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Abstract 

 
This paper presents a systematic optimization 

strategy to implement the complicated EBGM face 
recognition on low processing power mobile devices 
We propose a tailor-made  fixed point arithmetic and  
various memory access optimization techniques to 
speed up an EBGM authentication process from ~550s 
down to ~1s in a typical Intel PXA255 400 MHz 
mobile platform. The result shows that real time face 
recognition can be completed without any noticeable 
accuracy loss. This finding not only provides a 
guideline for porting various biometric applications in 
the mobile systems, but also exploits new opportunities 
for different mobile e-commerce applications with 
biometric identity checking. 
 
1. Introduction 
 
2D Face recognition systems are often classified by 
their representation scheme. The two major classes of 
systems are global feature based and local feature 
based systems. In global feature based systems, face 
images are treated as a whole and statistical 
information from the entire face is extracted. Most 
systems in this class involve finding an easily 
separable subspace. By projecting the high 
dimensional face image to a well-selected subspace of 
lower dimension, an efficient and possibly 
discriminating representation is acquired. Various 
subspace selection methods, including Evolution 
Pursuit (EP) [1], Independent Component Analysis 
(ICA) [2], Principal Component Analysis (PCA) [3] 
and Linear Discriminant Analysis (LDA) [4] are 
commonly used, with the latter two being the most 
popular ones due to their simplicity and reasonable 
performance. 
 
In local feature based system, the relative size of and 
distance between various facial components like eyes, 

nose and mouth are measured and used as features. 
Local features are often extracted by means of filter 
convolution, such as Gabor filters. The most 
representative methods in this class include Elastic 
Bunch Graph Matching (EBGM) [5] and Local Feature 
Analysis (LFA) [6]. 
 
In recent years, we see a proliferation of mobile 
devices such as PDAs and cell phones as well as 
applications on them. Individuals use them for 
electronic transactions such as phone banking and 
stock trading, while enterprises issue them as a means 
of access to the corporate network. Security concerns 
with mobile devices have become an imminent issue as 
a poorly protected mobile device may expose sensitive 
data such as passwords and credit card information, or 
may become a security hole of the entire corporate 
network. To provide authentication and authorization 
checking in accessing the mobile devices, biometrics, 
especially face authentication, seems to be a good 
candidate.  However, heavy computation requirement 
in authentic face authentication algorithms hinders the 
use of secure face recognition in the mobile world. 

 
Due to the portability purpose, inherent limitations 
such as size, cost and power consumption still persist 
for all mobile devices. To conserve battery power and 
chip size, typical mobile processors such as the Intel 
XScale, have a comparatively small cache size (Figure 
1) and do not come with a Floating Point Unit (FPU). 
A small cache size means data and instructions are 
swapped out of cache more frequently and much 
slower off-chip memory will be accessed. To tackle 
such problems, optimization must focus on speeding 
up the computational operation and improving the 
cache performance.  
 
In our previous work, we have already implemented a 
real-time mobile face recognition system using PCA 
technique [13]. However, its intrinsic slow training 
process (registration process) prohibits its use in 



changing environments. In this paper, we describe an 
alternative, optimized EBGM algorithm, which is more 
accurate, does not rely on training process and can be 
applied in both registration and verification processes. 

 
 

 
Figure 1. Intel XScale Microarchitecture feature [7] 

 
 
This paper is organized as follows: Section 2 describes 
the working principle of EBGM face recognition and 
outlines the major components of EBGM 
authentication. Section 3 presents our optimization 
techniques which are addressed to the weakness of 
general mobile devices. In section 4, experimental 
results are illustrated to show our improvements of the 
face authentication system against the baseline 
software. Finally, Section 5 gives a brief conclusion. 
 
2. EBGM System Overview  
 

Elastic Bunch Graph Matching [5] represents faces 
using a set of local features located on an elastic 
(deformable) graph. Responses to a set of Gabor filters 
are collected for each node on the graph and stored in 
the face template. Both graph configuration and local 
Gabor features are taken into account during matching. 
Due to its local and flexible nature, EBGM are in 
general less susceptible to variations in lighting, face 
position and expression. 

 
EBGM can be divided into 4 stages as shown in Figure 
2: 

1. Image processing  
2. Facial Landmark Localization 
3. Gabor Feature Extraction 
4. Template matching 

 
 

Figure 2. EBGM authentication process 
 
 
During Image processing, face images are normalized 
to reduce the variations among them. The 
normalization routine performs mean centering, edge 
smoothing, geometric normalization, masking and 
pixel normalization on the face image [8]. And finally 
a 128x128 gray scale pre-processed image is generated 
from a 256 x 384 input image. 
 
