makes analysis and
comparison between irises possible.
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Radial

Angle

Figure 3. Example of iris segmentation

The top image displays the detected inner and outer iris
boundaries, which have different centers. The grid
covering the area between the boundaries shows some of
the radial lines that are sampled (at a resolution that
normalizes their length). The bottom image shows the
resulting unwrapped iris, with uniform normalized radius.

3. Using Gabor wavelets to create iris codes

Daugman has popularized the use of Gabor wavelet
decomposition to characterize the local textures of an iris
[3]. “Iris codes” can be created by quantizing the results
of this texture analysis. We implemented an algorithm
that uses Gabor wavelet texture analysis to produce a
version of iris codes, in order to compare this approach to
our correlation filter approach. Our implementation is
outlined below.

We created a complex-valued, 2-D Gabor wavelet for
the polar coordinate system of the unwrapped irises
defined over angle @ and radius p:

2 2
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where @ controls modulation, and any constant amplitude
terms are unimportant. This is considered the mother
wavelet, and from it we generated a self-similar family of
wavelets at 8 different orientations and 4 different scales.
These 32 wavelets are placed at different locations in the
segmented iris plane to compute the complex projection
of local parts of the iris onto the wavelets, as given by:

Proj = [ [1(4,0)&(¢~ P~ p,) pd pdgh
P p

where [ (¢, p)represents the segmented iris plane, with

@ and p, determining the spatial location of the wavelet
in that plane. During analysis, wavelets of different
scales are placed at different locations across the iris
plane, with smaller wavelets at dense distributions and
larger wavelets at sparse distributions. In total, slightly
over 1000 wavelet projections are calculated.

Each projection yields one complex number, and the
phase of this complex number is the important part [3].
As suggested by Daugman, we quantize each projection’s
phase into two bits based on the complex-plane quadrant
it occupies. The array of 2118 bits that results from
quantized Gabor wavelet projections represent our
version of the iris code. In this approach to iris
recognition, the iris code is meant to be a complete and
unique representation of each iris.

Checking for degree of match between two iris codes
is simple. The metric used is based on the Hamming
distance, the number of corresponding bits that differ
between the codes. The match metric m is computed as

Hamming Distance
Total Number of Bits

and ranges from approximately 0.5 when the codes are
statistically independent to 1 when the codes are a perfect
match.

An iris code is generated from a single iris image. If
multiple reference images of the same iris are available,
an iris code can be generated for each reference image.
When dealing with a set of training images, we create and
store an iris code for every reference image. Then during
iris recognition, all the codes stored for one iris class are
compared against the input test iris code to check for the
closest match.
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4. Using correlation filters for iris recognition

Correlation filters are based on the concept that
filtering images in their spatial frequency domain is an
effective way to recognize specific patterns. Their use for
biometric recognition has been previously explored by
Kumar et al [4]. Correlation filters are applied as shown
in Fig. 4. The input image is first decomposed into its
spatial frequencies by a Discrete Fourier Transform. This
is accomplished using the computationally efficient Fast
Fourier Transform (FFT) algorithm. The transformed
image is multiplied by the complex conjugate of the
correlation filter (note that conjugate multiplication in this
domain equates to cross-correlation in the original spatial
domain). Then it is transformed back to the original
domain through an Inverse Fast Fourier Transform
(IFFT). The result is referred to as the correlation plane.

complex
conjugate

Correlation
Filter

Figure 4. The application of a correlation filter to an
iris image. The resulting correlation output
produces a peak for authentic and no such peak for
impostors.

If the input image is authentic (i.e., it contains the
target pattern that the correlation filter was designed to
recognize), the correlation plane should show a distinct
correlation peak. An ideal correlation peak approximates
a 2-D delta function. If the input image is an imposter
(does not contain the target pattern), no distinct
correlation peak should exist. The sharpness of the peak
in the correlation plane is measured with the peak-to-
sidelobe (PSR) ratio. The PSR metric takes several
different forms, but for the purpose of this paper it is
defined as



( Peak-Mean )
Standard Deviation

PSR=

High PSR in the correlation plane is considered an
indication of match, while low PSR indicates no match.
One natural advantage of correlation filters is their shift
invariance. A shift in the input causes a corresponding
shift in the correlation plane, but the peak values as well
as mean and standard deviation values do not change and
so the peak-to-sidelobe ratio remains the same.

4.1. Composite correlation filters

The simplest type of correlation filter is the Matched
Filter [5], which is optimal for detecting an exact target
pattern in additive white noise. However, this type of
filter does not perform well in the presence of any kind of
distortion. Casasent and Hester established the concept of
composite correlation filters as a way to handle detection
of multiple images belonging to the same class [6]. The
goal is to design a filter that gives good recognition peaks
for all reference images of the same class in a training set.

One effective version of a composite correlation filter
is the Minimum Average Correlation Energy (MACE)
filter [7]. The MACE filter is designed to give a specified
peak value in the correlation plane for every reference
image in the training set, while minimizing the average
energy of the correlation plane. This minimization has a
closed-form solution, making the filter design process
straightforward. The result is that the recognition peaks
are very sharp, giving high PSR scores for each of the
reference images from the authentic class.

The MACE filter exhibits great discrimination
performance for the reference images used to design it,
but does not take into account within-class noise.
However, the filter design can be adjusted to
accommodate noisy versions of authentic images.
Minimum Variance Synthetic Discriminant Function
(MVSDF) filters are designed to perform optimally in the
presence of noise [8]. Unfortunately, MVSDF filters do
not offer good discrimination although they exhibit
excellent distortion tolerance. MVSDF and MACE filters
exhibit opposing attributes in that the former emphasizes
low spatial frequencies whereas the latter emphasizes
high spatial frequencies. Refregier showed that the two
performance criteria, discrimination ability and noise
tolerance, can be traded off optimally [9]. This led to the
design of the Optimal Trade-off Synthetic Discriminant
Function (OTSDF) filter [10], which we use in this
application.
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4.2. OTSDF filter design

Let o represent a trade-off parameter ranging from 0 to
1, determining the relative importance of noise tolerance
to discrimination ability over the reference set. Then the
design of the OTSDF filter is given by the closed-form
solution:

1
£ :[aD+\/1—a2c} m

where D is a diagonal matrix containing the average
power spectrum of the reference images along its
diagonal, m is the mean of the DFTs of the reference
images, in the shape of a column vector, and C is the
power spectral density of the expected within-class noise.
If it is assumed that the noise is white, as we do here, the
formula simplifies to

-1
f:[aD+ l—azlJ m

with I being the identity matrix. We set the trade-off
parameter a to 0.5 when creating our filters for this
application.

The OTSDF correlation filter is designed to recognize
multiple images of the same iris, and to degrade
gracefully in the presence of noise. This makes it well-
suited to the task of recognizing an entire class of image
patterns (in this case, iris patterns belonging to the same
iris) while discriminating against imposter images. The
filter does especially well if the reference images used to
train it reflect an accurate range of within-class
distortions. Also, an iris image with in-plane rotation
shows up as a cyclical shift in the segmented iris.
Correlation filters are shift-invariant, so they should be
more capable of recognizing rotated irises.

5. Experimental results

The purpose of our numerical experiments was to test the
two iris recognition methods across a range of within-
class distortions. However, rigorous evaluation with iris
images is difficult because there are no publicly available
iris databases. For our tests, we created a data set of iris
images by artificially introducing four different types of
possible distortion. The iris segmentation process already
takes care of scale changes and translation, so we selected
distortions other than these that can make iris recognition
difficult. They are listed below:

Rotation of eye: This can occur with tilting of the
subject’s head or the camera.



Partial occlusion by eyelid: This is modeled by placing
a rectangle in the upper or lower portion of the eye image
to obstruct part of the iris.

Random noise: Gaussian noise added to achieve a
specific Signal-to-noise Ratio (SNR)

Nonlinear contortion: A slightly nonlinear stretching of
the iris along the radial axis to simulate contortion caused
by pupil movement

Fig. 5 shows examples of these individual distortions on
one iris image. We used varying levels of each type of
distortion to create separate images for the same iris. In
addition, we used every pair-wise combination of
distortions to create more images. The different
distortion types and levels that were applied for every iris
class are listed below:

Rotation only: 6 levels
Occlusion only: 8 levels
Gaussian noise only: 3 levels
Contortion only: 6 levels

30 combinations
10 combinations
20 combinations
12 combinations
24 combinations
8 combinations

Rotation and Occlusion:
Rotation and Gaussian noise:
Rotation and Contortion:
Occlusion and Gaussian noise:
Occlusion and Contortion:
Gaussian noise and Contortion:

So each iris class in our dataset consists of a total of 128
images (including the original), all distorted versions of
the same iris. We created 45 iris classes for the dataset,
based on high resolution iris images provided by Miles
Research Lab [11].

Seven images from each class, representing the range
of distortions, were set aside as training images. These
images were used to create the iris codes and correlation
filter used to characterize each iris class. This left 121
images in each class for testing purposes.

In testing, every image was compared to the iris codes
and correlation filters stored for all 45 classes (considered
an authentic to the class which it belonged, an imposter to
all other classes). This generated a total of 5,445
authentic comparisons and a total of 239,580 imposter
comparisons. Every comparison was scored by the
respective match metrics of each algorithm (Hamming
distance metric for iris codes, PSR for correlation filters).

5.1. Verification results

When iris recognition is used for verification, the
subject claims an identity to be verified. The algorithm
has to give a yes/no decision based on the match score,
and therefore has to use some threshold value that
separates authentics from imposters. This threshold value
is universal and not specific to each class. We evaluated
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each algorithm in the context of verification by
calculating the Equal Error Rate (EER). When a
threshold value is selected that gives the same rate of
false acceptances and false rejections, this error rate is the
EER. We separated the test data based on type of
distortion, and calculated the EER for each type. The
results are shown in Table 1. Clearly, rotated irises were
the largest challenge and affected performance the most.
The other distortions had little or no impact on
verification. Also, correlation filters performed much
better than our version of iris code for rotation distortions
in iris images.

Figure 5. Examples of single distortions

From top to bottom: original (no distortion), rotation, partial
occlusion, Gaussian noise, and nonlinear contortion
outward along radial axis

5.2. Identification results

When iris recognition is used for identification, the
algorithm has a different task. Instead of confirming the
subject’s identity, it has to search for the identity among
all stored classes. Identification is only successful if the
match score returned for the authentic comparison is
higher than the match scores returned for all other



comparisons. We measured the identification ability of
the algorithms with Cumulative Match Characteristic
curves (CMC). This curve plots the ratio of test images
that are correctly identified in top k match scores, as a
function of k. If the identification algorithm performs
well, a large ratio of test images will be correctly
identified by the single greatest match score; this means
the CMC curve will start very high and approach 1
quickly. As identification performance degrades, the area
under the CMC curve decreases.

Table 1. Equal Error Rates

Distortion Gabor Wavelet / | Correlation
Type Iris Code Filter
Rotation (R) 41.3 % 89 %
Occlusion (O) 0 % 0 %
Noise (N) 0 % 0 %
Contortion (C) 0.06 % 0 %
(R)and (O) 41.2 % 9.1 %
(R) and (N) 42.4 % 14.6 %
(R)and (C) 43.4 % 9.7 %
(O) and (N) 0.002 % 0 %
(O) and (C) 013 % 0 %
(N)y and (C) 0.83 % 0.52 %

Fig. 6 shows the CMC curves for both algorithms,
calculated across all test images. The curve for
correlation filters starts higher because 94.8% of test
images are correctly identified by the top match score, as
opposed to 52.6 % for iris codes based on Gabor wavelet
analysis.

As with verification, it is the distorted images with
rotation that prove difficult to identify. In fact, if all test
images with some degree of rotation are disregarded
(leaving only combinations of the other three distortion
types), both algorithms give perfect identification with the
top match score. So the identification results on non-
rotated images are actually better than the verification
results on those same images (because verification error is
not always zero). This suggests that, excluding rotation,
all classes have good separation between authentic and
imposter match scores, although the threshold of
separation varies between classes.
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6. Conclusions

Both iris code and correlation filter algorithms give
fairly good verification and identification performance on
three of four distortion types, but rotation degrades
performance significantly. The iris code method does not
do well under rotation because it is based on local texture
analysis. Rotating the iris causes local textures to shift to
new spatial regions, rearranging the bits that make up an
iris code. One possible way to overcome this problem is
to store iris codes for rotated versions of the same iris
image. In fact, one of the reference images from each
class in our experiment was rotated, but it did not seem to
help iris code performance much. The problem is that the
reference image and the test image must be rotated by
almost the same degree to get good recognition. The
correlation filter showed better performance on rotated
images because of its shift invariance. If the interpolation
involved in segmenting the iris allowed for exact shifts
among the discrete-valued iris patterns, the error rates of
correlation filters on these images would approach zero.
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Figure 6. CMC curves for each algorithm

The horizontal axis is the number of top match scores that
are considered, from 1 to all 45 scores. The vertical axis is
the ratio of all test images which have their authentic score
among the scores considered. Solid line shows the results
for the correlation filters and dashed lines show the results
for our implementation of the iris code method.

Overall, the OTSDF correlation filter demonstrated
better verification and identification.  This can be
attributed to the design approach, which seeks good
discrimination across the range of within-class distortion.
It does not assume within-class consistency, as local
texture analysis does. Instead, the reference images are
used to determine which parts of the frequency spectrum



are consistent enough to be useful for recognition. It
remains to be seen if this approach scales effectively to a
large, comprehensive database of iris images. We are in
the process of creating our own database using iris
camera equipment.

As a final note on algorithm design, the iris code
method uses a level of phase quantization that is meant to
simplify storage and computation for practical
implementation. This paper does not focus on issues of
practical implementation. But the effect of quantization
on the design and use of correlation filters has been
studied recently [12].

This research is supported in part by by the Army
Research Office (ARO) through its support to the Center
for Communications and Computer Security (C3S) at
Carnegie Mellon University.
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Abstract recognition by gait. The representation of GEI is introdiice
in Section 3. In Section 4, we propose two approaches for
In this paper, we propose a new spatio-temporal gait rep- human recognition using GEI: direct GEI matching, and
resentation, called Gait Energy Image (GEI), to character- statistical GEI feature matching. In Section 5, we analyze
ize human walking properties for individual recognition by the experimental results of the proposed human recognition
gait. To address the problem of the lack of training tem- approaches and compare them with the existing techniques.
plates, we generate a series of new GEI templates by an- Section 6 concludes the paper.

alyzing the human silhouette distortion under various con-

ditions. Principal component analysis followed by multiple 2 Related Work
discriminant analysis are used for learning features from
the expanded GEI training templates. Recognition is car-
ried out based on the learned features. Experimental results
show that the proposed GEI is an effective and efficient gait
representation for individual recognition, and the proposed
approach achieves highly competitive performance with re-
spect to current gait recognition approaches.

In recent years, various approaches have been proposed
for human recognition by gait. These approaches can be
divided into two categories: model-based approaches and
model-free approaches.

2.1. Model-based Approaches

When people observe human walking patterns, they not
only observe the global motion properties, but also inter-
pret the structure of the human body and detect the motion

Current human recognition methods, such as finger-patterns of local body parts. The structure of the human
prints, face or iris biometrics, generally require a coaper body is generally interpreted based on their prior knowl-
tive subject, views from certain aspects and physical @nta edge. Model-based gait recognition approaches focus on
or close proximity. These methods can not reliably recog- recovering a structural model of human motion, and the gait
nize non-cooperating individuals at a distance in realltvor  patterns are then generated from the model parameters for
changing environmental conditions. Moreover, in various recognition.
applications of personal identification, many established Niyogi and Adelson [14] make an initial attempt in a
biometrics can be obscured. Gait, which concerns recogniz-spatiotemporal (XYT) volume. They first find the bound-
ing individuals by the way they walk, has been an important ing contours of the walker, and then fit a simplified stick
biometric without the above-mentioned disadvantages. model on them. A characteristic gait pattern in XYT is gen-

In this paper, we propose a new spatio-temporal gait rep-erated from the model parameters for recognition. Yoo et al.
resentation, Gait Energy Image (GEl), for individual recog [19] estimate hip and knee angles from the body contour by
nition. Unlike other gait representations [8, 4] which con- linear regression analysis. Then trigonometric-polyradmi
sider gait as a sequence of templates (poses), GEIl repgeseninterpolant functions are fitted to the angle sequences, and
human motion sequence in a single image while preservingthe parameters so-obtained are used for recognition. In Lee
some temporal information. We also propose a statisticaland Grimson’s work [11], human silhouette is divided into
approach to learn and recognize individual gait propertieslocal regions corresponding to different human body parts,
from the limited training GEI templates. and ellipses are fitted to each region to represent the hu-

In the next section, we introduce related work of human man structure. Spatial and spectral features are extracted

1. Introduction
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from these local regions for recognition and classification relating each pair of aligned and scaled human silhouette in
Bhanu and Han [3] propose a kinematic-based approach taan image sequence. Normalized features are then generated
recognize individuals by gait. The 3D human walking pa- from the similarity plots and used for gait recognition via
rameters are estimated by performing a least squares fit okigenspace transformation.
the 3D kinematic model to the 2D silhouette extracted from  As a direct template matching approach, Phillips et al.
a monocular image sequence. Human gait signatures arg¢l5] measure the similarity between the gallery sequence
generated by selecting features from the estimated parameand the probe sequence by computing the correlation of cor-
ters. responding time-normalized frame pairs. Similarly, Gudli

In these model-based approaches, the accuracy of humast al. [5] first extract key frames from a sequence, and the
model reconstruction strongly depends on the quality of the similarity between two sequences is computed from nor-
extracted human silhouette. In the presence of noise, themalized correlation. Tolliver and Collins [18] cluster ham
estimated parameters may not be reliable. To obtain moresilhouettes/poses of each training sequencekrimtotyp-
reliable estimates, Tanawongsuwan and Bobick [17] recon-ical shapes. In the recognition procedure, the silhouettes
struct the human structure by tracking 3D sensors attachedn a testing sequence are also classified infarototypical
on fixed joint positions. However, their approach needs shapes which are compared to prototypical shapes of each
lots of human interaction which is not applicable in most training sequence for similarity measurement.
surveillance applications.

