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Abstract 

 
The classification reliability is an essential problem 

in biometric verification systems. In the presence of a 
possible mismatch between system’s training and 
testing conditions, a measure of that mismatch is 
necessary in order to  estimate the degree of trust one 
can have in the classification decisions. In the case of 
face verification from plain images, there are many 
factors that can affect the image quality, and thus 
create a condition mismatch. In this paper we identify 
the most commonly encountered causes of face image 
degradation due to the recording conditions, and 
propose corresponding quality measure methods. We 
show on publicly available databases that proposed 
methods can be effectively used to estimate the 
verification reliability using a probabilistic framework. 
 
1. Introduction 
 

In the recent years a growing interest in face 
recognition systems is evident. There exist advanced 
projects of large-scale deployment of biometric 
recognition systems in important public 
establishments, border crossing checkpoints and large 
sport events venues. Due to the ease of data collection 
and public acceptability factors, face image 
verification is the modality of choice in many 
applications. At the same time however, face 
verification systems have not quite yet reached the 
required maturity for their large-scale deployment. In 
particular, reported error rates are typically higher than 
those of other biometric modalities (fingerprints, iris). 
Commonly encountered error rates can be compared 
by examining reported experimental results [10,12,13]. 
Appearance-based face verification from two-
dimensional images is a difficult classification problem 
due to fact that the intra-class variability is frequently 
greater than the separation between the legitimate 
identity claimant class and the class of impostors. The 
appearance of an individual’s face can be altered by a 

wide range of factors, ranging from pose, facial 
expression, and illumination variation, to the 
physical/optical characteristics and settings of the 
capture device. Numerous authors attempted dealing 
with the common adversities in the capture conditions 
that reduce the class separability. For instance, 
photometric normalization methods devised to cope 
with adverse illumination problems have been studied 
in great detail [5,7,9]. A lot of attention has been also 
paid to the problem of variable head pose and facial 
expression. Proposed methods help reduce the total 
recognition errors to a greater or smaller extent. 
However, invariably they do not eliminate them. 
Hence there is a need to estimate the decision 
uncertainty in the process of identity verification. The 
goal of the reliability estimation is to decide to what 
extent a verification decision can be trusted. This 
problem has recently received considerable attention 
and has been studied in the context of various 
biometric modalities [3,4,8,13], including face 
verification [3,4,8]. The decision certainty estimate is 
frequently referred to as confidence [3,11] or reliability 
[8,13]. Many of those methods call for quality 
measures of the biometric samples used in the 
verification process, and it has been shown that quality 
measures can improve the performance of a biometric 
verification system [4,8,11]. To our knowledge, no 
systematic analysis of the problem of face image 
quality assessment has yet been presented. We hence 
propose a set of automatic face quality measures and a 
probabilistic framework of their use that can be used in 
any face verification system. 
Estimation of the quality of face images is a non-trivial 
problem because of a multitude of behavioral and 
extraneous conditions that can simultaneously affect 
the face appearance in the image. We have previously 
proposed a set of automatic face image quality 
measures to estimate the effects of non-frontal 
illumination [7] and additive noise [6], but their 
application in the estimation of the decision 
uncertainty has not been sufficiently elicited. 



In this paper we present a systematic analysis of the 
problem of face image quality estimation. We analyze 
the possible sources of degradation of the face image 
quality, and their impact on the image itself. We also 
consider the effects of quality degradation on the 
scores used by the classifier in order to arrive at the 
verification decisions. We propose new face image 
quality estimators devised to cope with images of 
degraded illumination, contrast and sharpness, and 
with variable face pose. Finally, we demonstrate on the 
example of the Banca database [2] and a local DCT 
feature-based classification system [9,10] how the 
discussed face quality measures can be used to assess 
the decision reliability in a face verification system. 
This paper is structured as follows: Section 2 defines 
the concept of reliability and justifies the need for 
measuring the quality of face images. Section 3 
focuses on the possible sources of face image 
degradation. Sections 4 and 5 give the details of the 
database, experimental protocols and verification 
system used in presented work. Section 6 elaborates on 
the proposed quality measures, followed by the 
experiment description and the discussion of the 
findings in Section 7. Section 8 concludes this paper 
with a summary of presented results. 
 