After the pre-processing, locations of such facial 
landmarks as eyes, nose and mouth are found in the 
landmark localization stage. This stage contains two 
steps. First, rough estimates of the landmark locations 
are obtained based on known landmarks, such as the 
eyes. Then the estimate is refined by Gabor jet 
comparisons. For the EBGM algorithm, 40 complex 
Gabor wavelets (or 80 real/imaginary pairs) of 
different sizes, wavelengths and orientations are used. 
 
During the feature extraction stage, Gabor Jets are 
extracted from the normalized face image at the 
landmark locations found in the previous stage. These 
Gabor features, together with the locations, are stored 
in a structure called face graph which is stored in the 
template database for future recognition use and the 
original face image is then discarded. Figure 3 shows 



an example of resulting face graph generated from an 
input face image. 
 

 
 

Figure 3. Original image (left) and resulting EBGM 
Face Graph (Right) 

 
 

After a face graph has been created for a novel face 
image, its similarity with another registered face graph 
(template) can be computed. Given two face graphs, G 
and G’, their similarity L can be computed as: 
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where M is the number of landmarks, and Ji and Ji’ are 
jets from the i-th landmarks of graphs G and G’. SD is 
a similarity measure for Gabor jets defined by: 
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where N is the number of Gabor filters, and aj (aj’) and 
Φj (Φj’) are the magnitudes and phases of the jth filter 
response from Gabor Jets J(J’). d

r  is the estimated 
displacement between the two jets and  is the spatial 
frequency of the jth filter. The term is used to 
compensate the phase shifts caused by the 
displacement, leading to a phase sensitive similarity 
function. A more detailed discussion on the EBGM 
algorithm can be found in [9]. 
 
3. Optimization Techniques 
3.1 Optimization Overview 
 
Optimization of the EBGM algorithm can be classified 
into two categories 
 

i) Computation Optimization – We address on the 
weak arithmetic power of mobile processors and 
re-implement a set of new arithmetic operations to 

speed up the computational speed. Related 
techniques include Gabor mask values pre-
computation, trigonometric function  lookup table 
and fixed point arithmetic. 
 
ii) Memory Optimization – We address on 
improving the communication efficiency between 
the core, on-chip cache and off-chip memory, so 
that data utilization in cache can be as full as 
possible. Related techniques include tuning the 
caching policy, reconstructing the data using 
suitable data structure (1 D image array / Multiple 
Gabor mask data structure), array alignment to suit 
the cache block loading size, etc. 
 

In the following sub-sections, we will focus on some 
key techniques that we have employed in our mobile 
system. 
 
3.2 Fixed point arithmetic 
Since mobile devices do not have floating point units, 
computation of floating point operations by using 
software emulation becomes a burden for mobile 
devices. To speed up the computation, fixed point 
arithmetic is applied. 
 
A fixed point data type is implemented using a 32-bit 
integer (built-in C type “int”). The fixed point 
representation consists of three parts: sign bit, integer 
bits and fraction bits. The number of width assigned to 
the integer part is called Integer Word Length (IWL). 
Similarly, the number of fraction bits is called 
Fractional Word Length (FWL). IWL determines the 
largest possible range that can be represented by a 
fixed-point number, while FWL determines the 
precision. [12] 
 
With a limited number of bits to represent the data 
range, overflow or underflow might occur during the 
numeric computation. To preserve the required 
precision, a range estimation process is done to 
determine the fixed point format for our EBGM 
implementation. 
 
The range estimation keeps track of the maximum 
absolute integral value for each floating variable in 
different stages of EBGM processes and the range 
estimation result conducted using FERET database [11] 
are summarized in Figure 4. It is found that 13-bit 
representation for Integral part is sufficient to represent 
all the integral values accurately. Hence, we applied a 
(IWL=13, FWL=18) fixed point representation for our 
initial stage optimization as illustrated in Figure 5.  



 
 
Figure 4. Number of Integral bits required for different 
floating point variable across the EBGM program. 
 