2.2, Model-free Approaches 3. Gait Energy Image (GEI) Representation

In this paper, we only consider individual recognition by
Model-free approaches make no attempt to recover a_ . . o . ;
activity-specific human motion, i.e., regular human walk-

structural model of human motion. The features used for . o ) R

. S ) : dng, which is used in most current approaches of individual
gait representation includes: moments of shape, height an fecognition by gait
stride/width, and other image/shape templates. '

Moments of shape is one of the most commonly used
gait features. Little and Boyd [12] describe the shape of hu-
man motion with a set of features derived from moments of ) _ )
a dense flow distribution. Shutler etal. [16] include vetpci Regular human walklpg can be considered as cyclic mo-
into the traditional moments to obtain the so-called vejoci  fion where human motion repeats at a stable frequency.
moments (VMs). A human motion image sequence can peSome gait recognition approaches extract features from the
represented as a single VM value with respect to a Speciﬁccorrelation of all the frames in a walking sequence without
moment order instead of a sequence of traditional momentconsidering their order [1, 8, 13]. Other approaches ektrac
values for each frame. He and Debrunner’s [7] approachfeatures from each_frame and compose a feature sequence
detects a sequence of feature vectors based on Hu's mofor the human walking sequence [2, 5, 7, 10, 9, 12, 15, 16,
ments of each motion segmented frame, and the individual18]- During the recognition procedure, they either match
is recognized from the feature vector sequence using hidderhe extracted statistics from the feature sequence, orfmatc
Markov models (HMMs). the features between the corresponding pairs of frames in

BenAbdelkader et al. [2] use height, stride and cadencetWo sequences that are time-normalized vyith respect to thei
as features for human identification. Kale et al. [10] choose €Ycle lengths, respectively. The assumption here is theat th
the width vector from the extracted silhouette as the rep- Order of poses in human walking cycles is the same, i.e., the
resentation of gait. Continuous HMMs are trained for each limbs (arms and legs) move forward and backward in a sim-
person and then used for gait recognition. In their latekwor lar way among normal people. The difference exists in the
[9], different gait features are further derived from thelthi phase of poses in a walking cycle, the extend of limbs, and
vector and recognition is performed by a direct matching al- the shape of the torso, etc. As the order of poses in regular
gorithm. human walking is generally not considered in gait recogni-

To avoid the feature extraction process which may re- tion approaches, it is possible to compose a spatio-terhpora
duce the reliability, Murase and Sakai [13] propose a tem- template in a single image instead of a ordered image se-
plate matching method to calculate the spatio-temporal cor duences as usual.
relation in a parametric eigenspace representation far gai _ _
recognition. Huang et al. [8] extend this approach by 3.2. Representation Construction
combining transformation based on canonical analysi&, wit
eigenspace transformation for feature selection. BenAb- We use a silhouette extraction procedure and begin with
delkader et al. [1] compute the self-similarity plot by cor- the extracted binary silhouette sequences. The preprocess

3.1. Motivation
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Figure 1. Examples of normalized and aligned silhouette fra mes in different human walking se-
quences. The rightmost image in each row is the average silho uette image over the whole sequence
- Gait Energy Image (GEI).

ing procedure includes size normalization — fitting the sil- 3.3. Representation Justification

houette height to the fixed image height, and sequential hor-

izontal alignment — centering the upper half silhouettd par  gg| phas several advantages over the representation of
with respect to the horizontal centroid. Figure 1 shows ex- inary silhouette sequence. As an average template, GEI
amples of preprocessed silhouette frames in different hu-is ot sensitive to incidental silhouette errors in indiad
man walking sequences. The rightmost image in each rowgrames. The robustness could be further improved if we
is the average silhouette image over the whole sequencegiscard those pixels with the energy values lower than a
As expected, the average_silhouette image r_eflects the maghreshold. Moreover, with such a 2D template, we do not
jor shapes of the human silhouettes and their changes ovepee( to divide the silhouette sequence into cycles and per-
the sequence. A pixel with higher intensity value means qrm time normalization with respect to the cycle length.

that human body occurs more frequently at this position. Therefore, the errors occuring in these procedures can be
Therefore, we refer to this average silhouette image as Gaitherefore avoid.

Energy Image (GEI). Compared with binary silhouette sequence, the informa-

Given a size-normalized and horizontal-aligned human tion loss of GEl is obvious. For a specific pixel in GEI,

walking binary silhouette sequendg(z,y,t), the grey- W€ only know its intensity value, i.e., the frequency with
level GEIG(z, y) is defined as follows which the human silhouette occurs at this position over the

whole sequence. However, we might partly reconstruct the

original silhouette sequence from the GEI according to the

N knowledge of regular human walking. For example, for a

G(z,y) = 1 ZB(m’y’t)’ (1) pixel near the outline of the leg area, it GEI value shows

N =1 that silhouette occurs at this location in 20 frames out of

100 frames. Using the common sense, we know that 20
frames should be those frames where human stride instead

whereN is the number of frames in complete cycles of the of standing straight, if noise is not considered. Similarly

sequencet is the frame number of the sequenegeandy we can allocate the GEI values to most other leg/arm ar-
are values in the 2D image coordinate. eas to corresponding frames in the silhouette sequence. In
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general, the energy changes in the torso and head area cat.1. Direct GEI Matching

be considered as noise. Although the knowledge is not

enough to accurately allocate the GEI value of each pixel One possible approach is recognizing individuals by
(i.e., the original silhouette sequence cannot be coniplete measuring the similarity between the gallery (training) an
reconstructed), GEI still keeps the major shapes of humanprobe (testing) templates. Given GEls of two gait se-
walking and reflects the major shape changes during walk-quences(7, (z, y) andGp(z,y), their distance can be mea-
ing. Actually, it is difficult to analyze how and in what de- sured by calculating their normalized matching error:

gree the information loss affects the discriminating power

of GEI as a template for individual recognition. We will D(G,,G,) = 2oy |Gy(2,y) — Gp(z,y)| )
evaluate this issue in the section of experimental resylts b e \/E Gy(2,9) 3, Go(x ?/)7
comparing the recognition performance between GEI and my wy P

binary silhouette sequence representations. wherezm, |G, (2, y) — Gp(z,y)| is the matching error be-
tween two GEIsy_, , G4(z,y) and}_, , G,(z,y) are to-
3.4. Relationship with MEI and MHI tal energy in two GEls, respectively.

This direct GEI matching approach is sensitive to distor-
tion in silhouettes generated from image sequences that are
recorded under different conditions. Recognition by learn
ing may recover the inherent properties in training tengdat
from an individual and therefore insensitive to such sithou
ette distortion. However, with one GEI template per indi-
vidual, learning cannot be performed. Even with several
templates per individual, if they are from similar condit&
the learned features may be overfit to the training templates

Bobick and Davis [4] propose motion-energy image
(MEI) and motion-history image (MHI) for human move-
ment recognition. Both MEI and MHI are vector-image
where the vector value at each pixel is a function of the
motion properties at this location in an image sequence.

MEI is a binary image which represents where motion
has occured in an image sequence:

Er(x,y,t) = UiZ D(x,y,t =), (2) 4.2 statistical GEI Feature Matching
whereD(z,y,t) is a binary sequence indicating regions of
motion, 7 is the duration of timet, is the moment of timey
andy are values of 2D image coordinate. To representareg-
ular human walking sequence, i¥(z, y,t) is normalized
and aligned a8 (z, y, t) in Equation (1), MEIEN (z,y, N)
is the binary version of GEE(z, y).

MHI is a grey-level image which represents how motion
in the image is moving:

In this section, we propose a statistical GEI feature
matching approach for individual recognition from limited
GEI templates. First, we generate new templates from the
limited training templates according to a distortion analy
sis. Next, statistical features are learned from the expand
training templates by principal component analysis (PCA)
to reduce the dimension of the template and multiple dis-
criminant analysis (MDA) to achieve better class seperata-
bility. The individual is recognized by the learned feature

H,(z,y,t) = T it D(z,y,t) = L The system diagram of training and recognition procedure
1 max{O, HT(.'L',:U, t— ].) - ].}, OtherV\E[SS)e is shown in Figure 2.

In general, both MEI and MHI are different motion rep-
resentations compared to GEI. As regular human walking
is a cyclic and highly self-occluded motion with a specific
style, MEI and MHI are not suitable to represent regular Various factors have effect on silhouettes extracted fifen t
human walking for individual recognition. same person: shoe and clothing, walking surface, camera
view, and shadow, etc. Shoe, surface and shadow affect the
foot area of the silhouette. In addition, shoe and surface
also change the human walking style. Clothing affects the
shape of the silhouette. If the camera view changes slightly

Human walking sequences for training are limited in real there will be slight changes in silhouettes; if the camera
surveillance applications. Because each sequence is repreview changes a lot, the extracted silhouettes may be totally
sented as one GEI template, the training/gallery GEls for different which may cause recognition to fail.
each individual might limited to several or even one tem-  Among these factors, slight camera view changes may be
plate(s). In this paper, we develop two approaches to recogeglected. The silhouette shape distortion incurred by the
nize individuals from the limited templates. difference of clothing is irregular distortion, which ogsu

4.2.1 Generating New Templates from Limited Train-
ing Templates

4. Human Recognition Using GEI Templates
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Training Gait Testing Gait 4.2.2 Learning Templates by Component Analysis and
Sequences Sequences Discriminants

Silhouette Silhouette

Pre-processing Pre-processing Once we obtain a series of training GEI templates for each
v v individual, the problem of their excessive dimensionality
GEI Computation GEI Computation occurs. To reduce their dimensionality, there are two &lass

cal approaches of finding effective linear transformations
combing features - Principal Component Analysis (PCA)
and Multiple Discriminant Analysis (MDA). As described

in [6], PCA seeks a projection that best represents the data
in a least square sense, while MDA seeks a projection that
best separates the data in a least-square sense. Huang et al.
[8] combine PCA and MDA to achieve the best data repre-

Original GEI

Training Templates

Original GEI
Testing Templates

New GEI Generation New GEI Generation

Expanded GEI

Training Templates

Expanded GEI
Testing Templates

Principal

Principal Component Component Principal Component sentation and the best class separability simultaneolrsly.
Analysis [ranstormation Transformation this paper, the learning procedure follows this combimatio
Principal Component Principal Component appr_oaCh' . i L.
Vectors Vectors Given n  d-dimensional training templates
V¥V Multiple N A— {x1, X2, ...,Xp }, PCA minimizes the criterion function
Multiple Discriminant Discriminant Multiple Discriminant
| Analysis Transformation Transformation | n d
Matrix 2
Jo =Y |lm+" arses) —xl?, (5)
ultiple Discriminan Similarity ultiple Discriminan k=1 =1
Vector Database Measurement Vectors

whered < d, m = 237 | x;, and{ey,e,,...,eq } are
a set of unit vectorsJy is minimized wherey, e,, ..., and
ey are thed’ eigenvectors of the scatter mat&xhaving the
largest eigenvalues, where

Recognition
Results

Figure 2. System diagram of individual recog-
nition using the proposed statistical GEI fea-
ture matching approach.

S = Z(xk —m)(x; —m)”. (6)
k=1
The d’'-dimensional principal component vectpy, is ob-
tained from thed-dimensional GEI template; by multi-
plying the transformation matripe, ..., eq|:

in the upper body, lower body or both, and make body parts
fatter or thinner. Thus, it is difficult to model this irregul
distortion. Similarly, different shoes and walking sugac
incur global silhouette distortions which are also difftdol
model. Now we consider the common distortion incurred yx = [a4, ..., ag
by the difference of shoe, surface and shadow which gen-
erally occurs in the foot area of the silhouette. These dis-
tortions are local distortions which make the bottom part of
the silhouette and GEI unreliable. If we generate new tem-
plates which are insensitive to the distortion in their bt
parts, the learned template properties will be insensttve

this kind of distortion. label of training templates. Multiple discriminant anays

. The new GEl templz_;\tes are generated as |Ilu§trated In(MDA) seeks a projection that are efficient for discrimina-
Fig 3. First, we determine the range of the distortion area, tion. Suppose that the d'-dimensional transformed train-

e.g.,n rows frqm the bottom row of the original GEI. Thgn, ing templates{y1,ys, ..., yn} belong toc classes. MDA
we cut a portion of the area from the bottom, and fit it to g5 5 transformation matfi& that in some sense max-

the original GEI size to obtain a new template. By repeat- ; i-as the ratio of the between-class scatsey to the
ing this step until reaching the upper row of the distortion within-class scatteyy :

area, we will obtain a series of new templates. The training N r

templates expanded from the same original GEI have the J(W) = |§B| _ W™ SsW| ) 8)
same global shape properties but different bottom parts and |Sw| IWTSwW]

different scalt_es_. Therefore, the I_earneq_features from therhe within-class scatted is defined as

expanded training templates are insensitive to the common .

distortion by shadow, shoe and surface which occurs in the Sy = Z S;, 9)
bottom part of GEI templates. =

]T = [el, ...,ed:]Txk, k= 1, ey T (7)
wheren is the number of the expanded GEI templates from
all people in the training dataset.

Although PCA finds components that are useful for rep-
resenting data, there is no reason to assume that these com-
ponents must be useful for discriminating between data in
different classes because PCA does not consider the class
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AR

Figure 3. Examples of new GEI templates generated from the or
is the original template, other templates are sequentially
rows in this example) of the previous template and fitting it t

where
(10)

and

Zy,

tyeD;

whereD; is the training template set that belongs to itie
class andq; is the number of templates ;. The within-
class scattef g is defined as

SB = 26: ni(mz
i=1

(11)

m; — m)Ta (12)

where 1
m= — E 13
Y, ( )

y€D

andD is the whole training template setl(1V) is maxi-

mized when the columns d¥ are the generalized eigen-

vectors that correspond to the largest eigenvalues in

SBW,' = /\zSWWz (14)

There are no more than— 1 nonzero eigenvalues, and the

corresponding eigenvectors,...,v._1 form transformation
matrix. The(c — 1)-dimensional multiple discriminant vec-
tor z;, is obtained from thel’-dimensional principal com-
ponent vectoy; by multiplying the transformation matrix
[V1, .oy Vee1]:

7k = [Vi, -y Veer)Tyn, k=1,..,n. (15)

iginal template. The leftmost template
generated by cutting the bottom portion (2
o the original template size.

for this test gait sequence. The feature distance between th
guery gait sequence and each class in the feature database
can be given by the minimum distance between query and
training feature vector pairs as follows

Distance; = mln mln E |Zik — 2zkl, i=1,...,c.

(16)
After the distances for all classes are obtained, they are
ranked in an ascending order where the class with the small-
est distance is the best match of the query gait sequence.

5. Experimental Results

Our experiments are carried out on the USF HumanID
May-2001 gait database. This database consists of 452 se-
guences from 74 persons walking in elliptical paths in front
of the cameras. For each person, there are up to 5 covari-
ates: viewpoints - Left/Right, shoe types - A/B, surface
types - grass/concrete, carrying conditions - with/witheu
briefcase, and time and clothing. Seven experiments are de-
signed for individual recognition as shown in Table 1. The
gallery set contains 71 sequences. No sequence belongs to
the same person in each individual data set.

Phillips et al. [15] proposed a baseline approach
to extract human silhouettes and recognize individuals
in this database. For comparison, they provide ex-
tracted silhouette data which can be found at the web-
site http'//marathon csee.usf. edu/GaitBaseIine/ Qpee

feature database for individual recognition.

4.2.3 Individual Recognition

(parameterized version 1.7). The experimental results are
shown in Table 2 and 3 as well as comparison with other ap-
proaches of individual recognition by gait. In these taples

rankl means that only the first subject in the retrieval rank

Given the GEI templat& of a query gait sequence, a set of list is recognized as the same subject as the query subject,

n, templates{xy, ...,

Xn,} are generated according to the and rank5 means that the first five subjects are all recog-

procedure described in Section 4.2.1. After the principal nized as the same subject as the query subject. The perfor-
component transformation and multiple discriminant trans mance in these tables is the recognition rate under these two

formation, we obtain a set of feature vectdts, ..., z,, }

definitions.
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Table 1. Seven experiments designed for indi- Table 3. Comparison of recognition perfor-

vidual recognition in USF HumanID database. mance of Rank 5 among different approaches
on silhouette sequence version 1.7. (Same
Experiment|| Size of Difference between legend as in Table 2)
Label Probe Set]| Gallery and Probe Sets
A 71 View USF | DGEI || CMU | SPS1| SPS2| SGEI
B 21 Shoe A | 96% | 100% || 100% | 98% | 90% | 99%
C 21 View and Shoe B | 80%| 93% || 90% | 90% | 87% | 93%
D 70 Surface C|76% | 93% || 83% | 81% | 80% | 93%
E 24 Surface and Shoe D|61% | 55% || 59% | 46% | 52% | 68%
= 70 Surface and View E | 52% | 52% || 50% | 43% | 43% | 69%
G 44 Surface, Shoe and View F | 45% | 47% || 53% | 46% | 48% | 58%
G| 33% | 52% || 43% | 43% | 44% | 60%

Table 2. Comparison of recognition perfor-
mance of Rank 1 among different approaches

on silhouette sequence version 1.7. (Leg- iments A-C. In these experiments, the difference between
ends: USF - direct frame shape matching [15]: gallery and probe data exists in view, shoe or both, which
DGEI - direct GEI matching, this paper; CMU incur IittI(_e distortion _ir_1 extrac_ted_silhoue_tte. _This mean
- key frame shape matching [5]; SPS1/SPS2 - that GElis less sensitive to this kind of distortion than-reg
clustered frame shape matching with two cri- ular gait silhouette sequence.
teria [18]; SGEI - statistical GEI feature match- Although thg rankl _performance of DGEI gnd USF are
ing, this paper.) both not good in experiments D-G, our DEGI is worse than
that of USF (See Table 2). The probe sets in experiments
USE | DGEI |l CMU | SPS1| SPS2] SGEI D-G have the common difference of surface with respect
A | 79% | 99% || 87% | 82% | 85% | 90% to the gallery set. As we discussed previously, the distor-
B 166%| 83% || 81% | 66% | 81% | 90% tion incurred by surface difference is relatively high. For
C 1 56% | 73% |l 66% | 54% | 60% | 73% example, if the same person walks at different surface, the
D1 29% | 18% || 21% | 20% | 23% | 41% extracted silhouettes may have different shadows. In addi-
E [ 24% | 14% || 19% | 18% | 17% | 40% tion, the silhouette from a walking sequence on the grass
E130% 1 11% 1 27% | 21% | 25% | 27% surface may miss the bottom part c_nf the fee_t because t_hey
G T 10% | 10% T 23% | 21% | 21% | 38% could be covered by the grass. In this case, silhouette heigh

normalization errors occur, and the silhouette so-obthine
may have different scale with respect to the silhouette on
other surfaces. It is shown that the GEl is sensitive to this
5.1. Recognition Results by Direct GEI Matching kind of distortion with respect to the regular silhouette se
guence. However, the rank5 performance of our DGEI is

To evaluate the effectiveness of GEI as a gait represen-Similar to that of USF in experiments D-G (See Table 3).
tation, we carry out experiments of individual recognition This shows that GEI is competitive with regular silhouette

by direct matching between GEI templates according to the S€duence because the rank1 results are not reliable and more
distance metric give by Equation (4). As we mentioned in ranked subjects should be considered in these experiments.

Section 2.2, Phillips et al. [15] measure the similarity be- Another reason of the rankl worse performance of DGEI

tween the gallery sequence and the probe sequence by corT(—S_ee Table 3) is that silhouettes of version 1.7 are not well-

puting the correlation of corresponding time-normalized aligned.

frame pairs. This approach can be viewed as a typical di-

rect matching approach between regular gait silhouette se5.2. Recognition Results by Statistical GEI Feature

guences. We compare the recognition performance between Matching

their approach (USF) and our direct GEI matching approach

(DGEI) as shown in Table 2 and 3. Table 2 and 3 show that our individual recognition ap-
The left part of Table 2 and 3 shows the recognition per- proach by statistical GEI feature matching (SGEI) achieves

formance of USF and DGEI approaches. It is shown that better recognition results than DGEI in the experiments

our DEGI approach achieves much better results in exper-with large silhouette distortion, i.e., D-G. In other exper
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ments with small silhouette distortion, the performance of
SGEl is better than that of DGEI in experiments B and C,
but slightly worse in experiments A. Thus SGEI slightly
sacrifices the performance in experiments with small sihou
ette distortion while improving the performance in experi-
ments with large silhouette distortion with respect to DGEI
We also compare the performance of SGEI with other
approaches published in [15, 5, 18] in Table 2 and 3. Itis
shown that SGEI achieves better or equivalent recognition

performance than other approaches in all experiments.