2. Estimating decision uncertainty: the 
concept of reliability 
 

In a face verification system, but as well in any other 
biometric authentication system, one can be interested, 
beside the actual classification decision (choice 
between two classes), in the degree of trust one have 
that the classifier made a correct decision. This degree 
of trust is referred to as the reliability of the decision. 
In general, decision reliability R is defined as a 
conditional probability: 

 
( EDCPR = ) ,                                                       (1) 

 
where DC denotes a correct classification decision and 
E denotes the supporting evidence [8]. The evidence 
may consist of information from the domains of 
classifier scores (score domain), features used by the 
classifier (feature domain), and the biometric 
presentation itself (signal domain). 
The score domain evidence is used to estimate the 
reliability of the classification decision in the absence 
of any lower-level (feature or signal) information. As 
an example of this strategy one may consider the 
computation of posterior probabilities. However, score 
domain information may not be enough to accurately 
estimate the classification decision reliability in the 

presence of a mismatch between the conditions present 
during the acquisition of the biometric presentations 
(signals) used in the training and testing phases. An 
example how the condition mismatch can cause 
unreliable verification decisions is shown in [1] 
(speaker verification) and [6] (face verification). 

Reliability estimation is therefore essential in 
systems that may be affected by a condition mismatch. 
Reliability estimation is a process that is independent 
and parallel to the choice between an acceptance and 
rejection of the biometric presentation (Figure 1).  

 

 
Figure 1: Classification and reliability estimation. 

Essentially, the reliability estimation turns a two-class 
classification problem into a three-class problem 
(accept, reject and unreliable) or a cascade of two two-
class classifiers (first reliable/unreliable, then 
accept/reject). Following the probabilistic nature of the 
reliability estimation assumed in Equation 1, a decision 
on labeling a classification decision as reliable or 
unreliable depends on a chosen reliability threshold TR 
from the <0,1> range. In this framework, a reliability 
threshold of zero is equivalent to considering all 
decisions as reliable. 
Decisions labeled as unreliable, depending on the 
architecture and purpose of the system, may be 
discarded and a new presentation may be requested 
[13], or the system may assume the ‘safe state’, which 
in the case of biometric verification might be a 
rejection. 
 
3. Possible sources of face image 
degradation 
 

The possible sources of face image degradation may 
come, among other factors, from: 

- illumination variation,  
- additive noise, 
- head pose and facial expression, 
- image sharpness and geometric distortions 

caused by the imaging optics. 
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The changes of face illumination can dramatically alter 
its appearance. Particularly strong changes result from 
the use of directional light sources that may cause 
heavy self-shadowing of the face as well as specular 
reflections. In [7] we have presented an automatic 
method of estimating the degradation of the image due 
to adverse directional illumination based on face 
segmentation using local gradient variance. 
Additive noise frequently appears in low-light image 
acquisition conditions and is a function of the quality 
of signal amplification in the imaging sensor. We have 
proposed an automatic method of quality estimation 
for face images contaminated with additive noise based 
on two-dimensional correlation with an average face 
template [6,14]. In this paper we propose to extend the 
application of the correlation-based quality estimation 
by applying it to the testing images in which the head 
pose and facial expression as well as the illumination, 
differs from those from the training gallery. 
The image sharpness has a deciding influence on the 
level of fine details in the face image. Decline in the 
image sharpness is frequently caused by the use of a 
low-quality optical imaging system (e.g. low-end 
webcams), but also by improper functioning of 
automatic focusing systems or inappropriate settings of 
a fixed focus camera. In this paper we propose an 
automatic method of image sharpness estimation based 
on average intensity differences between neighboring 
pixels. 
Geometric distortions caused by the imperfections of 
the imaging systems are very difficult to estimate 
without the use of special pattern templates. Typically 
they also do not change during the operation of the 
imaging system. Therefore they are out of scope of the 
work presented in this paper. 
For our experiments presented in this paper we have 
used the Banca database (English part) [2], since it is 
one of the reference databases [10], and since it 
contains images collected in different recording 
conditions, and using various imaging devices. 
 