 

 
 
Figure 5. A 32-bit Fixed point number representation  
 
3.3 Improving Array Access Efficiency using 1D 
Array 
 
In general programming practice, storing data of an 
image / Gabor filter usually involves a logical 2D 
representation constructed by an array of pointers and 
a group of one dimensional pixel arrays. The problem 
with this scheme is that two pointer indirections are 
needed to access one image pixel, creating a heavy 
burden on the memory system. To reduce this 
overhead, one 1D array is used to store the whole 
image as illustrated in Figure 6. Rows of pixels are 
now packed sequentially, which means that nearby 
pixels can now be accessed with only one pointer 
indirection and one increment, thus, effectively 
reducing the burden on the memory system. 
 

 
 

(a) 

 
(b) 

 
Figure 6 (a) Image pixels stored in a 2 structure (b) 

Image pixels stored in 1Dstructure 
 
 
3.4 Improving access locality 
 
In programming practices, multiple dimension array 
elements follow row-major ordering. This means that 
array elements adjacent to each other in memory differ 
in the second subscript instead of the first.  For 
example, B(5,10) immediately follows B(5,9) in row-
major ordering whereas B(5,10) would follow B(4,10) 
in column-major ordering. By interchanging the loop 
order and using suitable array formatting, image pixels 
brought into cache by a single memory read operation 
can be fully utilized before being evicted. This 
improvement essentially reduces the possibility of 
cache miss and page faults. Example of the memory 
access pattern is illustrated in Figure 7. 

IWL=13 FWL=18 1 sign bit 

 
Figure 7 Memory access pattern.  The original access 
pattern using column-major ordering (upper) and the 
optimized access pattern using row-major ordering 
(bottom) 
 
3.5 Reducing Redundant Memory Access by Loop 
merging 
 
In EBGM, there are a lot of filter convolutions 
consisting mainly of addition, multiplication and image 
element access.  For brevity, the “complexity” of an 
algorithm can be simplified to two basic operations, 
namely Data Access (DACC) and Multiply and Add 
(MADD). Several important quantities and their values 
in are defined in Table 1. 



 
Quantity Value(s) 

Mask size (   )mm× m = {19, 29, 39,53,77} 

Face image size ( ) NN × N = 128 

NumOfMasks 80 (40 pairs) 
NumOfNodes 25 (Landmark localization), 

80 (Feature extraction) 

Table 1 Quantities used in analysis 
 
It is found that the most time consuming operation in 
EBGM is Gabor Jet extraction, involving finding the 
convolution responses to a set of Gabor masks (filter) 
at a specific location.  The complexity of the Gabor jet 
extraction function (ExtractGaborJet) is linearly 
proportional to the number of Gabor masks used and 
the image size as depicted in Table 2.  In the original 
implementation, each Gabor mask’s element is loaded 
in to and out of the cache for convolution purpose, 
leading to a lot of page faults. By packing all the 
Gabor masks set into a single memory structure, all the 
filters can be convolved simultaneously in a 
contiguous memory space during each iteration cycle. 
This greatly reduces the total number of DACC 
operations. Table 3 shows the improved complexity of 
Gabor Jet extraction (ExtractGaborJetMultipleMasks) 
whose idea is depicted in Figure 8. 
 
 
 General Original 
No. of 
DACC 

22 mNumOfMasks××  
278240 

No. of 
MADD 

2mNumOfMasks×  
139120 

Table 2 Complexity for ExtractGaborJet 
 
 
 
 
 
 General Standard 
No. of 
DACC 

211 mNumOfMasks
eMaskSetSiz

××⎟
⎠
⎞

⎜
⎝
⎛ +  147815 

No. of 
MADD 

2mNumOfMasks×  139120 

Table 3 Complexity for ExtractGaborJetMultipleMasks 
 
 
 

 
(a) 

 

 
(b) 

Figure 8. (a) Memory access pattern of original 
ExtractGaborJet function. (b) Memory access pattern 
of the ExtractGaborJetMultipleMasks using loop 
merging 
 
 
3.6 Optimization of Trigonometric Function using 
Table look up  
In a general purpose programming language, such as C, 
trigonometric functions are implemented using 
polynomial series. A large amount of floating point 



multiplications are involved in the series expansion, 
which can result in poor execution time in mobile 
devices. To solve this problem, a table lookup 
technique is used. Values of trigonometric functions 
are pre-computed, stored and loaded into arrays when 
EBGM starts. Making use of the periodic nature and 
the relationship between trigonometric functions, only 
two tables are required to implement the sine, cosine, 
and tangent and arctangent functions. All calls to 
trigonometric functions are then modified to array 
accesses. 
 