6. Conclusions

In this paper, a new spatio-temporal gait representation,
called Gait Energy Image (GEl), is proposed for individual
recognition by gait. Unlike other gait representation vbhic
considers gait as a sequence of templates (poses), GEI rep-[9] A. Kale, N. Cuntoor, B. Yegnanarayana, A. Rajagopalan,
resents a human motion sequence in a single image while
preserving temporal information. To overcome the limita-
tion of training templates, we generate a series of new GEI
templates by analyzing the human silhouette distortion un-

der various conditions. Principal component analysis and [1

multiple discriminant analysis are used for learning feetu
from the expanded GEI training templates. Recognition is

then carried out based on the learned features. Experimenyy1;

tal results show that (a) GEl is an effective and efficient gai
representation which is insensitive to incidental silitteie
errorsin individual frames, and (b) the proposed recogniti

approach achieves highly competitive performance with re- [12]

spect to the published gait recognition approaches.
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Abstract

We present a model-based approach to gait extraction
that is capable of reliable operation on real-world
imagery. Hierarchies of shape and motion are employed
to yield relatively modest computational demands,
avoiding the high-dimensional search spaces associated
with complex models. Anatomical data is used to generate
shape models consistent with normal human body
proportions. Mean gait data is used to create prototype
gait motion models, which are adapted to fit individual
subjects.

Accuracy is evaluated on subjects filmed from a
fronto-parallel view in controlled laboratory conditions,
for which some gait parameters are known. We further
show that comparable performance is attained in outdoor
conditions. As such, we describe a new approach to
enrolment for gait recognition technologies, allowing
reliable subject gait extraction in real-world imagery.

1. Introduction

Gait may be defined as the individual pattern of
movement produced as a person walks. This pattern is
sufficiently unique for each individual to be employed as
a biometric [Winter91, Nixon99]. Gait analysis is usable
from a distance and does not require the subject to be
aware of or cooperate with its use, making it particularly
valuable in surveillance, or other applications where non-
contact operation is required.

This field is currently dominated by face recognition,
supported by the role of facial features in the human
recognition process. However, gait is more difficult to
obscure or disguise, and can be measured from a much
wider range of viewpoints. Gait is also more robust with
respect to occlusion and variations in illumination, as a
gait signature is spatio-temporal rather than a purely
spatial measure.

Gait may be best employed in combination with other
biometrics, with facial features being an obvious choice.
Most approaches to face recognition require a relatively
constrained frontal viewpoint, and gait could be employed
as a back-up strategy when the subject’s face is not
visible. Alternatively, multiple cameras could be
employed to combine face and gait features, improving
overall recognition performance [ShakhnarovichO1].
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However, enrolment is a more difficult problem for
gait, particularly when enrolment conditions cannot be
controlled (for example, when enrolling a subject from
CCTYV footage). Gait enrolment requires the extraction of
limb dynamics over a period of time, ideally capturing at
least one full gait cycle. In uncontrolled capture
conditions, it is likely that other objects will interfere with
and occlude the subject; in addition gait is partially self-
occluding, as one leg passes in front of the other. To
successfully  resolve  this  problem, extraction
methodologies must be highly robust to noise and
occlusions.

Many existing approaches to gait enrolment are data-
driven, typically using the person’s silhouette or features
derived features from it as a basis for recognition
[BenAbdelkader02, Collins02, Huang99, JohnsonOl,
Kale03, Lee02, Phillips02]. This methodology has many
advantages, chiefly of speed and simplicity, but has the
disadvantage that silhouette dynamics are only indirectly
linked to gait dynamics. Noise, occlusions and variations
in clothing will all affect silhouette dynamics; it is unclear
how a silhouette-based feature set could be normalised for
these factors.

Model-based approaches overcome these weaknesses
by incorporating knowledge of the shape and dynamics of
human gait into the extraction process [Cunado03,
Meyer98, Yam02]. The use of a model ensures that only
image data corresponding to allowable human shape and
motion is extracted, reducing the impact of noise. It also
means that gait dynamics are extracted directly by
determining joint positions, rather than inferring dynamics
from other measures. A model-based approach also has
the potential for more general applications, such as
animation, user interfaces or model-based coding
[Gavrila99].

However, the use of a parametric model introduces its
own problems. Success in recognition is dependent on the
gait signature being sufficiently complex to incorporate
individual variation across the subject population, so that
a given subject can be distinguished from all the other
subjects under test. As gait is dependent on a large
number of parameters (such as joint angles and body
segment sizes), this requirement leads to complex models
with many free parameters. Finding the best fitting model
for the subject thereby necessitates searching a high-



dimensional parameter space, with correspondingly high
computational requirements.

Most early approaches dealt with this problem by
severely limiting model complexity; later solutions have
improved on this situation somewhat. [Nash 98] employs
a genetic algorithm to cope with the high computational
demands, but due to its reliance on stochastic processes
this strategy cannot guarantee an optimal model fit.
[Lappas02] introduces the dynamic velocity Hough
transform, which applies dynamic programming to find an
optimal object trajectory using structural evidence and
smoothness of motion constraints. However, under this
formulation it is difficult to apply parametric motion
constraints (such as pendular limb motion).

To reduce the computational requirements of a model-
based approach, we employ a model hierarchy composed
of shape and motion components.

A velocity filtering algorithm is employed to determine
the bulk motion of the person independently of shape
parameters. Using this motion information we form a
global temporal accumulation describing the person’s
average shape over the gait sequence. This accumulation
is used to robustly estimate the size and shape of the
person’s body segments, using ellipses for the head and
torso and two pairs of lines for each leg, applying
anatomical constraints to reduce matching errors. Using
this initialisation we can estimate the dominant gait
frequency via a measurement of edge strength about the
lower leg region over time. Leg motion is estimated by
fitting prototype gait curves collected from a clinical gait
study, stretched or compressed to fit the subject’s gait
frequency and hip rotational amplitude.

Our approach currently assumes a single subject
moving at a constant speed, fronto-parallel against a
cluttered background. However, this approach could be
generalised to an arbitrary viewpoint.

We show that this methodology provides a good initial
model fit suitable for further adaptation, and is capable of
performance in noisy real-world conditions similar to that
in controlled laboratory conditions.

2. Gait Signature Extraction

2.1. Bulk Motion Estimation

We may consider the motion of a person in normal gait
to be composed of many separate motion components,
forming a hierarchy according to the total pixel
displacement they are responsible for. At the top of this
hierarchy is the person’s velocity in the horizontal plane,
as a person will move with approximately constant
velocity during normal gait (changes in velocity may also
distort their gait signature, further justifying this
assumption). The second level of the hierarchy is
articulated motion; we may consider a third level to be
object deformations (for example due to clothing or
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camera distortion), but this level of detail is considered
unnecessary for our current purposes.

Image data is pre-processed (Figure la) using a
Gaussian averaging filter for noise suppression, followed
by Sobel edge detection and background subtraction (the
background is computed by a temporal median of
neighbouring frames). This removes all static objects,
leaving only edges belonging to moving objects. The
extraction process does not require binary edge data,
which means that error-prone thresholding can be
avoided.

Using a velocity filtering algorithm it is possible to
determine object motion independently of shape. This
algorithm effectively performs the same global temporal
accumulation as the velocity Hough transform [Nash97],
but without shape specificity:

Yy N
Av(iaj):zln i+v[?_njaj (1)
n=0

where 4, is the accumulation for velocity v (in pixels per
frame), 7, is the image intensity function at frame », i and
j are coordinate indices and N is the number of frames in
the gait sequence.

This algorithm sorts objects in the scene according to
their velocity and starting position, producing an
accumulation for each possible object velocity. Each
object’s contribution to an accumulation is dependent on
its edge strength, the number of frames it is in view of the
camera and how close its velocity is to the accumulation
velocity. This global averaging process means that objects
in each accumulation are relatively unaffected by other
objects, greatly reducing the problems associated with
objects merging and splitting. At the correct accumulation
velocity for an object, edges from each frame will
accumulate to a single area, producing an average shape
outline (Figure 1b).

l""_'l
h =
(a) Section of pre-processed (b) Global temporal
image data accumulation

Figure 1: Motion estimation by temporal accumulation

Each moving object in the scene appears as a peak in a
plot of maximal accumulation intensity against velocity.
Assuming that the person is the most significant moving
object in the scene, their velocity can be inferred by



selecting the highest peak in this plot (this assumption
holds true for most current gait databases). If there are
other more significant objects within the scene moving at
a similar velocity, we must apply some knowledge of the
person’s shape to distinguish them from the other objects.

Noting that Equation 1 simply shifts and accumulates
each frame, we can improve computational efficiency by
first run-length encoding the input data. This
representation is shift-invariant, and as runs of zero
magnitude edge strength can simply be discarded, this
reduces the order of the algorithm to O(V-E-N), where V is
the number of possible velocities, E is the mean number
of edge points in each frame and N is the number of
frames in the gait sequence. Further performance
improvement can be accrued by downsampling input
frames and applying a coarse-to-fine velocity search
strategy.

2.2. Shape Estimation

The temporal accumulation computed during the bulk
motion estimation stage forms an average global view of
the person’s shape. Parameters that do not change over
the course of the gait cycle can therefore be determined
from the temporal accumulation; as it is robust with
respect to noise and occlusion, static parameters can be
estimated with confidence.

The size and proportions of the person are estimated in
a hierarchical fashion using anatomical constraints,
derived from data published in [Winter90]. A region-
growing algorithm is first applied to find all edges
belonging to the person. This algorithm is initialised at the
peak point in the accumulation, and an aspect-ratio
constrained rectangular region is expanded about the point
until all significant edges have been encompassed (Figure
2a).

..;,,;-’ X

(a) Region
expansion

(b) Coarse
segmentation

estimate
Figure 2: Shape extraction hierarchy

Using this initialisation the approximate height of the
person is estimated, using a fixed body segmentation
based on mean anatomical proportions (Figure 2b). The
final shape model (Figure 2c) consists of two ellipses for
the head and torso, two rectangles for the feet and two
pairs of lines for each leg. The parameters describing the
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head and torso are determined by template matching
within the locality of the initial segmentation, constrained
by mean anatomical proportions. The leg and foot shape
parameters are computed as a fixed proportion of the
subject’s height and torso width, again based on mean
anatomical data.

Note that although all shape dynamics are lost in the
accumulation process, it is still possible to estimate the
amplitude of hip rotation, which may be used to aid
articulated motion estimation.

2.3. Articulated Motion Estimation

The motion of the leg during normal gait is periodic,
and may be approximately modelled by a single sinusoid
[Cunado03]. Applying this assumption, we can estimate a
person’s gait cycle frequency by measuring edge strength
within the outer region of their legs, throughout the gait
sequence (Figure 3).
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Figure 3: Gait cycle frequency estimation using within-
region edge strength measurements

These measurements form a signal with approximately
sinusoidal shape, distorted and contaminated by noise due
to varying illumination, occlusion and motion estimation
errors. Figure 4a depicts this signal for an example
outdoor sequence:
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Figure 4: Gait cycle frequency estimation

Signal distortions are corrected by using low-order
polynomials to model variation in the mean level of the
sinusoid (numerator of Equation 2), and local variations in
sinusoid magnitude (denominator of Equation 2):
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where S, is the normalised signal, S is the original signal
and p(x) denotes the best 2™*-order polynomial fit to signal
x, computed by least-squares regression.

Frequency estimation is performed by fitting a fixed-
amplitude sinusoid to the data, selecting the frequency
and phase that minimises squared error (Figure 4b).

This frequency information can be applied directly
using sinusoidal joint rotation models [Cunado03,
YamO02]. A single sinusoid is adequate to approximately
model the rotation of the hip and knee joints:

0,(t) = 4, sin(wt + ¢, )+ v, 3)

0, (1) = 4, Sin(Wt TO, T O )+ Vi )
where 6,(t) and 6(¢) are the respective hip and knee joint
rotations (measured relative to the vertical axis) at time ¢,
Aj and Ay, are the joint rotational amplitudes, w is the gait
cycle frequency (in radians per frame), ¢, is the starting
hip joint phase, ¢ is a constant phase offset, y;, and y; are
constant amplitude offsets.

However, accuracy can be improved by more closely
modelling human gait. Clinical gait studies have
quantitatively measured the pattern of movement
produced as people walk, by attaching markers to each
joint. Mean gait patterns from [Winter91] were used to
produce prototypical rotation models for the hip, knee and
ankle joints. Figure 5 shows these models, together with
joint angles manually extracted from a sequence in the
Southampton HiD database [Shutler02]. Note that by
clinical convention rotations are measured in degrees of
motion, as opposed to rotation relative to the vertical axis.
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Percentage of gait cycle Percentage of gait cycle

(a) Hip rotation (b) Knee rotation

(¢) Ankle Rotation

Figure 5: Mean joint rotation patterns
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This comparison suggests that the mean rotation
models for the hip and knee match well to a typical
subject. Ankle rotation is not such a good match, as the
subjects in the clinical study were barefoot, as opposed to
a typical subject who will be wearing shoes. However, the
mean ankle rotation model still provides a better basis
than a simple sinusoidal model would. The motion of the
pelvis is not modelled at this point; the positions of the
hip joints are assumed to coincide, remaining at the same
level throughout the gait sequence.

The discrete Fourier transform (DFT) of each model is
computed, creating continuous representations of the
shape of the models. To match the subject’s gait, the DFT
models are scaled to match the subject’s estimated gait
cycle frequency and hip amplitude. Cycle phase is
estimated by temporally matching leg templates to edge
strength over the whole sequence, selecting the phase that
maximises template correlation. Matching globally in this
fashion increases resistance to noise, and can be
performed quickly when only one search parameter is
required.

Finally, the vertical oscillation of the subject’s upper
body is modelled by a single sinusoid with parameters
proportional to the subject’s height and gait motion:

Y(t)= A, sin 2(wt + @, + %)+ v, (5

where Y(?) is the y-coordinate of the torso at time ¢, A4, is
the amplitude of oscillation, w is the gait cycle frequency,
@, is the starting hip joint phase and y, is the centre of
oscillation.

The joint positions extracted by this process only
approximate the true joint positions (the estimation
process effectively assumes average gait motion, or no
individuality). However, these positions form a strong
basis for further model adaptation, which would make
recognition possible.

3. Results

The performance of the gait extraction process was
evaluated on sequences of two subjects from the
Southampton HiD database [Shutler02]. Each subject was
filmed from a fronto-parallel viewpoint, in controlled
laboratory conditions and in noisy outdoor conditions,
allowing the noise-resistance to be tested in isolation from
other variables. The database is encoded in Digital Video
(DV) format at a resolution of 720x576 pixels, recorded at
a rate of 25 frames per second. Each sequence typically
consists of 80-100 frames, or around 3 full gait cycles.

The extraction process is fast, with approximately 75%
of the total processing time taken up by pre-processing. A
2.4GHz Pentium 4-based PC was used for all testing,
requiring approximately 30 seconds processing time for
each sequence. Figures 6 and 7 give some examples of the
extraction process, showing good overall performance,
especially on the outdoor data. Note that there is some



error evident in shape estimation, and also some error
caused by the assumption that the left and right hip joints
coincide.

(¢) Outdoor (frame 39)
Figure 6: Sample extraction results for subject 013

(d) Outdoor (frame 47)

_ (b) Indoor (frame 72)

(¢) Outdoor (frame 49) (d) Outdoor (frame 56)

Figure 7: Sample extraction results for subject 014

The set-up of the indoor data allows an approximation
to ground truth to be made by chroma-key extraction of
the subject’s silhouette [Shutler02]. From this silhouette
data the frame numbers at which the subject’s heel strikes
the floor are recorded, so that a comparison can be made
with the automatically extracted result. The heel-strike
frames were estimated from the automatic extraction by
finding the knee rotation minima over the sequence.

Although this does not yield an exact measure of the
extraction performance, this evaluation can be performed
automatically on a large number of sequences. Table 1
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shows the results of this evaluation for 56 indoor test
sequences split equally over four subjects:

Table 1: Extraction performance under controlled
conditions — RMS error in predicted heel-strike frames

Subject Mean Standard Deviation
013 (M) 0.933 0.236
014 (M) 0.954 0.458
033 (F) 0.741 0.209
037 (F) 0.979 0.363

The mean error in estimating the point of heel-strikes
is around +1 frame for both subjects, comparable to
typical human labelling error. This is an encouraging
result, demonstrating that we can successfully track the
motion of the subject’s legs in relatively clean indoor
conditions. To demonstrate robustness, the extraction
process was repeated on outdoor data, totalling 64
sequences of the same four subjects. As no ground truth
data is available for the outdoor dataset, extraction
performance is estimated by comparing the gait cycle
period extracted from the outdoor data to that of the
indoor data (Figures 8 and 9):

Period (frames)

—&— Subject 013
- m--Subject 014
—&— Subject 033
% Subject 037

=y

Period (frames)
b

. V4

—e— Subject 013
-~ ®--Subject 014

—a— Subject 033
> Subject 037

Figure 9: Period extraction for outdoor data

The extracted period is generally consistent between
different gait sequences for each subject. Some of the
subjects exhibit a reduced gait period on the outdoor
dataset, indicating increased cadence. This may be due to
the walking surface, or possibly because the subjects do



not have a limited walking track in the outdoor dataset.
However, even with only one gait parameter most of the
subjects can be distinguished from one another.

For a more detailed view of performance, one indoor
and one outdoor sequence was manually labelled for each
test subject. The positions of the hip, knee and ankle
joints were recorded, for comparison against the
automatically extracted joint positions. The error is
measured by a Euclidean distance metric, normalised to a
percentage of the height of the subject. This error is given
for a mean gait cycle, averaged over the sequence.

Figure 10 shows the errors measured at each joint
position for subject 013 from the Southampton HiD
database. Note that some error is expected of the human
labelling, estimated at around 1% of subject height (the
height of a subject is typically around 300 pixels on the
indoor data or 200 pixels on the outdoor data).

This comparison shows that the additional increase in
error when moving from controlled laboratory conditions
to outdoor conditions is relatively small. It also shows that
the additional complexity imposed by the use of mean gait
rotation models is justified, resulting in a significant
reduction in error over the sinusoidal models (Equations 3
and 4). The motion produced by these models is
noticeably more natural in appearance to the human
observer, suggesting that further improvement in
performance is possible.

4. Conclusions

We have presented a new model-based gait enrolment
technique to allow the use of gait analysis on real-world
imagery. A model hierarchy of shape and motion keep the
computational requirements of this approach to a
minimum, while retaining the well-known robustness of a
model-based approach.

Anatomical data and mean gait data is applied to
produce shape and motion models adhering to known
human proportions and gait dynamics, minimising the
modelling error in this approach.

We have shown that we can reliably locate joint
positions for the purposes of gait analysis in real-world
imagery, with only a small loss in accuracy compared to
controlled laboratory conditions. Future work will extend
this approach by adapting the mean gait models to match
each individual, so that recognition may be performed on
the gait parameterisation thus obtained.
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Figure 10: Error in automatically extracted joint positions from manually labelled positions (subject 013).
Solid line — mean gait models
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Abstract

We elaborate the application of elastic deformation
theory to fingerprint recognition. We propose the
analytic model of elastic fingerprint deformations and
its application to real fingerprint images. Also we
carry out the statistical analysis of deformations of
fingerprint images appearing in real applications.

1. Introduction

At the moment increasing power of computers
facilitates the replacement of laborious manual
fingerprint classification and matching methods by
automatic fingerprint identification systems (AFIS) and
automatic fingerprint authentication systems (AFAS).

AFIS [1],[2],[3] are most widely used (mainly for
criminal search and related tasks) and usually have a
fingerprint as an input data and the output is the list of
identities of persons that could have the fingerprint
given and a score for each identity indicating the
similarity between two fingerprints. Such systems
compare an input image with multiple of records in
database.

AFAS [4], also referred as verification systems, are
used in biometrics (detection of human identity by
biological features) for access control and other civil
applications. The input data in such systems are an
identity and a fingerprint image, the output is an
answer of Yes or No indicating whether the input
image belongs to the person whose identity is
provided.