4. The Banca database and evaluation 
protocols 
 

The face part of the English Banca database 
consists of still face images of 52 individuals. The 
images were captured in controlled, degraded and 
adverse conditions. For each of the conditions, 4 
separate recording sessions were organized. For the 
details on the Banca database the reader is referred to 
[2]. An example of the images collected under 

controlled, degraded and adverse conditions can be 
found in Figure 2. 
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Figure 2: Example of the images collected in the 
controlled, degraded and adverse scenarios (left to 
right). 

In our experiments, we have adhered to the P protocol. 
The P protocol assumes that the controlled conditions 
are the reference for training, and testing is performed 
on images collected in all conditions. 
As the reader can gather from the sample shown in 
Figure 2, the images collected in the degraded and 
adverse conditions differ qualitatively from those 
collected in controlled conditions. In particular, the 
imaging device used varies from one condition to 
another: therefore the image sharpness is not constant. 
This difference is particularly pronounced for the 
degraded conditions. In respect to the controlled 
conditions there exists a noticeable difference in the 
illumination conditions and the head pose (the subjects 
are mostly looking down) in the adverse conditions. 
In our work we use manually localized and 
geometrically normalized face images: the position of 
the eye centers are fixed. This constraint allows us to 
eliminate the influences of erroneous face localization 
on the system errors, and hence to pinpoint the impact 
of image quality variation. The problem of face quality 
measurement is not irrelevant to automatic face 
localization: changes in image quality are likely to 
affect the face detection accuracy. 
 
5. The DCTmod2-GMM face verification 
 
In our experiments we have used a face verification 
scheme implemented in similar fashion as presented in 
[9]. The images from Banca database (English part) 
were used to build the world model (520 images, 
26+10 individuals (g1 or g2 subsets, respectively), 384 
Gaussians in the mixture). Client models were built 
using a recursive adaptation of the Gaussian 
component means from the world model, as described 
in [12]. The adaptation relevance parameter was set to 
10, and the number of iterations was set to 3. The 
images used in the experiments were cropped, 
photometrically normalized by histogram equalization, 
and rescaled to the size of 64×80 pixels.  



To verify a claim that a given test image belongs to the 
client C, a set of feature vectors, X, is extracted from 
the image. The verification decision is based on the 
log-likelihood ratio: 
 

)|()|()( CW XLXLXLLR λλ −= ,             (2) 
 
where L(X|λC) and L(X|λW) are the log-likelihoods of 
the set of vectors X given λC (the model of client C), 
and λW (the world model). The value of LLR(X) is 
compared to a threshold Θ, whose value has been 
optimized to minimize the half-total error rate (HTER) 
on the development set (in accordance with the Banca 
protocol P). The average HTER were comparable to 
the state-of the art algorithms [10]. 
 
6. Quality measures for face images 
 

It is difficult to define quantitatively the quality of a 
face image since there is no clear answer as to what 
features are essential for a successful face recognition. 
Given a cropped and geometrically normalized face 
image, a typical face verification system consists of the 
image preprocessing, feature extraction and scoring 
stages (Figure 3). 

 
Figure 3: Stages of a face verification system with 
quality assessment 

At each of those stages a quality assessment can be 
performed. We are interested in a relative quality 
measurement, taken in respect to the reference quality 
of the images used during system training. Such 
relative quality measures can be therefore treated as 
mismatch estimators. 

As Figure 3 shows, the information from low-level 
stage (signal level) flows up and impacts higher-level 
stage processing, including the decision-making stage. 
At the lowest, signal level, the exact impact of the 
quality change on the final decision is difficult to 
predict, but the quality degradation itself can be 
addressed directly. At the score level, the impact of the 
scores on the decisions is evident, but the sources of 

the impact are hard to trace. Therefore the quality 
measures from each of the levels can be viewed as 
sources of complementary information about the 
verification process. 

In this paper we discuss the use of signal- and 
score-level quality measures for face verification, 
because the use of those measures is universal for any 
classifier that allows a direct access to the 
classification scores (before thresholding). The use of 
feature-level quality measures is classifier-specific and 
therefore out of the direct scope of this paper. 