In these applications there are four possible
outcomes:

(1) an authorized person is accepted,

(2) an authorized person is rejected,

(3) an unauthorized person is accepted,

(4) an unauthorized person is rejected.

The rates of cases 2 and 4, which are called False
Rejection Rate (FRR or FNMR, what means false non-
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match rate) and False Acceptance Rate (FAR or FMR,
false match rate), are standardized metrics of
identification accuracy of biometric systems [5]. The
theoretical limits of FAR for different biometrics could
be found in [6],[7].

Recently there appeared a scope of problems
concerning the submission of a certain ID document
(passport, driver license etc.) to one and only one
particular person, thus a number of so called “civil ID”
systems were created [8],[9],[10]. Usually such
systems are required to have very little FAR.

There are a number of factors sufficiently raising
the level of FAR. They can be divided into two major
parts: poor quality of fingerprint images and human
factor (improper applications). Quality of fingerprints
can be sufficiently improved by different kind of
filtering procedures. Improper applications often lead
to full lost of information or to appearance of different
distortions and deformations that have nothing in
common with random noises and cannot be filtered
(example of moderately deformed fingerprint images is
presented in figures 1 and 2). In spite of existence of
developed theory of elastic deformations, it is rarely
applied to the real-time systems due to computational
complexity.

There are different approaches to registration of
elastic deformations. The way suggested by A.M.
Bazen and S.H. Gerez [11] is based on the thin-plate
spline (TPS) models, firstly applied to biological
objects by F.L. Bookstein [12]. This method requires
determining correspondent points in two compared
images (matching point) and it suffers from the lack of
precision in case of few matching points. Modifications
of TPS (approximate thin-plate splines and radial based
function splines) were introduced by M. Fornefett, K.
Rohr and H. Stiehl [13],[14]. They consider
deformations of biological tissues. But this way also
requires many matching points (more then 100) what is
virtually impossible in fingerprint applications, because
number of minutiae in fingerprint image rarely exceeds



50. This fact makes TPS and its variants hardly
applicable to fingerprint deformations registration.
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Figure 2. a — minutiae of the first image, b -
minutiae of the second image, ¢ — comparison of two
minutiae configuration after rigid transformation,
bars — points that are closer then 2 pixels, dark
circles — positions of minutiae in the first image,
blank circles — in the second image

The absolutely different approach was suggested by
R. Cappelli, D. Maio and D. Maltoni [15]. They
developed analytical model of fingerprint deformation.
But it has sufficient shortcomings, for example,
irreversibility even of small deformations.

Our article is mainly devoted to the registration of
deformations. We propose an algorithm of restoration
of deformations knowing correspondent points in two
images. As far as fingerprints have regular structure
consisting of ridges and valleys, often it is virtually
impossible to find more then 50 matching points.
Apparently, only minutiae can be considered as
matching points, all other ways of finding
correspondences used in pattern recognition (points of
maximal and minimal curvature etc.) are unstable in
respect to elastic deformations. In examples minutiae
were matched manually, during statistical analysis of
deformation, algorithm of automatic finding of
correspondences is applied.
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2. Model of Elastic Deformation

In general the dynamics of a small -elastic
deformation is considered to satisfy the Navier linear
elastic PDE:

Lu(x,y,z,t) =—f(x,y,Z), (1)
where L is the following differential operator:
2

L=uv’ +(/1+y)Vdiv—p§2, )
t

u is the vector of displacement; f'is the external force.
Coefficients A and g are the Lame’s elasticity

constants. These parameters can be interpreted in the
terms of Young’s modulus £ and Poisson’s ratio v

Ee ﬂ(3/1+2ﬂ), 3
A+
A
VR — (4)
2(A+ w)

In fact a fingerprint image is captured when finger
is immobile, it means that the partial derivative
u
P o
they do not depend on time ¢ @ ie.
u(x,y,z,t) =u(x,y,z). In this case the Navier

PDE has the following form:

NV u+ A+ wVdivu+ f=0. (5

Unlike plastic materials solution of equation (1) for
elastic material depends only on current force
distribution and does not depend on previous
configurations (“history”).

Investigating properties of fingerprint deformations,
it is possible to neglect 3D structure of finger and to
consider 2D model for area of contact of finger and
scanner surface. In fact this area carries the main
information available for further processing.

Obviously in the 2D model all displacements of
tissue are located in the plane of contact. Such
restriction is called plain strain. The different sort of
2D elastic problem is plane stress, when the material is
plane and pressure is orthogonal to this plane. The
plane stress restrictions are normal for studying of
dynamics of metal plates and exact solution can be
found using the TPS. So the TPS is the solution of
problem that is absolutely different from registration of
elastic deformation of soft tissues. It is one of the
possible reasons why the TPS are hardly applicable to
studying of fingerprint deformations.

As was mentioned above, in case of elastic material,
deformation depends only on current configuration, so
a fingerprint deformation can be fully described by the
function of displacement:

= (). Such solutions are called steady state and



f:X > R’ (6)
Let us define the vector (u(x,y),v(x,)))of
displacement at the point (x, ) :

(uﬂv):f(xvy)_(xsy)‘ (7)
The strain tensor & is defined by the next formula:
Ou 4 1(ou 1(0u 4 ov  ou o
oo @ ffaf %@+a+@é)w&
1|ou v éudv v 1|ov
2o fatyal  at2l
The linear approximation of (8) is the following
tensor:

ou L@g L
g = ox 2 ay ox . (9)
1{ou 4 ov ov
2 \oy = Ox oy

Let us assume that the material reveals linear
dependence between pressure and strain (what is
almost true for small deformations of biological
tissues). In that case the pressure tensor O can be
calculated using the following formula:

E(l-v) 1 2 E 2
o= [(Hv)(lZv) (gl + & ) 2(1+v) ‘ } . (10)

E(-
! (3 42}

E
20+ &2 ) 1=2v)

Vector of involved forces is

| fx
F_[ﬁj' (11)

The overall energy £ and energy £, of

deformation are determined by the following formula:

Ey=—A+Ey =—[(uf, +vf,)dS +
N

(12)
1 1 2 2 2 2
+%J-(810-1 +820_2 +¢91 (o] )dS
S

In case of linear isotropic material the energy of
deformation is homogeneous quadratic form that
depends only on the strain tensor elements. Also it is
natural to assume that the form is invariant with respect
to orthogonal transformation.

E; = ;i(cl(g})z +c2(522)2 + c3(512)2de+

+ %j(c4811512 +eserst + cgsles }lS.
s
Apparently, the coefficients must satisfy the
following conditions:

Cl =Cy;

(13)

C4 :Cs, (14)

4cy = ¢y;

2C6 = (.
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The two independent coefficients ¢; and ¢4 are

determined by the internal properties of material

q=c2:——§QJZL—; (15)
1+wv)1-2v)
cy = Cs Ev (16)

1+ wv)(1-2v)

As is known [16] solution of Navier elastic PDE (5)
minimizes the energy (12). There is no idea how
determine operating forces in the automatic verification
systems. One of the approaches is minimizing the

function E; of deformation energy. Without any

additional constrains the function £, is minimized by

zero function of displacement. In our case additional
restrictions are correspondent points of two images:

pi +(p):v(p)) = q;.
where {pi} is the set of points in the first image and

{ql-} is the correspondent set in the second image.

Let us consider the following functional that reflects
deformation:

Wwu,v)y=E,(u,v)+ A Su,v), (17)

where E; is deformation energy and

n
Sw.v) = X (pi + Wp) ()~ g, (18)
i=1
reflects the measure of approximation. Coefficient A
shows the importance of the approximation
component.

The minimum of W can be found numerically using
finite elements method (FEM). The displacement is
defined on rectangular lattice and interpolated to the
entire image with for example bilinear splines.

3. Implementation

The elastic model of fingerprint deformations is
applied to the pair of deformed fingerprints (with
manual positioning of correspondent minutiae) and
three sets of fingerprints:

1. Subset of the BioLink Database (100 sets of 3

images of each fingerprint)

2. FVC2002 DB1 (100 sets of 8 images of each

fingerprint) [17],[18]

3. Set of strongly deformed fingerprints (123

images of 10 fingerprints)

The correspondent points of images in all three
databases are found using BioLink algorithm [19].

Young’s modulus and Poisson’s ratio for human
skin have some variations. Young’s (or E-) modulus
depends on age and usually changes from 6 to 11



kg/mm®. As is clear from (9), (10) and (13) E does
change the solution of equation, it changes only
absolute value of energy. In fact, the value of Young’s
modulus can be included into coefficient A . Poisson’s
ratio vV for human skin is considered to vary
approximately around 0,33. For the purposes of
numerical calculation the mean values are taken,
E=9[kg/mm2], v=0,33. The input images are

processed to the 300x400 size (500dpi) and are divided
into 120 elements of size 10x10.

Figure 3. Direct overlapping of two images within
the region of minutiae correspondence: a — without
registration of deformation; b — with registration of
deformation; c¢ — filtered without registration of
deformation; d - filtered with registration of
deformation.

The binary correlation can be used as measure of
identity of two deformed images. In the figure 3 picture
a shows the direct overlapping of images after rigid
transformation, picture b — after registration of elastic
deformation. The results show that binary correlation
of two images sufficiently increases inside the convex
hull of correspondent points. At the same time after
registration of deformation correspondent minutiae of
two images become virtually congruent.
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Figure 4. BioLink Database. a — distributions of
energy of deformation, b — distributions of overall
energy, I — entire database, II — strongly deformed
images.

During automatic analysis of large sets of deformed
images the binary correlation is less suitable for
performance evaluation then in case of the manual
demonstration, because it suffers from the following
factors:

1. Different quality of images caused by

different conditions of application
(temperature, humidity etc.).

2. Different input devices.

3. Minutiae extraction precision. If

correspondent points are determined with 2-3
pixels precision, the algorithms that compare
minutiae structure work well. At the same
time, binary correlation of entire image can
sufficiently decrease because of improper
estimation of both the rigid transformation and
the deformation.

As far as the main task of the current work is
evaluation of the measure of deformations appearing in
the real applications, integral characteristics (overall
energy and deformation energy) are calculated. These
values are calculated for genuine matches of Databasel
(BioLink’s one) and Database3 (set of strongly
deformed images). The distributions of energies are
represented in the figure 4. As is clear from charts in
real applications only small share (about 4 percent) of
fingerprints have real deformation. Ignoring these
applications it is possible to use algorithms with
extremely low FAR.
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Figure 5. Number of correspondent minutiae, a —
genuine matches, b — impostor matches.
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Figure 6. BioLink Database. a — distribution of
deformation energy, b — distribution of overall
energy, I — genuine matches, II — impostor matches.

At the same time formal evaluation of deformation
can be used as the measure of similarity of minutiae
configurations. In genuine matches it is more or less
clear how correspondent points can be found. The
same techniques are applicable to impostor matches as
well. In the situation when the storing of entire image
(or even parts) in database is prohibited what is natural
for AFAS, analysis of minutiae configurations may be
used.
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Figure 7. FVC2002 DBI1. a - distribution of
deformation energy, b — distribution of overall
energy, I — genuine matches, Il — impostor matches.

In this case the template might store the coordinates
of points, number of characteristics of points (such as
direction angle), distances between some points
(measured for examples in ridges). If quality of input
fingerprints is low due to hardware imperfectness
many of parameters mentioned above are unstable.
Even some points cannot be detected.

Deformation energy can be used as one of the
measure of correspondence of minutiae structures.
Formally, values of overall and deformation energies
can be calculated even for impostor application if we
have two sets of points which seem to be
correspondent. Besides energies the important output is
the number of correspondent minutiae (figure 5).
Distributions of energies are represented in figures 6
(BioLink Database) and 7 (FVC2002 DB1). From FVC
Database some genuine applications (about 15%) were
removed because of small area of intersection (less
then 4 minutiae in intersection). If intersection of two
images is small there is no sense in studying
deformations because small parts of images usually
have relatively small deformations.

As is clear from figures, overall energy is much less
informative  parameter then pure energy of
deformation. In fact the value of deformation energy of
minutiae configurations can be used as auxiliary score
parameter in matching algorithms. Sole energy of
deformation provides Equal Error Rate (EER) equal
approximately to 1% on BioLink Database (more



precise EER can be confidently defined because of
small number of tests). On FVC2002 DBI1 EER is
about 1,5%. Removing of 15% of genuine matches can
only lower EER because these matches certainly have
deformation energy much less then threshold. The
values of energy for those matches were not calculated
because it demands sufficient modification of
procedure to the case of small number of correspondent
points.

4. Conclusion

The conducted testing of the model of elastic
deformations shows good correspondence to the real
fingerprint deformations.

In natural input conditions only relatively small
share of fingerprints are deformed (4%, Figure 4). In
this case deformations do not lower system
performance sufficiently. It means that bounds of
possible deformations are not unlimited and can be
calculated precisely. And, therefore, the complete
deformational invariance is not a necessary condition
for the most of biometric applications.

The energy of deformation can be used as auxiliary
score in matching algorithms. It might bring quite good
performance improvement. On the other hand, the
proposed model and the estimation for p.d.f. of
deformation energy allow to predict the performance of
any matching algorithm.
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Abstract

Fingerprint-based verification systems are used
commonly in the field of biometrics. Especially, a small-
sized sensor makes possible use in embedded systems, but
it does not provide sufficient information for high
accuracy user verification. In this paper, to obtain a wide
region of fingerprint, the new fingerprint enrolling
scheme which includes rolling method as well as sliding
on a small-sized sensor is proposed and a block matching
algorithm for estimating an alignment parameter is also
proposed. After aligning the two images, the next image is
warped in order to compensate for deformation using a
two-pass mesh warping algorithm. Our experiments show
that the number of minutiae is increased against methods
to integrate multiple impressions.

Keywords — fingerprint fusion, rolling, block-matching,
warping, deformation, coherence

1. Introduction

Fingerprint-based verification systems are provided
widely since they are convenient to use and relatively
superior to other biometrics systems in terms of price and
performance. Especially, a small-sized sensor(e.g., solid-
state sensors) has the advantage that it can be used in
many application fields(e.g., laptops, cellular phones).
However, a limited amount of information about the
fingerprint is available due to the small physical size of
the sensing area (Fig.1). Therefore the relatively amount
of small overlap between the template and query
impressions results in degraded performance, like a
higher rate of false rejects and/or false accepts. To
overcome this problem, some researchers proposed
algorithms to integrate multiple impressions from the
same finger, but this method has little effect on
impressions sensed from the similar portion of a specific
finger. Furthermore, it is very hard to integrate
impressions sensed from very different portions of a
specific finger.

To overcome the problem, we use a method in which
the user rolls his or her finger on the sensing area (the
axis of rolling is not moved) to obtain images sensed form
which subsequently diffused portion of the fingerprint

used for enrollment (Fig.2). That is to say, the user rolls
his or her finger from one edge to the other edge,
simultaneously. A key factor is that this sliding must not
exceed the boundaries of a small-sized sensor area. We
can obtain a sequence of partial fingerprint images using
this method and attain one template image from fusing
them.

(a) (b)

Figure 1. Fingerprint images obtained from sensors that

have large sensing area and small sensing area: (a) large
fingerprint image. (b) small fingerprint images.

This enrollment method using rolling included with
sliding has the following advantages:

(a) It can obtain a wide area of fingerprint more stably
than existing general fusing method from multiple
impressions.

(b) Two temporally adjacent images are highly
correlated which makes easy to align the images using
their correlation ratio.

The conventional fusion methods used currently in our
field of study are summarized as follows: Jain et al.
proposed an alignment algorithm using ICP to construct a
composite fingerprint template while using multiple
impressions[1]. Ramsor et al. proposed an alignment
algorithm using the RANSAC method and a combination
method of the minutiae information[2]. Qun et al.
proposed an alignment algorithm using a Clique Graph
and an information fusion method, utilizing a clustering
algorithm[3]. Lee et al. proposed an alignment algorithm
using a Distance Map derived form ridge information [4].
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Figure 2. The finger rolls on the sensing area without
moving the rolling axis.

Above fusion methods are entirely based on minutiae
when aligning two images. Despite of large overlapped
images, however, the minutiae based-alignment algorithm
may compromises misaligning due to the insufficient
corresponding minutiae pairs. Local deformation (e.g., by
the movement) will also result in erroneous error without
compensating for deformation. In this paper, sequential
fingerprints enrolled with rolling and sliding are aligned
using a block matching scheme instead of minutiae-based
matching. Local deformation is compensated and then
minutiae are extracted. In this case, the misalignment by
insufficient minutiae does not occur. Furthermore, it is
more time efficient method since it does not extract
feature from each impression.

Our paper is organized as follows. In Section 2, we
describe the alignment procedure using block matching
scheme. In Section 3, we describe the deformation
compensation procedure using image warping. In Section
4, we describe the image fusion process. The
experimental results are shown in Section 5. Finally,
Section 6 contains our conclusions.

2. Alignment

A fingerprint being translated and rotated changes its
appearance while sequential images are captured.
Therefore the process that aligns coordinate systems of
impressions is absolutely necessary in order to integrate
the sequential fingerprint images used for enrollment.

When aligning a sequence of images at the enrollment
step, we can utilize both minutiae and intensity image
while we can only use minutiae at matching step. Using
additional intensity information of fingerprints can
increase aligning accuracy. An exact alignment is very
important since to fuse sequential fingerprints is a
significant part of procedure that template for matching is
made and an inexact template can cause a higher false
reject rate. In this paper, sequential images of a
fingerprint are aligned at the raw data level by using a
block matching algorithm.

2.1. Block Matching

Each pair of adjacent images in sequential fingerprints
has a high mutual similarity because of a short difference

in time, and this similarity enables us to utilize the
correlation between them at the alignment step.

To obtain a correlation between two fingerprints based
on the entire image is quite a time-consuming
computation process. For this reason, it is preferable to
divide the image into blocks and prosecute block
matching to estimate the most adequate alignment
parameters. These blocks are sensitive to local
deformation, but this sensitivity of block can be applied
to compensate for the local deformation of fingerprints.

The block grids |:| Search window

Figure 3. Two-dimensional illustration of the block
matching scheme.

The pixel grids

When two images P and Q are aligned, respectively, P
is divided into blocks. Each block of P matches image O
in pixel-wised block. That is, each block is translated and
rotated into several positions within the searching
window, and then compared to the corresponding block
of O (Fig. 3). Normalized cross-correlation can be used as
a similarity measure. At each position, an intensity
correlation coefficient score, CC, between the block and
the corresponding block is computed as [5]:

Co ZX(IP(XJ)—,Up)(IQ(x,y)—ﬂQ)
\/Z,Y(Ip(x, V)= Hy) \/Z‘,x(lp(x,y)—#g)2

As mentioned earlier, each pair of adjacent images has
only small translation and, especially, rotation, which
make it possible to apply a full search within the available
searching area. In order to determine coefficients of a
alignment transform Q from P, each block computes CC
scores for all available transformations. If CC score is
higher than a certain threshold, we can consider such
parameters as the candidate coefficient of a true transform.

Each block has locally small deformation thanks to the
small amounts of translation and rotation. In this case, it
makes sense to assume that the all candidates are
distributed in the given translation domain and this
distribution is centered at a global transform.
Consequently, the pdf(probability density function) of a
transform parameter can be gained using the Parzen
density estimation. It is peaked at true parameters of an
alignment transform.

(1
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2.2. Parzen Windows

The formula used to estimate pdf is as following [6]:
1& 1

p,(X)==2 —¢
n ; h,

where, n is the number of samples and @(u) is the

XX,

2

kernel function of the Parzen window. The symbol 4, is
the parameter concerning window width. Eq.(2) can be
modified to make it suitable for use in this paper. It

follows that:
ZZ . h (3)

zlkl

py(x)=

n
where, N(= Zmi ) are the number of whole candidates
i=1
and candidates of the i" block, and # is number of block
and x is a transform parameter. Subsequently, Xx;; is a
transform vector of the k™ candidate at the i block. It is
available for weight correlation of the window function
since a higher correlation ratio means a higher probability
when that candidate is equal to the global transform. It

follows that:
X— Xi,k
Z Z Lo X |l )
hN

Ilkl N

py(x)=

where, CC;is the correlation value of the k™ candidate at
the i™ block. The symbol N and /4y can be negligible
because it has the same value against all x. The global
transform consists of the parameter which shows
maximum probability.

X—X.
glabal arg max Z Z C h l,k (5)

i=1 k=1 N

where, Xg,pq 15 the global alignment parameter.
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Figure 4. PDF of transform parameter.

3. Compensation for local deformation

Since the alignment transform is not a simple linear
transform, one global transform does not represent the
local deformation. Therefore, to compensate for local
deformation is followed after the global alignment is
completed.

3.1. Regularization of block transforms

It is possible to regard a local deformation as the
difference between the global transform and a block
transform. Therefore it is necessary to identify individual
block transforms. However, for each block, the maximum
similarity score does not necessarily correspond to the
best transform, partly because of noise and the
deformation in each block. A regularization step is
necessary and this is achieved by taking into account the
influence of the transform of the neighbor blocks. The
Parzen density estimation can be used for a regularization
method. Our paper also uses a hierarchical approach to
identify the local block transform (Fig.5).

m
X
e Level 0
"" \ \

xa” 2 /
f Hl\ /iy Level 1

Figure 5. Hierarchical structure in order to identify the
local block transform.

First of all, all blocks are diVided four partitions. And

then, transform parameter X ) of each partition can be

estimated using Parzen w1nd0w with candidates of blocks

included or adjoined the partition. This transform should
be close to the transform XL:l/;J)L/ 2] at higher level.
Hence, the parameter having maximum probability in
near at the partition's transform at higher level regars as
the partition's transform at current level. Such process
repeats until the number of block included partition is less
than or equal to four. Each block transform is finally
estimated with its candidates and eight neighbor blocks'
candidates.
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3.2. Image warping

After block transforms are estimated, local
deformations are compensated using point-based warping
technique. Every center points of each block are
considered as corresponding points when warp image Q’,
that is, points derived from global transform are utilized
as destination points while source points are defined as
translated points by block transforms (Fig.6).

Image P Image Q

——

5 E 5
ol

ES

e

Y
ane

woea I
RARER;

£t
REEEE:

L LT LG

Warped Image @’

Transfomed by
Global transform

RERER

Figure 6. Illustration of the warping scheme.

This paper use two-pass mesh warping based on an
algorithm represented in [7]. This algorithm uses Fant's
resampling algorithm and cublic spline as the
interpolation method.

4. Image fusion

After the subsequent fingerprint images are aligned as
described in section 2 and compensated for as explained
in section 3, the warped image Q’ is transformed into the
coordinate system of P by global transform. An intensity
value at each pixel in the fusion image is computed using
the weighted sum of corresponding pair. Since coherence
of ridge orientation can reflect the quality of an individual
image, it is possible to use of coherence as weights [8].

Coh,(x, V)1 ,(x,y)+Coh,(x, ), (x,

I (x,y) = (X, V) p(x, ) o (X, V)5 (X, ) ©
Coh,,(x,y)+ Cohy(x,y)
where Ip(x,y), Ip(x,y), and Ip(x,y) is intensity values at
pixel of fusion image, image P, warped image Q' in (X,y).
And coherence is compute as :

2 2
on J(G, -G, ) +4G}

G,.+G,

)

(7

[GH ny} 5 G: GG, ©
2

GX)’ ny w GxGy Gy
where, G, and G, is x and y element of the gradient
vector in the Cartesian coordinate. And the symbol W is
the window size.

Finally, a single template image is obtained by re-
integrating the fused images.

5. Experimental results

A set of fingerprint images using rolling scheme is
acquired  through solid-state  fingerprint  sensor
manufactured by AuthenTec. This sensor is acquired
about 6.5 images per second. The size of the image is
192x192 pixels with the resolution of 500 dpi and 72
rolling sequences are used in experiment. All rolling
sequences are consisted of 2095 fingerprint images and
each sequence is consisted of avg. 29.1 fingerprint images.
This paper uses time-sampled 7 images from each
sequence since integrating many images make fusion
image blur.
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Figure 7. Sample fused images :
(a) two images without compensating for deformation
(b) two images with compensating for deformation
(c) sequential images

The proposed paper uses image normalization as
preprocessing before the alignment. In the alignment, the
16x16 sized blocks is used to find candidates and
alignment transform is calculated using Gaussian Parzen
window which is sized 3. The transform is formed one
parameter vector, and it is insufficient to show relation
between two sequent images. Therefore, this paper
estimates block transforms and warp the second image
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using them. In this stage, this paper uses 3-level
hierarchical regularization method and 2-pass mesh
warping algorithm. Finally, two images are fused one
using the coherence which is calculated in the 16x16
sized windows. A sample fused image is shown in Figure
7.

The following table lists a few statistics about the
fusion image generated using the block matching scheme.
The number of minutiae per fingerprint increases from
14.1 for one impression to 32.8 for fused fingerprints.

Table 1. Result of the fusion

Avg. no. of minutiae
Impression 14.1
Composite image from a sequence 32.8
Composite image from 7 impressions 30.0

6. Conclusion

We have described a new enrollment scheme using
rolling in fingerprint-based verification system and a
nonminutiae-based fusion method for the sequential
fingerprint images. Experimental results show that this
method extract more minutiae than methods to integrate
the multiple impressions. It means a wider area of finger
is obtained by rolling than by other methods and the
amount of overlap between the template and query
impressions increase.Future work involves studying the
coarse alignment before the alignment step in order to
decrease of processing time. The coarse alignment makes
possible a small search window for block matching. We
are also attempting to normalize the ridge density at a
final fused image since rolling scheme makes ridge
density change because of the friction between a finger
and a sensor.
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Abstract

This paper presents the on-line signature verification
method based on the Discrete Wavelet Transform (DWT)
and the adaptive signal processing. Time-varying pen-
position signals of the on-line signature are decomposed
into sub-band signals by using the DWT. Individual
features are extracted as high frequency signals in sub-
bands. This makes difference between a genuine signature
and its forgery remarkable. However, there is fluctuation
in number of strokes even in the genuine signature. In this
paper, we introduce the Dynamic Programming (DP)
matching method to suppress the fluctuation. Verification
is achieved by whether the adaptive weight converges on
one. However, its convergence characteristics depend on
the step size parameter of the adaptive algorithm.
Therefore, the normalized step size parameter by the
signal power of the input signature is introduced to
guarantee the convergence. Results of verification show
that the verification rate of 95% is accomplished even
though a writer is not permitted to refer to hisgher own
signature and a forgery can trace the genuine signature.

1. Introduction

As the information service over internet such as the
Electronic Commerce and the Electronic Data
Interchange come to be used widely, the user
authentication technology becomes quite important. Until
now, the memory such as password, and the belongings
including a key and a magnetic card have been used for
the user authentication. However, they have danger of
losing and forgetting. Thus, the biometrics has attracted
attention [1].

The biometrics is divided roughly into two types. The
fingerprint, the iris and the retina are included in static
biometrics. They achieve high verification rate while they
require special detective devices. Therefore, the use of
them is limited to the financia institution or the special
facilities where secret information is defended. The voice-
print and the signature are of dynamic biometrics. The
user authentication by the voice-print is effective
especialy on the service with a telephone but it requires

207

Naoto Nishiguchi, Y oshio Itoh, Y utaka Fukui
Faculty of Engineering,

Tottori University, 4-101 Koyama-minami,
Tottori-shi, 680-8552 Japan

counter measures to such problems as recorded voice and
surrounding noise.

The user authentication by the signature consists of two
types. The off-line type has been researched as a target of
the pattern matching, in which the shapes of written
signature are compared. On the other hand, the on-line
type classifies the signature by such time-varying signals
as the pen-position, the pen-pressure, the pen-inclination
and so on [2-5]. These contain more individual features as
habits than the off-line type. Especially, the imitation of
the pen-pressure or the pen-inclination is difficult for
others while the pen-position can be easily traced if the
shape of the signature is known. In addition, the
electronic pen-tablet which is used to digitize the on-line
parameters is a standard input device of the computer;
therefore, the on-line type is suitable for the user
authentication in the service on computer networks.

In this paper, we authenticate the user by only the pen-
position parameter which is utilized for the hand-written
input or the pointing even in the Persona Digita
Assistants (PDA). However, if the signature is traced by a
forger, the difference between a genuine signature and its
forgery is not clear in the time-domain signal of the pen-
position parameter. We have proposed to decompose such
the time-varying signa into sub-band signals by the
discrete wavelet transform (DWT) [6]. Moreover, we
proposed to introduce the adaptive signal processing into
the verification of signatures. In the adaptive signa
processing, an adaptive weight is updated to reduce an
error between an input signal and a desired one [7]. If the
input signal is close to the desired one, the error becomes
small and then the adaptive weight is sure to converge on
one. Therefore, when both the signals are of the genuine
signature, the adaptive weight is expected to converge on
one. By using the convergence of the adaptive weight, we
can verify whether an input signature is genuine or
forged. In addition, even in genuine signatures, there is
fluctuation in the number of strokes and then it degrades
the performance of verification; therefore, we introduce
the robust stroke matching by using the DP matching
method into the verification.

This paper is organized as follows. In Sec.2, we explain
to extract time-varying signals of the on-line signature,
especialy the pen-position parameter and make it clear



that discriminating between the genuine signature and the
forgery is difficult in the time-domain signals. In Sec.3,
we introduce the sub-band decomposition by the DWT
and show that differences between the genuine signature
and the forgery become clear in the sub-band signal. In
Sec.4, we explain the verification method based on the
adaptive signal processing and the robust stroke matching
by using the DP matching method. In Sec5, the
effectiveness of the proposed system is examined through
experimental results. Finally, Sec.6 presents conclusions
and future works.

2. On-line Signature

2.1 Extraction of signature parameter

An on-line signature is digitized with a pen-tablet. The
specification of the pen-tablet used in this paper is
presented in Table 1.

Table 1. Specification of pen-tablet

Model WACOM Cintigq C-1500X
Method Electromagnetic Induction
Active Area 304.1x228.1 mm
Resolution 0.05 mm

Accuracy 0.5 mm

Report Rate 185 point/sec

Reading Height 5mm

Pen Pressure 512 levels

Figure 1 shows the definition of the on-line parameters.
In this pen-tablet, parameters of the pen-position and the
pen-pressure are obtained as discrete time-varying signals.
Especially, the pen-position parameter is at least provided
in portable devices such as the PDA for the handwriting
input and the pointing. In this paper, we identify
signatures by using only the pen-position parameter.

Pen

Tablet

Position

Y component

@ Pressure

0 (0,0)

X component

Figure 1. On-line signature parameters
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Actuadly, the pen-position parameter consists of
discrete time-varying signals x*(n’) and y*(n’) of x and y
components, respectively. n' (= 0~Np) is a sampled time
index and N,z shows its maximum value. Let us consider
variations of the parameter. Even if the same person signs
twice, quite the same signature parameter is not obtained
because the signature is dynamic biometrics. Different
writing time results in different number of data. To
suppress the influence of the variation, each sampled time
n' isnormalized by Npay.

n = %max N

where n (=0~1) is a normalized sampled time index,
which has real number value.

Next, in order to reduce differences of writing place
and size of the signature, it is also required to normalize
the amplitudes of x*(n) and y*(n). As a result, we define
the normalized pen-position parameters as

o) =0 Ko (< )5 00) 2

y* (n)_ Ymin
y(n)=Z———2mn
( ) Yimax = Ymin

where subscripts max and min indicate maximum and
minimum values of parameters, respectively. oy and o
are scaling factors for expansion of the dynamic range.
The normalized signal is decomposed into sub-band
signals by the DWT and then the signal power is
distributed to each band. For avoiding the under flow in
caculation at each band, the dynamic range of the
normalized signa must be spread in advance. These
factors are set 100 experimentally in this paper.

"y (ymin < y* (n)S Ymax) (3)

2.2 Genuine signature and the forgery

The pen-position parameter depends on the shape of the
signature. Thus, it can be easily imitated if aforger traces
a genuine signature. Figure 2 shows an example of them.
Especidly, the forgery was obtained by tracing the
genuine signature. It is impossible to distinguish between
the genuine signature and the forgery in comparison of
signature shape.

7 o i &

(a) Genuine signature

\%UE%

(b) Forgery

Figure 2. Examples of Signatures
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Figure 3. Pen-position parameters

Figure 3 shows time-varying signals of the normalized
pen-position parameters x(n) and y(n) of the above
signatures. Solid lines are of the genuine signature and
dashed lines are of the forgery. These comparisons
indicate that it is quite difficult to discriminate between
the genuine signature and the forgery in the time-domain.

3. Enhancement of signature feature by
DWT sub-band decomposition

The wavelet transform gives us a time-frequency
analysis, which is effective for the non-stationary signal.
In this section, we show that the sub-band decomposition
by the Discrete Wavelet Transform (DWT) [6] makes
difference between the genuine signature and the forgery
more remarkable.

Au(2)
A @12D-u, (m) =({2D)-{Su @]~ ™
v(n)—-I
N OGED v,(n)
A2~ um —(1 2D 5@ }~um

Figure 4. Parallel structure of sub-band
decomposition by DWT

3.1 DWT Sub-band decomposition

In the following, x(n) and y(n) are represented as v(n)
for convenience. The DWT of the normalized pen-
position component is v(n) defined as

Uk(m)zzn‘,v(n)‘;k,m(n) (4)

wherekisafrequency (level) index. yim(n) isthe wavelet
function and  denotes its conjugate. It is well known

that the DWT corresponds to the octave-band filter bank.
The DWT pair is expressed by a paralel structure as
depicted in Fig.4. (2™ and (T2™) denote the down-
sampling and the up-sampling, respectively. When Hy(2)
and Fy(2) are transfer functions of the LPF (low pass
filter), and Hy(2) and F1(2) are those of the HPF (high pass
filter), the synthesis filters A(2) (k=1~M) and the analysis
filters S(2) (k=1~M) are defined as

A(2) = Hq(2) (6)

Ao(2) = Ho(2)Hy(2°) ™

A (2 =Ho(@DHo(ZD)~Ho(@ HHiZ ) (8)
R (D =Ho(@Ho(ZD) Ho(ZZ HHo(Z ) (9)
S(2=F() (10)

$(2) = R(2FR(Z) (12)

Su (2)= Fo@Fo(2D) Fo(ZZ R ) (12)

At each sub-band level, an input frequency band is
decomposed into a low frequency band and a high
frequency one. The signal in the high frequency band is
caled “Detail” and that in the low frequency band is
“Approximation”. The octave-band decomposition is
accomplished by applying such decomposition to the
lower frequency band repeatedly. As aresult, in M level
decomposition, we obtain M Details v(n) (k=1~M) in
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parallel as shown in Fig.4. Its frequency characteristic is
described in Fig. 5.

A

o (n) 1(n)

Gain

Frequency

Figure 5. Octave-band decomposition
3.2 Enhancement of signature feature

The Detail contains differences between signals;
therefore, we consider it as the enhanced feature of the
on-line signature parameter. For instance, the Details at
level M in the genuine signature and the forgery are
shown in Fig.6 when each time-varying signa of x
component in Fig.3 (a) is decomposed into M level
signals by the Daubechies8 filters in the DWT.
Comparing these two Details, we can confirm that the
difference between the genuine signature and the forgery
become remarkable by the sub-band decomposition while
it isunremarkable in time-domain comparison.

The reason why the sub-band decomposition enhances
the difference between signatures is as follows. In the
case of forged signatures, the variation of writing time is
relatively large because the writing time is not imitable.
While the normalization of the writing time decreases the
difference between signatures, it leads to a different
sampling time in each signature. This means that an actual
frequency is different from each other as shown in Fig.6
even a the same decomposition level. In genuine
signatures, the variation of writing time is small, so that
the actual frequency is also equivalent with each other at
the samelevel.

Amplitude

1 1
0 0.2 0.4 0.6 0.8 1
Normalized Time

Figure 6. Example of decomposed signhals
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Figure 7. Flow of proposed signature
verification

4. Verification method

Next, we explain about our verification method. It is
unique that the adaptive signal processing [7] is adopted
to discriminate between signatures at each decomposition
level. In addition, the total decision of verification is
achieved by considering results of x and y components at
some levels, so that it is expected to be robust. Moreover,
we introduce the dynamic programming (DP) matching
method into the verification for robustness against
variation of the number of strokes.

4.1 Flow of verification

Our signature verification method consists of two
phases as shown in Fig.7. One is a registration phase and
the other is a verification one. Before the verification
phase, the registration phase must be accomplished. In the
registration phase, five genuine signatures are
decomposed into sub-band signals by the DWT. Five
Details at the same level are averaged and then its results
isregistered as atemplate at each level in the data base. In
the verifivation phase, an input signature is also
decomposed into Details. By the way, the number of
strokes is not neccesarily equal to that of the template
even in the genuine signature because the on-line
signature is dynamical. This causes degradation of
verification performance. Therefore, the DP matching



method is introduced to match the stroke of the input
signature with that of the template. After stroke matching,
the Detail of the input is compared with that of the
template using the adaptive signal processing. Finaly, the
total decision of verification is accomplished by
examining results at some decomposition levels.

4.2 Detection of stroke

For stroke matching, it is necessary to detect strokes.
Each stroke consists of an intra-stroke and an inter-stroke
which correspond to a pen-down condition and a pen-up
one, respectively. In this paper, the stroke is detected by
using the quantized pen-pressure parameter P(n) as
follows.

1 (P*(n)>0)
"0-{o (e »

where P*(n) is the pen-pressure parameter. If P*(n) is
nonzero, it corresponds to the pen-down condition and so
the P(n) is set to 1. On the other hand, when P*(n) is zero,
it indicates the pen-up condition, and P(n) is also zero.
Thus, each stroke can be detected as a pair of P(n) =1 and
P(n) =0. While we utilize the pen-pressure parameter for
convenience, our proposed method does not need the pen-
pressure parameter essentially. The pen up/down
condition can be detected by using a pen-point switch.

4.3 Making of template

Before the verification, the template must be prepared.
Concretely, five genuine signatures which have equal
number of strokes are decomposed into sub-band signals
by the DWT. Decomposition level M is decided after
examining those genuine signatures. Extracted five
Details at the same level are averaged and then the result
is registered as a template at each level in the data base.
Incidentally, for taking an average, the number of
sampled data should be equal in five signatures. However,
each number of sampled data may be different from the
others even in the genuine signature. To solve this
problem, five signatures are averaged every intra-stroke
or inter-stroke (intra/inter-stroke) in our verification
system.

First, we determine the number of data in the template.
Let n; (i=1~5) be data numbers of five intra/inter-strokes,
the number of datain the template nais given by

n,=| L S n. (14)

where [X] isthe greatest integer not greater than x.

Next, the normalized sampling period in a template
stroke is given by 1/(na-1), and those in five Details are
1/(n-1) (i=1~5), too. These are illustrated in Fig.8. Five
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Detail data of which normalized sampled time r/(ni-1)
(i=1~5, r=1~n;) is the nearest to that in the template
m/(na-1) (m=0~nx-1) are selected as described by arrows
in the figure and averaged every normalized sampled time
in the template. As a result, we obtain n, data in each
intralinter-strokes. By applying this operation to all
intra/inter-strokes at al level, al template data are
obtained and they are registered in the database.