 
6.1. Signal-level: Correlation with an average 
face image 
 
The goal of the relative quality measurement is to 
determine to what degree the quality of the testing 
image departs from that of the training images, which 
can be modeled by creating an average face template. 
An average face template is built out of all the face 
images whose quality is considered as reference. We 
have built an average face template using PCA 
reconstruction, in similar fashion as described in [14]. 
Specifically, we have used the first eight averaged 
eigenfaces to build the template. 
Two average face templates built of images from the 
Banca database are found in Figure 4. 
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Figure 4: Average face template built using training 
images defined in the Banca P protocol, for the 
datasets g1 and g2, respectively. 

For the experiments presented in this paper we have 
created two average face templates from the training 
images prescribed by the P protocol (clients from the 
groups g1 and g2). It is noteworthy that the average 
face templates created from the images of two disjoint 
sets of individuals are strikingly similar. It is also 
apparent that high-resolution details are lost, while 
low-frequency features, such as head pose and 
illumination, are preserved. 
Therefore, in order to obtain a measure of similarity of 
low-frequency face images, we propose to calculate 
the Pearson’s cross-correlation coefficient between the 
face image I, whose quality is under assessment, and 
the respective average face template AVF. 
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( IAVFcorrcoeffQM ,1 = )                                 (3) 

 
6.2. Signal-level: Image sharpness estimation 
 
The cross-correlation with an average image gives an 
estimate of the quality deterioration in the low-
frequency features. At the same time that measure 
ignores any quality deterioration in the upper range of 
spatial frequencies. The absence of high-frequency 
image details can be described as the loss of image 
sharpness. In the case of the BANCA database, the 
images collected in the degraded conditions suffer 
from a significant loss of sharpness. An example of 
this deterioration can be found in Figure 2. 
In order to estimate the sharpness of an image I of x×y 
pixels, we compute the mean of intensity differences 
between adjacent pixels, taken in both the vertical and 
horizontal directions: 
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6.3. Score-level: Sum of log-likelihoods 
 
The concept of likelihood ratio-based verification, as 
expressed by Equation 2, is to establish if the feature 
vector is better represented by λC or by λW. This 
measure does not account for a situation when neither 
of the models represents the data adequately (in the 
presence of a condition mismatch). We propose to 
compute a measure of the match of the input image 
with either of the two models, or both simultaneously. 
For given feature set X originating from the image I we 
define the quality measure QM: 
 

)|()|(3 WC XLXLQM λλ += .                   (5) 
 

Since L(X|λC) and L(X|λW) are expressed in the log-
domain, Equation 5 is mathematically equivalent to a 
multiplication of likelihoods. The model λC should 
represent a subset of faces modeled by λW since a face 
of a particular individual is an instance of the generic 
class of faces. Therefore very low values of QM 
correspond to images that are well accounted for by 
neither L(X|λC), nor L(X|λW). 

7. Experiments 
 
7.1. Error distributions across recording 
sessions 
 
The Banca database consists of images collected in 
three distinct recording conditions, organized in 12 
different sessions. We assume the experimental 
conditions and thus the image quality to be constant 
within one session. The testing according to the P 
protocol consists of 2×2730 verification decisions on 
the subsets g1 and g2. Figure 5 shows the distribution 
of the images from all 12 sessions in the testing set 
(both g1 and g2). 

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

250

300

session
nu

m
be

r o
f i

m
ag

es
 

Figure 5: Distribution of images from 12 Banca 
sessions in the testing process, P protocol. The 
distribution is identical for datasets g1 and g2. 

The error rate distributions for all 12 sessions in 
terms of HTER are shown in Figure 6. Each plot bar 
represents the error rate for the given session. 

 

1 2 3 4 5 6 7 8 9 101112
0

0.1

0.2

0.3

0.4

session

g1

er
ro

r r
at

e 
(H

TE
R

)

1 2 3 4 5 6 7 8 9 101112
0

0.1

0.2

0.3

0.4

session

g2
er

ro
r r

at
e 

(H
TE

R
)

 
Figure 6: Error rates for each of the 12 recording 
sessions of the Banca database. Testing according 
to the P protocol, errors reported in terms of 
HTER, separately for datasets g1 and g2. 