2 3 ij_/(:;_l)l n?
P4 T4 N
w9 971117 797 9,

¢

1/(ng-1)

Figure 8. Making of Template

4.4 Determination of decomposition level

Next, we discuss the verification phase. The DWT
corresponds to the octave-band decomposition; therefore,
the decomposable level depends on the number of
sampled data in an input signature. In this paper, we
determine the decomposition level M of the input
signature based on that in the template as given by

2V <N < 212 (15)

where N istotal number of the template data.
4.5 Stroke matching

If the number of strokes in an input signature is
different from that in a template, the input signature
should be considered as a forgery. However, not all
genuine signatures have the same number of strokes. In
fact, we confirmed that there was the stroke difference
within £2 even in the genuine signature through some
experimences. Immidiately rejection of the input signature
with different number of strokes causes degradation of
verification performance. In this paper, we alow the input
signature with the stroke difference within +2. However,
our verification is done every intra/inter-stroke and so the
number of strokes in the input signature should be equal
to that in the template. Therefore, we adopt the dynamic
programming (DP) matching method to identify the
number of strokes in the input signature and the template.



The difference number of strokes y between the input
signature and the template is calculated by using the pen
up/down information P(n). If 0<|y|<2, either of more
strokes is decreased by coupling strokes. Figure 9 shows a
case of y=1. Assuming the number of strokesin ¥ is Q+1
and that in @ is Q, two strokes (for instance g™ and g+1™)
in ¥ should be coupled to one (q") to equalize both
numbers.

Number of strokes : Q+7

g1 .9 ____¢ gl g2 q+3
1 ! vy
P*(n) .| |:
" Coupling
g-1 q gl G2
Y O I
Comparing'l

1
1
1
1
1
1
1

g1 g i g+l )
N L L] Le

Number of strokes : Q

Figure 9. Stroke matching

It becomes important how to choose such strokes which
should be coupled. Thus, we introduce the DP matching
method, which is generally used for evaluating similarity
between two patterns. In the following, we explain the DP
matching method briefly.

The distance dq(i,j) between i"" sample of coupled g
strokein ¥ and | sample of q" strokein @ is defineas

dq(i’j)=‘t‘vq(i)—t¢q(1)‘ (16)
where ty, (i) and to, (j) are normalized sampling times

which are obtained by dividing whole writing time by
total number of samples and different from those used in
making of the template.

Next, the DP distance D(¥,®,) between ¥ and @ in
q" stroke is calculated as follows.

Initialize: g,4(0,0)=2d,(0,0) (17)

For i=1tol4-1, j=1toJs-1
9qli, j =)+ dgi, j)

9qli. §)=min| gq(i —1,j 1)+ 2d4(i. }) (18)
gq(i -1 j)+dq(i: j)
lg—LJdq—1

D(\Pq@q):% (19)
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where |, and J, are the number of samplesin q" stroke of
¥ and @, respectively.

Such DP distance is calculated in all stroke pairsin ¥
and as a result a stroke pair with the shortest DP distance
is chosen as the coupled stroke. In the case of | /=2, two
couplings or a coupling of three strokes is examined
similarly. Of course, in the case of »=0, the stroke
matching is not needed. If | 7|>2, the input signature is
immediately decided asthe forgery.

4.6 Adaptive signal processing for verification

After stroke matching, the verification is processed by
using an adaptive signal processing. A block diagram of
the proposed verification method by using the adaptive
signa processing is shown in Fig.10. In this paper, we
utilize Details at only k=M~M-3. Details at lower levels
correspond to higher frequency elements and so their
variation is too large. They are not suitable for
verification. Input signals x (n) and y (n) ae
respectively the Details of x and y components at level k
in an input signature. In the following, the signals of x
and y components are represented asv, (n) (x, yev) for

convenience. A desired signal t,/(n) is the Detail of the
template. w}(n) is an adaptive weight and updated to
reduce the error signal e/(n) based on the adaptive
algorithm (A.A)).

T DR :

Wil ) wx,tot ﬁf(n) !

1 L 1
Xu@ | w ! Xu-s() v

- s —p

W (n).,.! e§ (n) ........ 8

g2

t @) tY.() g

+ v o

W %-4)] o
........ -

A L T |

Figure 10. Adaptive signal processing for
Verification

By the way, the purpose of the adaptive signa
processing is to reduce the error between the input signal
and the desired signal sample by sample. However, if
these signals have different number of sampled data, the
error does not fully decrease. In general, the number of



datain the input signature does not necessarily agree with
that in the template. In order to match these numbers of
data, we utilize the normalized sampling time every
intra/inter-stroke as described in 4.3. The nearest input
data to the normalized sampled time in the template is
only referred in the adaptive algorithm. Thus, the number
of theinput datais always guaranteed to agree with that in
the template. Such time index according to the normalized
sampled timeis represented asr.

The adaptive algorithm for updating the weight is given
by

i +3) = i)+ e Ef ) (20)
&/ () =t(r)-wi(r v (r) (21)
eler () ] e - ) @)

Ho (23)

T n>\]}2

ﬂvk H_— ‘vknl

whereL isthe number of sampled data in the input Detail.
Mo is a positive constant and set to 0.0001, which is
confirmed to be independent of the signature. y is the step
size parameter which controls the convergence in the
adaptive algorithm. The step size parameter is normalized
by the Detail power as shown in Egs.(23) and (24), so that
the convergence is always guaranteed. This algorithmis a
kind of the steepest descent algorithm [7].

When the input signal is of the genuine signature, the
error between the input and the template becomes small;
therefore, the adaptive weight converges close on 1.
Inversly, if the input signature is of the forgery, the
weight converges far from 1. In this way, the verification
can be achieved by examining whether the converged
valueisnealy 1 or not.

After enough iterations for convergence, the total
convergence value TC is caculated by averaging eight
converged values of the adaptive weights.

(&1 5.1
=Y =w Y =w (25)
2(;,4 M-p ;4 M“’]

Finaly, Tota decision of verification is achieved by
whether TC is larger than a threshold value. To consider
multiple results leads robustness to our verification
method.

(24)

5. Experiment and result

In order to confirm effectiveness of our proposed
verification method, we carried out experiments of the
signature verification. Conditions of the experiment are as
follows. Four subjects were requested to sign their own
alphabetic signature 25 times each and to counterfeit other
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two signatures 50 times each. Then, after excluding
unusable signatures, 98 genuine signatures and 200
forgeries were used in this experiment. Before signing,
subjects were called upon to practice using the pen tablet
for becoming skilled. Also, when the subjects signed
genuine signatures, they were not able to refer to their
already written signatures. On the other hand, forgers
were permitted to trace the genuine signature by putting
the paper to which the signature was written over it. This
assumed that the signature shape was easily imitated. In
order to obtain fully convergence of the adaptive weight,
the number of iterations was set to 100 thousands. In
initial N iterations, the adaptive weights were fixed to
zero and not updated since data for the average in Eq.(22)
were uncompleted. In more than N iterations, the same
input signal and template were used repeatedly.

Figure 11 shows an example of convergence
characteristics of the adaptive weight of x component at
level M. When the input signature was the genuine one,
the adaptive weight converged nearer on 1 than that in the
forgery. This result shows that it is possible to verify the
signatures by using the adaptive signal processing.

1+ Genuine -

Value of Adaptive Coefficient
o
(6]
T
1

0 Forgery 4

1 1
0 0.2 0.4 0.6 0.8 1
Number of Iterations [x107]

Figure 11. An example of convergence
characteristics

Figurel2 shows the false rejection rate (FRR) and the
false acceptance rate (FAR) versus a threshold value. In
general, verification performance is estimated by the
equal error rate (EER) where the FRR and the FAR are
the same. The EER was about 5% when the threshold
value was set to about 0.3. This result means that the
verification rate is 95% by using only the pen-position
parameter even though a forger traces a genuine
signature.

The reason why the FAR was not 100% even when
the threshold value was set small enough was that about
20% forgeries had more than two stroke differences and
so they were immediately rejected without verification.



On the other hand, the stroke difference of al genuine
signatures was within +2, so that the FRR became 100%
as the threshold value was increased. The FRR did not
become 0% even when the threshold was about 0 because
the subjects were not permitted to refer to own signatures,
and it enlarged variation in signature parameters. Some
method for reducing the FRR is required to improve the
verification rate.
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Figure 12. Verification results

6. Conclusion

We had proposed a new text-dependent on-line
signature verification method. Our method emphasized
individual features by decomposing the time-varying
signal of the pen-position parameter into sub-band signals
by the DWT. In addition, we proposed the verification
method based on the adaptive signal processing, in which
the normalized step size parameter was introduced to
guarantee the convergence of the adaptive weight.
Moreover, we adopted the DP matching method for stroke
matching before the verification because stroke difference
between signatures degraded verification performance.

Experimental results showed that the verification rate
of 95% was achieved by using only the pen-position
parameter under a very severe condition, that is, subjects
were not able to refer to the genuine signatures and
forgers were permitted to trace the genuine signatures. By
using our proposed method, high verification rate can be
achieved even in the portable device such as the PDA.

In the proposed method, the computational complexity
is surely increased for the sub-band decomposition by the
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DWT, the adaptive signal processing for verification, and
the DP matching method for stroke matching. In
computational complexity, it is important to examine the
number of multiplications and divisions. The DP
matching is basically a repetition of addition and
comparison as in EQ.(18); therefore, the increase of
computational complexity is considered as not large. The
adaptive signal processing is also based on iteration, and
two multiplications and two divisions are required every
iteration as in Egs.(20), (21), (23) and (24). Eq.(22)
denotes the moving average with window length N, and N
multiplications, N-1 additions and one division are needed
every iteration. However, N-1 data in accumulation are
overlapped between a present window and a past window
since the window is shifted sample by sample. By adding
a present data to the accumulation and subtracting a past
data from the accumulation, N multiplications can be
reduced to one. As aresult, three multiplications and three
divisions are required every iteration. The increase of the
computational complexity isnot also large.

In this paper, converged values of adaptive weights are
simply averaged to obtain the total convergence value. To
adjust weighting of the converged value should be
introduced for improving verification performance. For
reducing the FRR, it is to also studied in future to cope
with variation in the genuine signature.
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Abstract

Many nonacoustic sensors are now available to aug-
ment user authentication. Devices such as the GEMS
(glottal electromagnetic micro-power sensor), the EGG
(electroglottograph), and the P-mic (physiological mic)
all have distinct methods of measuring physical processes
associated with speech production. A potential exciting
aspect of the application of these sensors is that they are
less influenced by acoustic noise than a microphone. A
drawback of having many sensors available is the need to
develop features and classification technologies appro-
priate to each sensor. We therefore learn feature extrac-
tion based on data. State of the art classification with
Gaussian Mixture Models and Support Vector Machines
is then applied for multimodal authentication. We apply
our techniques to two databases—the Lawrence Liver-
more GEMS corpus and the DARPA Advanced Speech
Encoding Pilot corpus. We show the potential of nona-
coustic sensors to increase authentication accuracy in
realistic situations.

1. Introduction

Speaker authentication is a rich area for exploration of
multimodality. Many facets of the speech production
process are measurable through a variety of sensors. Tra-
ditionally, visual lip reading has been used to supplement
speaker authentication and speech recognition [15,26].
These methods rely upon tracking the lip contour over
time and then using the sequence of movements to sup-
plement standard audio-only verification. These methods
have been quite successful, leading to large gains in accu-
racy in high noise conditions.

Other methods of monitoring speech production are also
available. Non-invasive sensors that are attached in the
throat area have been available for many years; we call
these nonacoustic sensors. These sensors nominally
measure aspects of the speech production process related
to the speech excitation. Typical sensors that we have
explored in this study are the EGG (electroglottograph),

*This work is sponsored by the Defense Advanced Research Projects
Agency under Air Force contract F19628-00-C-0002. Opinions, inter-
pretations, conclusions and recommendations are those of the authors
and are not necessarily endorsed by the United States Government.
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the GEMS (glottal electromagnetic micro-power sensor),
and the P-mic (physiological mic). Since traditional
methods of verification [18] rely upon features designed
to capture vocal tract information—e.g., mel-frequency
cepstral coefficients—we would expect that multimodal
fusing of excitation and vocal tract features would benefit
recognition in both quiet and noisy conditions. An added
benefit of nonacoustic sensors is that they are less influ-
enced by acoustic noise. For the case of the EGG and the
GEMS, the throat is exposed to RF signals; for the case of
the P-mic, the sensor output is dominated by the vibra-
tions sensed on the throat. These modes of measurement
do not directly monitor air pressure in the ambient envi-
ronment.

There has been several prior works on the use of glottal
waveforms for recognition. Gable [8] used waveforms
from the GEMS system for speaker verification; his work
focused on using methods such as dynamic time warping
for text-dependent verification. Plumpe [16] used inverse
filtering techniques on the acoustic waveform to derive
glottal waveform signals; speaker recognition was then
performed. Both throat microphones [9] and the P-mic
[1] have been used for automatic speech recognition. Our
work is distinct in several aspects: 1) we consider both
simulated and actual noise conditions, 2) we do not as-
sume models for the glottal waveforms but instead use a
learning approach, 3) we use late integration to combine
several nonacoustic sensors, and 4) we consider integra-
tion accuracy of multiple nonacoustic sensors in low-
noise conditions.

We attack the problem of authentication using nonacous-
tic sensors with a data-driven learning approach. We
have chosen the data-driven approach as a baseline to
future knowledge-based analysis. Sensor outputs can
vary dramatically based on placement, sensor tuning, im-
pedance matching, sensor design, etc. This variation can
be captured easily with data-driven methods. Towards
this end, we use standard feature transformation methods
to find features which describe the speaker specific at-
tributes of the different signals. We use various normali-



zations based upon signal characteristics to improve accu-
racy.

After obtaining features for authentication, we use both
Gaussian Mixture Models [18] and Support Vector Ma-
chines (SVM’s) [25] for multimodal authentication. We
combine the outputs of these different classification sys-
tems using late integration to achieve the final score. For
the corpora explored in this paper, we consider only
closed-set speaker identification. That is, given an utter-
ance, identify an individual from a list of known indi-
viduals. Because of the limited number of speakers avail-
able in current corpora, other scenarios such as verifica-
tion or open-set ID were impossible because of the lack
of an adequate “background” population.

The outline of the paper is as follows. In Section 2, we
discuss the sensors in detail and describe their basic op-
eration. In Section 3, we discuss our feature extraction
methodology. Section 4 outlines the classifiers and fu-
sion strategy used. Section 5 gives details on the corpora
used and experiments. These corpora allow us to explore
both the GEMS in quiet environments and multiple nona-
coustic sensors in high noise (>110 dBC) situations. We
show that our authentication strategy leads to gains in this
challenging scenario. A complimentary method for
achieving authentication accuracy gains is speech en-
hancement [27].

2. Nonacoustic sensors

We survey three nonacoustic sensors used for experi-
ments—GEMS, EGG, and P-mic. These sensors have
distinct methods of measuring speech production phe-
nomena. Other sensors which would be of interest, but
were not included due to corpus size and project focus,
are accelerometers, “bone phones,” in-ear microphones,
video, etc.

2.1. GEMS

The GEMS (glottal electromagnetic micro-power sensor)
is a novel sensor based upon transmitting electromagnetic
(EM) waves into the glottal region. Two GEMS designs
were used in the corpora in this paper. An earlier version
was used in the LLNL Corpus [8], and Revision B, Ver-
sion 1 created by Aliph Corporation
(http://www.aliph.com) was used in the ASE Corpus of
Section 5. The GEMS is also referred to as the “General
Electromagnetic Movement Sensor” by Aliph Corpora-
tion.

During operation of the GEMS, a small antenna is placed
on or near the throat at the level of the glottis. From this
antenna is transmitted a 2.3 or 2.4 GHz low power
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(<1 mW) EM wave. Using these frequencies allows for
EM waves to penetrate into the body and reflect back to
the sensor with good signal levels. The receiver circuitry
detects the reflected EM waves using a homodyne tech-
nique. Nominally, the sensor measures phenomena re-
lated to the opening and closing of the glottis [2]. Multi-
ple theories have emerged on the exact phenomena occur-
ring that generates the waveform—changing air-tissue
interfaces as the glottis changes, vibration of the tracheal
wall, and propagation along the vocal fold contact area,
see [11, 21]. Although inferring the exact process that the
GEMS is monitoring is challenging, the waveforms gen-
erated do provide speaker specific information which is
related to the speech excitation.

2.2. EGG

The EGG (electroglottograph) is a device designed to
measure contact between the vocal folds. The specific
implementation used for this study was from Glottal En-
terprises. This EGG is a multi-channel EGG device [19];
the multichannel feature allows for more precise place-
ment on the neck to achieve higher signal to noise ratio.

The EGG nominally measures the vocal fold contact area
(VFCA). This process is performed by using electrical
signals in the MHz region. Two electrodes are placed on
the subject’s neck at the level of the thyroid cartilage.
VFCA is measured by observing the variation in imped-
ance over time. Since the EGG measures vocal fold con-
tact, the sensor does not necessarily allow one to observe
interesting phenomena during the open phase of the glot-
tis. Note that the EGG is not an exact indicator of VFCA.
For example, during transition to the open phase of the
glottis, mucus can “short out” the device indicating that
the glottis is closed when this is apparently not the case
(the mucus bridging effect [4]).

2.3. P-mic

The P-mic (physiological microphone) is a non-invasive
contact sensor for measuring sound [20]. The P-mic con-
sists of a gel pad to provide acoustic impedance matching,
a conical focusing aperture, and a piezoelectric element.
Use of a gel pad minimizes interference from ambient
noise.

The P-mic is typically placed in the throat area below the
glottis. This placement insures that the P-mic signal can
be simultaneously recorded with the GEMS and EGG
signal. In our experiments, we found that the P-mic was
most sensitive to ambient noise among nonacoustic sen-
sors; presumably this is due to “leakage” of the ambient
noise into the sensor element.


http://www.aliph.com/

2.4. Comparison of the sensors

Figure 1 shows an example output from four sensors re-
corded simultaneously. In the figure, the top signal is a
microphone recording of the /ao/ in “dog.” The second
signal represents the EGG signal (highpass filtered with a
linear phase filter with a transition band from 64-80 Hz).
We note that the EGG gives a very “smooth” waveform.
The third waveform from the top is the P-mic signal. In
this signal, we see more evidence of “leakage” of vocal
tract information into the signal (as evidenced by ripple in
the waveform). Finally, the fourth waveform is the
GEMS signal. We can see this waveform has many of the
same general characteristics as the EGG, but that there is
additional structure in the waveform. Listening to the
GEMS signal reveals little vocal tract information; there-
fore, this fine structured seems to represent supplemen-
tary excitation information not captured by the EGG.
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Figure 1. Comparison of different sensor waveforms for
the /ao/ in “dog.” From top to bottom—audio, EGG, P-
mic, and GEMS. The length of time shown is approxi-
mately 30 ms.
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3. Feature extraction

Our framework for feature extraction is shown in Figure
2. Our goal was to create a flexible architecture that in-
corporated linear matrix transformation for feature extrac-
tion. In the figure, the input signal is processed into
frames creating a sequence of vectors. Each frame corre-
sponds to a 30 ms time window with an overlap of 20 ms
between consecutive frames. Since our sampling rate is 8
kHz, we obtain a sequence of vectors of dimension 240
(100 vectors per second).

Vector Data

Normalizations

Input Convert to
Waveform Frames

Output Features
(to classifier)

Linear Trans-
forms

\ 4

Figure 2. Framework for feature transformation.

We then applied several normalizations to the data; these
normalizations are intended to provide invariances in the
feature extraction to certain transforms—e.g., increasing
the gain. We first remove the mean on a per frame basis;
we then normalize the amplitude of the signal variance to
1. Finally, we introduce a transform to reduce a framing
artifact; namely, a shift of the input should not matter in
recognition. For this normalization, we calculate the dis-
crete Fourier transform (DFT) of each frame, eliminate
the phase of each component, and then calculate the in-
verse DFT. All of these normalizations are intended to
throw out unnecessary signal information; potentially,
they are too aggressive and could be modified. For exam-
ple, the mean of the EGG signal carries information about
the position of the larynx. In spite of drawbacks, these
normalizations increased accuracy for all linear trans-
forms we tried.

After appropriate normalization, the sequence of frames
was used to calculate delta parameters [17]. This linear
transform resulted in a sequence of vectors of dimension
480. We then wanted to design a linear transform to re-
duce this 480 component vector to a more reasonable
dimension. There are multiple reasons for dimension
reduction—obtaining compact representations of speaker
specific features, avoiding excessively complex classifi-
ers, discarding “uninformative” directions in feature
space, and minimizing the “curse of dimensionality.” For
this paper, we explored several unsupervised methods of
designing a linear transform—principal component analy-



sis (PCA) [7], random dimension reduction [6], and inde-
pendent component analysis (ICA) [12].

Random dimension reduction (i.e., generating the analysis
matrix using random independent components) was used
for multiple purposes. We preprocessed all of the nor-
malized outputs (with delta components) from dimension
480 down to dimension 100 using random dimension
reduction. As shown in [6], random dimension reduction
tends to preserve distances and make clusters of data
more spherical which improves problem conditioning.
We found that for both PCA and ICA that this improved
accuracy. Random dimension reduction also reduces the
size of the problem making methods such as ICA and
PCA more practical for large problems. Finally, random
dimension reduction was also used as an analysis method
to compare to other unsupervised methods.

We note that our feature transformation method is very
similar to the standard filter bank approach for generating
mel-cepstral coefficients. In a coarse sense, our approach
could be thought of as applying a filter bank “tuned” to
the glottal response.

4. Classification and fusion

Gaussian mixture models have been very successful for
the speaker recognition task [18]. We use Gaussian mix-
ture models to model the speaker specific distribution
only (i.e., no background modeling is performed since our
task is closed-set identification). For each speaker, we
create a mixture model

F60=Y 28,0

where g; is a single Gaussian. Training is accomplished
using the EM algorithm with a small number of compo-
nents—typically less that 256.

We also use support vector machines (SVM’s) for classi-
fication [25]. Support vector machines are discrimina-
tively trained classifiers and thus give excellent perform-
ance on closed set tasks. For our experiments, we use a
polynomial basis of monomials in our SVM kernel up to
and including a certain degree—typically degree 2 or 3,
see [25]. Our SVM kernel is based upon comparing se-
quences of data and providing an inner product in a large
dimensional space which captures speaker specific infor-
mation. One interesting aspect of using support vector
machines for our work is that it is possible to bypass the
feature transformation process and perform classification
directly in high dimensions. Although this is computa-
tionally intense, it gives a baseline for feature transformed
classification systems which work in lower dimensions.
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All of our reported experiments use late integration for
fusion [3]. Fusion is accomplished by using a linear com-
bination of scores from each of the classifiers applied to
the different modalities. Methods involving construction
of new SVM kernels based upon sums of kernels for each
of the modalities were also tried, but these did not
perform as well as late integration.

5. Corpora and experiments

5.1. LLNL GEMS corpus and experimental setup

The first corpus used for experiments was the Lawrence
Livermore National Lab GEMS corpus collected by
G. Burnett and T. Gable [8]. This corpus consists of 15
male speakers with up to 4 sessions per speaker. Both
sentences from TIMIT and number/letter/{Yes,No,Zero}
sequences were recorded. For the purposes of our ex-
periments, we focused on the number/letter/short-word
sequences. Typical utterances were a combination of 10
items; e.g., “T60 YES3URE8WP.”

We used the initial session of 20 utterances as enrollment.
The remaining 3 sessions of 20 utterances each were used
for speaker identification. This resulted in 15*60=900
tests for speaker identification. Both audio and GEMS
data were originally sampled at 10 kHz. We resampled to
8 kHz and then bandlimited the speech to 200-4000 Hz.

Noise was electronically added to the audio signal with
noises from the NOISEX database [23]. (In Section 5.3
and 5.4, we consider a corpus where the noise environ-
ment is not electrically added.) The NOISEX noise sig-
nals were resampled to 8 kHz and also bandlimited to
200-4000 Hz. This insured that SNR was measured only
in the band containing speech. All 24 NOISEX noises
were used. When adding speech to noise, we generated a
random offset into the noise file and then extracted a
segment of noise the same length as the speech file. The

resulting output signal was X=Xpeech ¢ *Xnoise, Where
SNR
o' -
speech
c=——-—10 1°
noise

and the standard deviations are calculated over non-
silence regions.

5.2. LLNL corpus results

Our first set of experiments compared feature transforma-
tion methods. As indicated in Section 4, we explored
random dimension reduction, PCA, and ICA. We ini-
tially considered closed-set speaker identification accu-
racy based upon the GEMS signal only. Each feature
vector was reduced from dimension 480 to 100 using



Table 1. Comparison of accuracy of feature transforma-
tion methods for GEMS-only closed-set speaker identifi-
cation on the LLNL database.

Feature Extraction Speaker
Method Identification Accuracy (%)
Random Projection 62.7 %
PCA 59.7 %
ICA 51.9%
None 64.3 %

random dimension reduction. A linear transform was
then designed and applied to reduce the dimension from
100 to 32 for input to the classifier. Dimension 32 was
chosen since the accuracy typically plateaued at this di-
mension. A SVM classifier with a degree 2 polynomial
kernel (full covariance) was used, see [25].

Table 1 compares accuracies for the different methods.
Also included in the table is the case of no dimension
reduction (with a diagonal covariance SVM kernel) which
provides a baseline for reduced dimension methods. As
can be seen from the table, random projection works as
well as other transformation methods. Potentially, this is
due to multiple factors. The classifier may be better
matched to this feature extraction technique. Also, there
could be spurious directions in the feature space data
which are not relevant to speaker identification. One way
to mitigate this problem (which we do not explore here) is
to use supervised feature transformation methods, e.g.
[22].

After using linear transform feature extraction methods
for speaker identification, we investigated the use of
fundamental frequency (F0) to augment the recognition
process. The Entropic pitch extractor in Wavesurfer
(http://www.speech.kth.se/wavesurfer) was used. A
GMM was trained with 32 components to model each
speaker from the FO data. The resulting error rate for
GEMS only recognition was 50.6%. Note that a similar
rate of accuracy was also observed for the audio data us-
ing FO only—49.1%.

We then fused (with equal weights) the GEMS FO classi-
fier scores with the linear transform feature extraction
scores (random dimension reduction) to obtain a GEMS-
only accuracy of 64.0%. The use of FO information dem-
onstrated two items. First, since FO-only classification
accuracy is significantly below that of linear transform
feature extraction accuracy, we are obtaining additional
non-FO information from our linear transform technique.
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Figure 3. Comparison of speaker identification accuracy
across noise type 3 (white noise) for different late integra-
tion strategies and random dimension reduction.

Second, because the accuracy improved from the fusion,
there is complementary information in the two scores.

Finally, we considered the effect of late integration upon
speaker identification in noise. We implemented an au-
dio-only speaker recognition system using the system in
[25] with a degree 3, diagonal covariance model; input
features were 12 LP cepstral coefficients plus deltas. In
addition, the MELPe noise preprocessor [24] was applied
to the audio input signal. Figure 3 shows the performance
of a late integration system which fuses an audio-based
system with the GEMS-based system (both pitch and lin-
ear feature transformation were used). In the figure, at
low SNR (0-10 dB) and for NOISEX white noise (noise
type 3), significant increases in accuracy are obtained by
late integration—greater than 50% in some cases.

We then considered the effect of late integration with a
fixed weighting, 0.5*GEMS + 0.5*audio, as the type of
noise varied for a fixed SNR (specific information on the
noise types can be found in the NOISEX corpus docu-
mentation). The results for 0 dB SNR are shown in Fig-
ure 4. As can be seen from the figure, significant in-
creases in accuracy over an audio-only system are
achieved—greater than 25% average improvement. The
best performing environments were NOISEX types 3
(white noise), 16 (machine gun), 18 (STI test signal), 19
(voice babble), and 21 (factory). The worst performing
environments were NOISEX types 1 (sinusoid), 5 (col-
ored, -12 dB/octave), 9 (Leopard 2), 23 (Car) and 24
(Car).


http://www.speech.kth.se/wavesurfer
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Figure 4. Improvement in speaker identification ac-
curacy of a late-integration fusion system over an au-
dio-only system by noise type (NOISEX database) at
0 dB SNR.

5.3. ASE corpus and experimental setup

The Advanced Speech Encoding Pilot Corpus (ASE Pilot
Corpus) is a multisensor corpus collected for the purpose
of studying viability of multiple sensors for speech en-
hancement, speech coding, and speaker characterization.
Sensors recorded simultaneously include a resident mi-
crophone (the microphone typically used in the environ-
ment), two channels of a GEMS device, an EGG, a high
quality reference microphone (B&K), and P-mics posi-
tioned on the forehead and the throat region. The corpus
was collected in two sessions (on two different days).
Speakers were exposed to a variety of noise environ-
ments—-quiet, office (56 dBC), MCE (mobile command
enclosure, 79 dBC), M2 Bradley Fighting Vehicle (74
dBC and 114 dBC), MOUT (military operations in urban
terrain, 73 dBC and 113 dBC), and a Blackhawk helicop-
ter (70 dBC and 110 dBC). We call these environments
(with L indicating low noise and H indicating high noise)
quiet, office, MCE, M2L, M2H, MOUTL, MOUTH,
BHL and BHH, respectively. To protect our subjects and
realistically simulate Lombard effects, all talkers used the
hearing protection systems typical of each environment.
This normally consisted of a communication headset with
approximately 20 dB noise attenuation. Human subject
testing procedures were followed carefully and noise
exposure was monitored.

For speaker identification experiments, we partitioned the
corpus by session. The initial sessions—quiet, office, and
MCE—were used for enrollment. Identification was then
performed using the data from the remaining sessions; we
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grouped these into low noise—M2L, MOUTL, BHL—
and high noise—M2H, MOUTH, BHH——conditions. The
corpus had phrases in both sessions drawn from a variety
of material-—conversations, DRT lists, vowels, Harvard
phonetically balanced sentences, and CVC nonsense
words. Typical utterance lengths ranged from 1-5 min-
utes. A total of 20 speakers were available, 10 males and
10 females. The total number of enrollment utterance
available per speaker was 12. The total number of tests
for identification performance was 360 per noise condi-
tion (low, high). Cross-gender testing was allowed since
it was not clear if the nonacoustic sensors would distin-
guish this well; cross-gender tests do not bias identifica-
tion accuracy (as they would in speaker verification).

5.4. ASE corpus results

The feature extraction methods from Section 3 were ap-
plied to the ASE pilot corpus. As for the experiments in
Section 5.2, we used a SVM with diagonal covariance
and degree 3 polynomials for the audio modality. For the
nonacoustic modalities, we used a full covariance SVM
of degree 2 with random dimension reduction. Both the
MELPe noise preprocessor and high-pass filtering above
200 Hz were applied to the audio signal. The MELPe
noise preprocessor was applied to the non-acoustic mo-
dalities, since noise from the ambient environment did
effect the sensor outputs (possibly through tissue vibra-
tion). The EGG was highpass filtered with a linear phase
filter with transition band from 64-80 Hz. Results are
shown in Table 2.

Since the P-mic has some vocal tract information (as evi-
denced by listening), we also applied a standard LP cep-
stral coefficient front end to the data; i.e., we applied the
audio recognition system to all sensors. Results for this
set of experiments are shown in Table 3. As can be seen
from the table, accuracy results for both the EGG and
GEMS are generally lower for LP cepstral coefficients
than with data driven methods shown in Table 2. For the
P-mic, the identification accuracy is higher for LPCC’s;
this illustrates that standard methods are tuned to extract-
ing vocal tract information.

Table 2. Identification accuracy in both low and high
noise situations for multiple modalities using random
dimension reduction.

Modality Low Noise High Noise
Accuracy Accuracy
EGG 73.0 % 43.3 %
GEMS 64.7 % 43.6 %
P-mic 66.7 % 41.4 %




Table 3. Identification accuracy in both low and high
noise situations for multiple modalities using LP cep-
stral coefficients.

Modality Low Noise High Noise
Accuracy Accuracy
Resident Mic 89.4 % 81.9 %
EGG 61.1 % 38.0%
GEMS 50.3 % 43.6 %
P-mic 77.5% 55.0%
Table 4. Identification accuracy in both low and high
noise situations for late integration fusion.
Modalities Fused Low Noise High Noise
Accuracy Accuracy
Audio (Resident Mic) 89.4 % 81.9 %
0.8*Audio+0.2*EGG 93.1% 86.7 %
0.8*Audio+0.2*GEMS 92.5% 85.8 %
0.5*Audio+0.5*P-mic 95.8% 87.2%
All 95.8% 89.4 %

Two items should be noted about the results in Tables 2
and 3. First, the accuracy of the resident microphone is
somewhat low in low noise situations. This result is
probably due to mismatch in microphones between train-
ing and testing. Second, high-noise accuracy of the resi-
dent microphone is quite good. The MELPe noise pre-
processor and associated processing is fairly robust to
noise.

Another observation from Tables 2 and 3 is the degrada-
tion of nonacoustic sensors in noise. For the GEMS mod-
eling in Section 5.2, we assumed the ideal case of no
degradation due to noise. It is well known in the litera-
ture [5], that even if acoustic noise is not present in the
sensor data, a human speaker responds to the environ-
ment, e.g. Lombard effect [13]. This response to stress
will cause degradation in the speaker identification per-
formance of the nonacoustic modalities. An open re-
search question is how to compensate for the effects of
stress in the excitation parameterization. Although we do
not explore methods here, the ASE pilot corpus provides
a realistic scenario for studying methods of noise com-
pensation of the speech excitation waveform.

Table 4 shows the results of late integration. For the
EGG and GEMS, fusion with the weights shown and ran-
dom dimension reduction yielded the best results. For the
P-mic, LPCC’s performed the best with equal weighting
of audio and P-mic modalities. For the fusion of all mo-
dalities, we tried a variety of weightings; the best per-
forming weighting was 0.5*audio, 0.2*EGG, 0*GEMS,
and 0.3*P-mic (labeled “All” in Table 4). Unfortunately,
a cross-validation data set was not available to validate
the fusion process.
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As indicated in Table 4, we obtain substantial gains of
7.5% in speaker identification accuracy in noise, over the
resident-microphone-only case by combining nonacoustic
and acoustic scores. This result shows the potential of
these methods for noise robust speaker authentication.

6. Conclusions

We have demonstrated the use of nonacoustic sensors for
speaker authentication. A data-driven approach was used
to derive features of different modalities. Powerful clas-
sification techniques such as support vector machines and
Gaussian mixture models were then applied. Results in
both simulated and actual noisy conditions showed the
success of the techniques for dramatically improving
speaker authentication in noise. Future work should ex-
plore methods on statistically-significant larger speaker
populations to further validate results.
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Abstract

Traditionally speaker recognition techniques have
focused on using short-term, low-level acoustic
information such as cepstra features extracted over 20-30
ms windows of speech. But speech is a complex behavior
conveying more information about the speaker than
merely the sounds that are characteristic of his vocal
apparatus. This  higher-level information includes
speaker-specific prosodics, pronunciations, word usage
and conversational style. In this paper, we review some of
the techniques to extract and apply these sources of high-
level information with results from the NIST 2003
Extended Data Task.

1. Introduction

Standard approaches to automatic speaker recognition
have relied on using short-term acoustic features, such as
cepstra, which convey information about the shape of a
person’s vocal apparatus. While these approaches have
shown success, speech is the product of a complex
behavior conveying many other person-specific traits that
are potential sources of complementary information.
Roughly we can categorize information in speech into a
hierarchy running from low-level information, such as the
sound of a person’s voice, which is related to physical
traits of the vocal apparatus, to high-level information,
such as particular word usage (idiolect), conversational
patterns and even topics of conversations, which is related
to learned habits and style (see Figure 1).

With the continual improvement of phoneme and
speech recognition systems, which can reliably extract
features for high-level characterization, the widespread
availability of the computational resources needed to train

This work was sponsored by the Department of Defense under Air Force
contract F19628-00-C-0002. Opinions, interpretations, conclusions, and
recommendations are those of the authors and are not necessarily
endorsed by the United States Government. After first author,
subsequent authors are listed alphabetically.
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and run them, and finally with the increased focus on
applications (like audio mining) allowing for relatively
large amounts of speech from a speaker to learn speaking
habits, the availability of large development corpora and
plentiful computational resources, the time is right for a
deeper exploration into using these underutilized high-
level information sources. These new sources of
information hold the promise not only for improvement in
basic recognition accuracy by adding complementary
knowledge, but also the possibility for robustness to
acoustic degradations from channel and noise effects, to
which low-level features are highly susceptible. Over the
last few years, work examining the exploitation of high-
level information sources, such as the SuperSID Project
[17', has provided strong evidence that gains are possible.

High-level cues se tic
(learned traits) 5

ialogic
:
idiolectal

<s>how shall i say this<e> <s> yeah i know ...

phonetic
/S/ 10U/ I/ /i /D/ /&I o/ [N/ I/ fid ...

prosodic
‘J\\

~ \h‘\M\~‘«.,_
bl <

: f 1y i L e i \‘W\‘j.\‘rh w“‘f yan

' spectral |

Low-level cues
(physical traits)

Figure 1 Pictorial depiction of levels of information
conveyed in speech

To support exploration and development of techniques
that can exploit large amounts of training data to learn
speaker habits, an Extended Data Task (EDT) has been

More references available at the SuperSID Project website
http://www.clsp.jhu.edu/ws2002/groups/supersid/




included in the annual NIST Speaker Recognition
evaluations since 2001. In this paper, we review some of
the techniques to extract and apply these sources of high-
level information with results from the NIST 2003
Extended Data Task. In the next section, we describe the
corpus of the extended data task. This is followed in
Section 3 by an outline of the different features and
systems applied. Section 4 presents results of the systems
on the 2003 EDT showing how they can be fused to
improve overall performance.

2. The 2003 NIST Extended Data Task

The focus of the NIST SRE is on text-independent
speaker detection (verification) using telephone speech.
The primary evaluation has generally been using two
minutes of training data and 15-45 seconds of test data. In
2001 the extended data task was introduced to allow
exploration and development of techniques that can
exploit significantly more training and testing data.
Speaker models are trained using 1, 2, 4, 8, and 16
complete conversation sides (where a conversation side
nominally contains 2.5 minutes of speech). A complete
conversation side was used for testing. The 2003
Extended Data Task used the combined Switchboard-II
phase-2 and phase-3 conversational telephone speech
corpora.