It is evident from the graphs in Figure 6 that the error 
rates are not evenly distributed among the sessions and 
experimental conditions. The bulk of errors are 
concentrated around sessions collected in the degraded  
(sessions 5-8) conditions, fewer errors are present in 
the adverse (sessions 9-12) condition data, and finally 
lowest error rates, understandably, are recorded for the 
controlled conditions (sessions 1-4). The differences in 
error rates from condition to condition and from 



session to session can be attributed to the mismatch in 
the recording conditions, hence to the degradation of 
the relative quality of the testing images with respect to 
the training data. 
 
7.1. Distributions of quality measures 
 

A good quality measure should model and predict 
well a degradation of the system performance 
(increased error rates) due to a particular factor that 
impacts the image quality. In order to find how the 
quality measures proposed in Section 6 are suitable for 
predicting recognition errors, we calculate the quality 
measures QM1, QM2 and QM3 for every test image. 
Mean values of the quality measures over all 
experimental sessions are shown in Figures 7, 8 and 9. 
In those figures, each plot bar represents the mean of a 
corresponding quality measure for the given session. 
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Figure 7: distribution of QM1 means for each 
recording session. 
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Figure 8: distribution of QM2 means for each 
recording session.  
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Figure 9: distribution of QM3 means for each 
recording session. 

As the Figures 7,8 and 9 show, none of the quality 
measures alone predicts well the classifier errors, since 
each of them is responsible for a certain aspect of the 
complex concept of face image quality. Distribution of 
the means of QM1 respond strongly to the departure 
from the reference illumination conditions and pose 
variation, present in the adverse conditions (sessions 9 
– 12). Since the average face template is itself a low-
frequency model, the change in image sharpness 
between the reference and the degraded conditions 
passes mostly unnoticed when applying QM1. 
Complementary to QM1, QM2 is designed to respond to 
the sharpness change in the testing images. As Figure 8 
shows, QM2 plays this role well, sporting a clear dip in 
the average quality measure scores for the session 
recorded in the degraded conditions (5 – 8). 
QM3 is a score-domain quality measure and its mean 
values reflect not only the quality of the image itself, 
but it is also affected by the feature robustness and the 
goodness of fit of the models λC and λW. Figure 9 
shows that the corresponding quality measure scores 
according to QM3 are higher for the adverse 
conditions, and lower for the degraded conditions, in 
respect to the reference images (session 1). A higher 
score for QM3 should not be interpreted as a ‘better 
fit’. It actually means that the test images fit both λC 
and λW, hence the decision of acceptance or rejection 
has a small error margin [11]. 
 
7.2. Modeling of the quality measures and 
error prediction 
 
In order to adhere to the P evaluation protocol defined 
for the Banca database, we have decided to build a 
model of the quality measures using the development 
set, and apply it to predict unreliable classifier 
decisions on the testing set. For each dataset (g1 and 
g2), we have constructed two concurrent probabilistic 
models of the quality measure distributions: one for the 
correct, and one for the erroneous classifier decisions 
on the development dataset. We refer to those models 
as λDC and λDF, respectively. The models are built as 
follows: for each testing image In from the 
development set we construct a vector of quality 
measurements VQM: 
 

( )nnnn
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The vectors are separated into those corresponding to 
the correct (DC), and erroneous (DF), classifier 
decisions. We build the GMM-based models of the 
distribution of VQM|DC and VQM|DF (λDC and λDF):  
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where µ,σ, and α are the parameter vectors of the 
mixture of Gaussians. In our work we used the 
Expectation-Maximization algorithm to train the 
models. We assumed the statistical conditional 
independence of QM1, QM2 and QM3, and therefore 
chose to build the models with diagonal covariance 
matrices. We used 12 Gaussian components per 
mixture. 
Consequently, we used the models trained for the 
dataset g1 to estimate the reliability of classifier 
decisions obtained using the dataset g2, and vice-versa. 
For each testing image we computed conditional log-
likelihoods L(VQM |λDC) and L(VQM |λDF). The decision 
reliability estimate, following Equation 1 and the 
Bayes’ rule, is then given by: 
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where γ is a constant reflecting the ratio of priors. In 
our experiments we assumed equal priors, hence γ=1. 
Figure 10 shows the results of the mean reliability 
(error prediction) estimation for datasets g1 and g2. 
For easier comparison with Figure 6 we present the 
prediction results in terms of error probabilities (1-R). 
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Figure 10: Mean reliability of verification per 
session. Prediction presented in the terms of error 
probabilities (1-R). 

 
7.3. Evaluation of the error prediction 
accuracy 
 
After having estimated the reliability of a decision, it is 
necessary to compare the obtained value to a preset 
threshold TR which represents how much we are 
willing to trust the classifier. If the estimated reliability 
falls below the preset threshold, the decision is 
classified as unreliable (Figure 1) and discarded. 

In order to evaluate the prediction accuracy of 
proposed models we have checked what the accuracy 
of the classifier was after the decisions labeled as 
unreliable had been discarded. We have been changing 
the reliability decision threshold TR ∈〈0,0.95〉 in 0.05 
increments and computing the accuracy of the 
classifier after having discarded unreliable decisions. 
The results of this evaluation can be found in Figure 
11: 
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Figure 11: Accuracy of the classifier after having 
discarded unreliable decisions, as the function of 
the reliability threshold TR. 

The situation when TR=0 corresponds to a system 
without any reliability estimators: all decisions are 
equally and fully trusted. 
Forcing higher classification accuracy comes at a cost 
of having to deal with a number of unreliable 
decisions. The number of the decisions discarded 
depends to a large degree on the available data itself. 
For the P protocol of the Banca database, the 
percentages of discarded decisions in the function of 
chosen reliability threshold TR are shown in Figure 12. 
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Figure 12: Percentage of remaining decisions after 
reliability-based thresholding, as a function of the 
reliability threshold TR. 

7.4. Discussion of the experimental results 
 
The mean predicted errors per session presented in 
Figure 10 follow the tendencies of the actual 
verification errors, shown in Figure 6. However, it can 
be noticed that the predicted error rates are generally 
higher than the actual ones. This rather careful 
estimation of reliability can be explained by the fact 



that in our experiment only the quality measures were 
used to predict the system performance. We wish to 
bring to the reader’s attention the fact that we have not 
used the actual log-likelihood ratio, the basis of the 
verification decisions, in our reliability measurements. 
It can be expected that including the log-likelihood 
ratio as one of the quality measures would improve the 
predictive power of the proposed methods. It is worth 
noticing that any number of new quality measures can 
be added to the quality measure vector (Section 7.2) 
without the need to modify the structure of the 
reliability estimator – with the exception of the need to 
re-train the models λDC and λDF in order to include the 
new dimensions. 
Prediction evaluation results presented in Figure 11 
prove that proposed face quality measures can be 
effectively used to estimate the face verification 
reliability. Verification accuracy that grows 
monotonously with the reliability threshold TR proves 
that erroneous decisions are effectively discarded 
based on the obtained reliability measure. In order to 
further improve the system performance, a sequential 
repair strategy can be applied [13]. 
The error prediction for the experimental session 5 
seems to be particularly inadequate, as the bar graph in 
Figure 10 shows. This indicates the proposed set of 
quality measures fails to capture certain face image 
features that are important in the process of face 
verification. Future work is planned in order to address 
this problem. 
A small local decline in accuracy on the curve for 
dataset g2, in Figure 11, is caused by the fact that as 
the number of remaining decisions gets smaller, certain 
individuals, whose face, although of high quality, is 
inherently difficult to distinguish from the others 
(‘sheep/wolves’). 
 
8. Conclusions 
 

We have presented a novel concept of reliability in 
face verification. We have justified the need to 
perform a set of quality measurements of face images 
in order to estimate the verification reliability. We 
have performed an analysis of the factors impacting 
the quality of a face image and affecting the reliability 
of face verification. We have proposed a set of quality 
measures for face images operating at the signal and 
score level, and have shown a probabilistic scheme of 
reliability assessment using the proposed measures. 
Finally, we have demonstrated on the example of the 
Banca database that the proposed system can be 
effectively applied to assess the decision reliability in 
face verification. 
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