To supply a large number of target and nontarget trials
and speaker models trained with up to 16 conversations of
training speech (~40 minutes), the evaluation used a
jackknife processing of the entire corpus. The corpus was
divided into 10 partitions of ~106 speakers each. All trials
within a partition involved models and test segments from
within that partition, only; data from the other 9 partitions
were available for background model building,
normalization, etc. The task consists of 1065 speakers
with 10,933 target models (a speaker had multiple models
for different amounts of training data) and ~160,000 trials
(36% target trials and 64% nontarget trials) for the testing
phase, containing matched and mismatched handset trials
and some cross-sex trials. The experiments were driven
by NIST’s speaker model training lists and index files
indicating which models were to be scored against which
conversation sides for each partition.

To help facilitate research into using new features,
supplemental information contributed by various sites
was made available by NIST. This includes automatically
generated word level transcripts, phone level transcripts
from five different language phone sets, handset-
microphone labels, pitch track estimates, speech activity
detection labels, baseline GMM-UBM acoustic scores,
and word-level language model scores. The official NIST
evaluation plan and lists can be found at the NIST SRE
page http://www.nist.gov/speech/tests/spk/2003.
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Scores from each partition are pooled and a detection
error tradeoff (DET) curve is plotted to show system
results at all operating points. The equal error rate (EER),
where the false acceptance rate equals the missed
detection rate, is used as a summary performance measure
for comparing systems. Each approach formed a
likelihood ratio detector by creating a speaker model
using training data and a single speaker-independent
background model using data from the held-out splits. For
some systems, a set of individual background speaker
models from the held-out set was used as cohort models.
During recognition, a test utterance is scored against the
speaker and background model(s) and the ratio (or
difference in the log domain) is reported as the detection
score for DET plotting and for fusing.

3. Features and Classifiers

In this section, we review some approaches to exploit
high-level speaker information. The reader should consult
the referenced papers for more details on the systems.

3.1 Spectral

The first set of features and classifiers are those based
on spectral features. Three systems were applied: standard
Gaussian Mixture Modeling with a Universal Background
Model (GMM-UBM) system, a new Support Vector
Machine (SVM) classifier, and a GMM-UBM system
using only a selected subset of vocabulary words.

GMM-UBM cepstral features. [2] The basic system
used is a likelihood ratio detector with target and
alternative probability distributions modeled by GMM. A
Universal Background Model GMM is used as the
alternative hypothesis model and target models are
derived using Bayesian adaptation (also known as
Maximum A-Posteriori (MAP) training). Feature
mapping [3] was used for channel compensation and T-
norm [4] for score normalization.

SVM cepstral features. [5] The Spectral SVM system
uses a novel sequence kernel that compares entire
utterances using a generalized linear discriminant. The
Generalized Linear Discriminant Sequence (GLDS)
kernel starts with 18 LPCC and 18 delta-LPCC features
vectors that are expanded into a feature space using a
monomial basis. All monomials up to degree 3 were used,
resulting in a feature space expansion of dimension 9139.
We used a diagonal approximation to the kernel inner
product matrix.

Text-constrained GMM-UBM. [6] This system is
similar to the GMM-UBM baseline system but only
speech from a subset of 17 words is used for all training
and testing. The idea is to convert the task from text-




independent to text-dependent recognition. The words
were selected from a set of 80 of the most occurring
words based on the minimum decision cost function value
on held out data sets. The 17 words used are: (yeah, and,
I, you, really, so, like, that, uh-huh, know, but, to, the,
right, oh, my, just). Feature mapping and T-norm were
also applied.

3.2 Prosodic

The second set of features is based on prosodic
measurements, such as pitch, energy and durations. The
aim here is to capture information about speaking style
and cadence.

Pitch and Energy Distributions. [7] To capture the
characteristic distributions of a speaker’s pitch and energy
values a simple GMM-UBM classifier was used with a
feature vector consisting of per-frame log pitch, log
energy and their first derivatives. Voice/unvoiced
boundaries were respected when computing delta
parameters.

Pitch and Energy Track Dynamics. [7] To model pitch
gestures (joint pitch and energy dynamics), we converted
the pitch and energy contours into a sequence of tokens
reflecting the joint state of the contours (rising or falling)
and then applied simple n-gram tools to model and
classify distinctive token patterns from token sequences.
In addition to the direction of the contour, the duration of
the segment can also be integrated into the symbol
sequence to provide a better characterization of the
speaking style of the speaker, i.e., how long the speaker
maintains certain dynamic configurations. Since we are
using n-grams to model the sequence, we quantized the
segment durations into 2 levels: Short and Long. Such
quantization is performed separately for voice and
unvoiced segments. We set the quantization levels using
the mean of segment durations from held-out data. Short
is assigned to voiced segments with duration less than 8
frames, and for unvoiced segments with less than 14
frames. Thus each segment symbol is now augmented
with an additional duration tag: S and L, depending on if
it is less than or more than a certain number of frames in
duration, respectively. Additionally phone and word
context can be added to these measures but was not used
in this evaluation.

3.3 Phonetic

This set of features is focused on capturing speaker
information carried at the phonetic level, primarily
pronunciation characteristics.
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GMM state N-grams [8] In this approach the sequence
of GMM states is used to characterize the sub-phonetic
patterns of a speaker. To do this speech is passed through
a GMM tokenizer that produces a stream of symbols
corresponding to the frame-by-frame indices of the
highest scoring GMM component. A speaker is then
modeled using a simple unconditioned (joint) n-gram
model. A background model is also created using a set of
held out speakers. During recognition, a likelihood ratio
test between the speaker and background model for an
input sequence is applied.

Phone N-grams. [9] In this approach, the time
sequence of phones coming from a bank of open-loop
phone recognizers is used to capture some information
about speaker-dependent pronunciations. Multiple phone
streams are scored independently and fused at the score
level. Again, n-gram models and a likelihood-ratio
classifier are used.

Phone SVM. [10] In this new discriminative system, a
kernel for comparing conversation sides based upon
methods from information retrieval is applied. Sequences
of phones are converted to a vector of probabilities of
occurrences of terms and co-occurrences of terms (bag of
unigram and bag of bigrams). A weighting based upon a
linearization of likelihoods is then used to compare
vectors for SVM training. A background for the SVM
consisted utterances taken from speakers not in the
current split.

Pronunciation Modeling. [11] The aim here is to learn
speaker-dependent ~ pronunciations by  comparing
constrained word-level automatic speech recognition
(ASR) phoneme streams with open-loop phone streams.
The phonemes from the CMU Sphinx 3.3 ASR word
transcripts were aligned on a per-frame level with open-
loop phoneme transcripts. Conditional probabilities for
each open-loop phone, given an ASR phoneme, are
computed per speaker and for a background model. A
likelihood ratio test between the two models is applied in
testing.

3.4 Idiolectal

The focus here is to capture high-level information
about the word usage (idiolect) of a particular speaker.
This is the speech analog to various methods of author
identification, where writers are characterized by their
written texts.

Word N-grams. [12] In this approach, unconditioned
n-gram models of word transcripts from an ASR system
of several conversations from a speaker are used to model
the speaker’ idiolectal patterns. A background idiolect
model from a large population of held-out speakers is
used to characterize general idiolect patterns, and a
likelihood ratio text between the two models is used for



testing. It is particularly interesting that reasonable
performance can be obtained even using a highly errorful
transcript (approx 50% word error rate). T-norm was also
applied using speakers from held-out sets.

3.5 Dialogic

The aim with these features is to capture long-term
interaction patterns that can help characterize a speaker.

Conversational Pattern N-grams. N-grams from
conversational patterns, an additional level of linguistic
information, are extracted from the transcripts for training
and testing. Intuitively, we know that different speakers
behave differently in conversation. Some people tend to
dominate conversations; others work to get a word in
edge-wise. Speakers may take turns dominating a
conversation. This system is based on a simple but novel
n-gram notation that is intended to pick up on these kinds
of behavioral patterns in conversation. The conversational
patterns are represented with a very simple notation that
indicates the duration and amount of text content in the
speech transcript for each utterance. Although we only
have the transcript for the test/target speakers, we are able
to infer the duration of the other speakers' part of the
conversation. The simplest form of notation we tried was
to just mark the duration of the turns. Additionally, for
the test/target speakers we also assigned labels for the
amount of text in the transcript (a crude measure of
speaker's "baud rate"). To construct the label, we use the
labels that represent duration, number of bytes, and
number of words.

3.6 Semantic

The last level of information, semantic, is the more
specialized one and not pursued for the EDT. Given time-
specific, world knowledge of a person’s current interests
or needs, one could construct a classifier looking for
particular topic-related words or phrases to use in
conjunction with the other classifiers. For example, from
previous emails, a call-center may know that a particular
person is having trouble with billing for phone service,
and so a call inquiring about the topic of billing problems
would more likely be from that particular person.

3.7 Fusion

The scores from the systems were fused with a
perceptron classifier using LNKnet [13]. The perceptron
architecture chosen has N input nodes (where N is the
number of systems being fused), no hidden layers, and
two output nodes (target and nontarget). Input values to
the perceptron were normalized to zero mean and unit
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standard deviation using parameters derived from the
training data. The perceptron weights were trained with
10-fold jacknife for each of the training conversation sets
{1, 2, 4, 8, and 16}. The classifier corresponding to the
number of training conversations is then used to fuse
scores from systems. A more detailed description of the
fusion system and other experiments on the NIST EDT
2001 data can be found in [14].

4. Results on 2003 EDT

In this section we present results of applying the above
systems to the 2003 EDT. A list of the systems used in for
system fusion experiments is shown in Table 1. These
systems were selected to span the different levels of
information. For analysis purposes, we will group the
above systems into spectral and non-spectral based
systems. The spectral based systems are systems 0, 1 and
2. The non-spectral are systems 3-9.

Table 1: Systems used in fusion experiments

Component System Descriptions

GMM-UBM Baseline

Text-Constrained GMM-UBM

LPCC SVM

Phone SVM

Word n-gram (baseline idiolect)

Word n-gram with T-norm

Phone n-gram

Pitch & Energy GMM

Slope & Duration n-gram

Pronunciation

Conversational Patterns n-gram

4.1 System Combination Results

In Figure 2 we show the equal error rate (EER) as a
function of number of training conversations for the three
individual spectral systems as well as the fusion of the
three. The best single system is the SVM but we see a
significant gain in fusing all three systems. This
complementary  fusion of the generative and
discriminative systems was also observed in the standard
NIST speaker detection evaluation. While all systems
improve  with increasing number of training
conversations, the text-constrained GMM-UBM system
benefits the most. It is likely that the spectral systems
continue to improve with the number of training
conversations due to increased session and channel



variability in the training data rather than the increase in
amount of training data.

In Figure 3, we show the EER as a function of number
of training conversations for the non-spectral systems.
Note that T-normed results are not shown here. The best
single performing system is the phone SVM followed by
almost identical performance for the phone n-gram and
pronunciation systems. We believe the pronunciation
system was hampered by some poor phoneme alignments.
The word n-gram and conversational patterns n-gram
systems have the largest gains with increasing number of
training conversations, which is not unexpected since
they rely on using events that are not as frequently
occurring as other features. We also see again that the
fusion of these different levels of information produces a
gain in performance over the individual systems.

Spectral System Fusion
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Figure 2: EER vs. number of
conversations for spectral systems.
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227

Non-Spectral System Fusion
40

T
=¥~ Phone SVM
=0 Word N-Gram
=&~ Phone N-Gram
35 Pitch & Energy GMM
Q =0 Slope & Duration N-Gram
\ <= Pronunciation
* Conversational Pattern N-Gram
30 “‘ =8~ All Non-Spectral Fused
LY
kY
%
25 2
\,
3N
g T S
T 2of RN N
) “‘~
Y Sl "‘*._
-~ D
15 s
DT
\ N T o
10 w R S
5 ~
T~
0
0 2 4 6 8 10 12 14 16
Training Conversations
. P
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conversations for non-spectral systems.

Finally, in Figure 4, we show the EER versus the
number of training conversations for the spectral, non-
spectral, fusion of all and minimum DCF search ‘oracle’
system. The oracle system is an exhaustive search over all
system combinations to find the set that minimizes the
DCF value and is meant for diagnostics purposes to see
which systems contribute the most.

The spectral systems outperform the non-spectral
systems, but the gap is relatively small for 8-16
conversation cases. We also see, as was the case from the
SuperSID workshop, that the combination of spectral and
non-spectral systems improves the overall error rate. The
gain is not as great as observed with Switchboard-I data
[1], but this is most likely due to more handset mismatch
conditions in the Switchboard-II data’.

" In Switchboard-II, callers were required to use a different phone
number when placing an incoming call, thus presumably increasing the
handset variability of the data. Switchboard-I did not have this
requirement and so had less handset variability.
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The complete Detection Error Tradeoff (DET) curves
for the all-system fusion are shown in Figure 5. A post-
evaluation experiment determined that we could reduce

the EER for 8-conversation training to < 1%.
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Figure 5: DET curves for the all-system fusion. The
boxes represent 95% confidence regions for the EER
and min DCF operating points.

4.2 Matched and Unmatched Analysis

It is well known that better speaker recognition
performance is expected when the training and testing
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data come from a common handset (matched conditions).
While we do not have explicit handset information, we do
have coded versions of the telephone number used for
each call, from which we can assume that a different
phone number implies a different handset.

For the 8 conversation training condition, we defined a
matched target trial as the case when the telephone
number of the test conversation matches any one of the
telephone numbers used by the target in his/her training
conversations. An unmatched trial is when there is no
overlap between train and test telephone numbers.
Generally, all non-target trials will be unmatched trails".
For the 8 conversation training condition, approximately
50% of the target trials were labeled as matched
conditions.

In Figure 6 we plot DET curves from the 8-
conversation all-system fusion for matched, unmatched
and all target trial cases. The non-target trials are constant
for each curve. For the matched target trials the EER is
0.6%, compared to 1.5% for the unmatched target trials
and 1.2% for all target trials.
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Figure 6: DET curves for the 8-conversation train
all-system fusion. Curves for matched and unmatched
target trial conditions are shown.

A break down of EER for matched and unmatched
cases from the spectral, non-spectral and all-system
fusion systems is shown in Figure 7. Here we see that all
systems have a loss in performance under the unmatched
case. We also see, however, that the fusion of spectral and
non-spectral systems shows improved performance under

13 M
This does not occur when speakers share a common phone number.



the matched and unmatched cases. Additionally, the
relative loss in ERR going from matched to unmatched
for the non-spectral system is slightly better than that of
the spectral systems. The non-spectral system was not as
robust to the handset mismatch as was hoped. This is not
totally unexpected, since the non-spectral features (pitch,
phones, words) are derived at some point directly from
the acoustic waveform and so are subject to the biases
induced by varying handsets. Current work is focused on
better understanding these biases and examining ways to
mitigate their effects in the non-spectral features.

[0 Matched [l Unmatched

3.5

Spectral Nonspectral All

Figure 7: EER from spectral, non-spectral and all
system for matched and unmatched cases.

5. Conclusions and Acknowledgements

In this paper, we have outlined some of the recent
trends and systems aimed at moving beyond low-level,
short-term spectra by exploiting high-level information
for speaker recognition. These systems focus on capturing
speaker habits and idiosyncrasies as manifest in different
aspects of speech. Even at low error rates, it was shown
that there is still significant benefit in combining
complementary types of information. An initial analysis
of the data for matched and unmatched target trials,
shows there is still significant loss under mismatched
conditions, but fusion of different levels of information
still is beneficial. Further work is aimed at a more detailed
error analysis to better understand under what conditions
different information sources best help performance. The
aim would be to learn how to better combine systems.

The authors wish to thank Andre Adami of OGI for
running the prosodic experiments and David Klusacek of
Charles University for running the pronunciations
experiments.

6. References

[1] D. A. Reynolds, W. D. Andrews, J. P. Campbell, J. Navratil,
B. Peskin, A. Adami, Q. Jin, D. Klusacek, J. S. Abramson, R.

229

Mihaescu, J. J. Godfrey, D. A. Jones and B. Xiang, The
SuperSID Project: Exploiting High-level Information for High-
accuracy Speaker Recognition, International Conference on
Acoustics, Speech, and Signal Processing, IEEE, Hong Kong,
2003, pp. 784-787.

[2] D. A. Reynolds, T. F. Quatieri and R. B. Dunn, “Speaker
Verification Using Adapted Mixture Models”, Digital Signal
Processing, Vol. 10, pp. 181-202, 2000

[3] D. A. Reynolds, Channel Robust Speaker Verification via
Feature Mapping, International Conference on Acoustics,
Speech, and Signal Processing, IEEE, Hong Kong, 2003, pp. 53-
56.

[4] R. Auckenthaler, M. Carey and H. Lloyd-Thomas, Score
Normalization for Text-Independent Speaker Verification
Systems, Digital Signal Processing, 10 (2000), pp. 42-54.

[5] W. M. Campbell, 4 SVM/HMM System for Speaker
Recognition, International Conference on Acoustics, Speech,
and Signal Processing, IEEE, Hong Kong, 2003, pp. 209-302.
[6] D. E. Sturim, D. A. Reynolds, R. B. Dunn and T. F. Quatieri,
Speaker Verification using Text-Constrained Gaussian Mixture
Models, International Conference on Acoustics, Speech, and
Signal Processing, IEEE, Orlando, Florida, 2002.

[7]1 A. Adami, R. Mihaescu, D. A. Reynolds and J. J. Godftrey,
Modeling Prosodic Dynamics for Speaker Recognition,
International Conference on Acoustics, Speech, and Signal
Processing, IEEE, Hong Kong, 2003, pp. 788-791.

[8] B. Xiang, Text-Independent Speaker Verification with
Dynamic Trajectory Model, IEEE Signal Processing Letters, 10
(2003), pp. 141-143.

[9] W. D. Andrews, M. A. Kohler, J. P. Campbell, J. J. Godfrey
and J. Hernandez-Cordero, Gender-Dependent Phonetic
Refraction for Speaker Recognition, International Conference on
Acoustics, Speech, and Signal Processing, IEEE, Orlando,
Florida, 2002, pp. 149-152.

[10] W. M. Campbell, J. P. Campbell, D. A. Reynolds, D. A.
Jone, T. R. Leek, Phonetic Speaker Recognition with Support
Vector Machines, to appear Neural Information Processing
Systems (NIPS) Conference, 2003.

[11] D. Kluséacek, J. Navratil, D. A. Reynolds and J. P.
Campbell, Conditional Pronunciation Modeling in Speaker
Detection, International Conference on Acoustics, Speech, and
Signal Processing, IEEE, Hong Kong, 2003, pp. 804-807.

[12] G. Doddington, Speaker Recognition based on Idiolectal
Differences between Speakers, Eurospeech, ISCA, Aalborg,
Denmark, 2001, pp. 2517-2520.

[13] R. P. Lippmann, L. C. Kukolich and E. Singer, LNKnet:
Neural Network, Machine-Learning, and Statistical Software for
Pattern Classification, Lincoln Laboratory Journal, 6 (1993),

pp. 249-268.
[14] J. P. Campbell, D. A. Reynolds, and R. B. Dunn, Fusing
High- and Low-Level Features for

Speaker Recognition, Eurospeech ISCA, Geneva Switzerland,
2003.



230



Invited Speaker

James Wayman
San Jose State University

Biometric Testing

Abstract

Large-scale biometric testing has a history of at least 25 years. However, each test has
used different testing and reporting protocols, making results very hard to understand and
causing longitudinal comparison of biometric device and system performance to be
impossible. Working Group 5 of the ISO/IEC JTC1 Standing Committee 37 on
biometrics has been established to address these variances in the hope that a single test
and reporting standard can be developed. But many within the field feel that a single
“standard” might not be possible. In this talk, we will review historical testing and
reporting protocols, point out the areas of controversy, and analyze in detail the recent
UK contribution to the SC37 WG5S process.
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