4. Experiment results 
 
4.1 Experimental setup 
Experiments were carried out to measure the effect of 
our optimization strategy. The execution time, space 
requirement and verification accuracy of the baseline 
and optimized system are compared. An Intel XScale 
PXA255 development board for mobile system is used 
for evaluation. Table 4 shows its configuration. 
 

Processor Intel XScale PXA255 400Mhz 
Memory 64MB 100Mhz SDRAM 
Storage 32MB flash ROM 
OS Embedded Linux (kernel version 2.4.19) 
Compiler arm-linux-gcc  
Compile Options -O2 –mtune=xscale 

 
Table 4. Hardware specification of the mobile 
development board 
 
4.2 Accuracy Test 
To investigate the verification accuracy, the FERET 
verification testing protocol for face recognition [11] 
was used and four sets of face databases as 
summarized in Table 5 were investigated for the 
performance of our face authentication accuracy. 
 

Probe category Evaluation Task Gallery size 
FB Facial expression 1196 

dup1 Aging of subjects 1196 
fc Illumination 1196 

dup2 Aging of subjects 1196 
Table 5 Summary of probe categories used in the 
FERET test  
 
In our experiments, the EBGM implementation of the 
CSU Face Identification Evaluation System 5.0 [10] 
was used as the baseline system. Figure 9 shows the 
Receiver Operating Characteristic (ROC) curves of the 
optimized code and the baseline system for different 
probe sets. The overlapping curves indicate that 
verification accuracies of both systems are essentially 
identical. These results show that our optimized face 

authentication does not incur any noticeable accuracy 
lost even on a mobile system. 
 
 

 
 

Figure 9 (a) ROC Curves of EBGM (FB probe set) 
 

 
Figure 9 (b) ROC Curves of EBGM (dup1 probe set) 

 



 
Figure 9 (c) ROC Curves of EBGM (fc probe set) 

 
 

 
Figure 9 (d) ROC Curves of EBGM (dup2 probe set) 

 
 
4.3 Speed Test 
To analyze the execution speed, we measured the mean 
execution time by averaging the total execution time 
against the number of face authentications (One face 
authentication: one face image matches with one face 
template). Table 6 summarizes the optimization 
techniques employed and their reductions in the 
execution time. Figures shown in bold indicate the 
particular stage that has been improved. 
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Original 
 8.335s 218.2s 324.8s 1.849s 553.2s 

Fixed-point 
 1.93s 15.07s 29.45s 0.2812s 46.73s 

Pre-computation 
 1.93s 12.91s 20.97s 0.2812s 36.09s 

1D Array 
 0.882s 7.026s 2.989s 0.2970s 11.19s 

Cache Policy 
 0.882s 6.06s 2.78s 0.2263s 9.948s 

Loop Merging 
 0.882s 5.87s 2.12s 0.2263s 9.098s 

Array Merging 
 0.882s 5.85s 1.08 0.2263s 8.043s 

Table Lookup 
 0.48s 0.52s 0.31s 0.0062s 1.320s 

Improvement 
( times) 

 
~17X ~420X ~1048X ~298X ~419X 

Table 6 Summary of optimization techniques and their 
related improvements 
 
Although compiler, such as GNU GCC, can provide a 
certain extent of code optimization, generic 
optimization techniques do not cater for significant 
speed improvement to the EBGM algorithm if no 
domain specific optimization techniques are applied.  
As shown in Table 6, a single face authentication using 
the original EBGM algorithm runs for 553 seconds in a 
PXA255 mobile platform if only –O2 optimization flag 
is enabled  in arm-linux-gcc compiler. 
 
Referring to the above table, improvements to speed 
are mainly contributed by two methods. The fixed 
point arithmetic contributes to the major improvement 
by speeding up the execution time from 553s down to 
46.73s (~10 times faster).  In addition,  the table 
lookup method speeds up the execution by ~7 times, 
and finally the reconstruction of the Gabor filters’ data 
structure using 1D array helps to reduce the execution 
by  ~ 3 folds. These results show that a thoughtful 
understanding of the domain specific requirements can 
significantly help an optimizing task. 
 
 
5. Conclusion 
 
We have developed a real-time face authentication 
system in a typical Intel XScale mobile platform as 
depicted in Figure 11. Our results enable the practical 
use of face authentication on mobile devices, 
especially mobile e-commerce system, which requires 



secure identity checking and authorization. In addition, 
the generic optimization model and techniques 
developed in this paper can be easily adapted to other 
biometric applications which require real time 
performance on speed constrained platforms. 
 

 
Figure 11. Our EBGM face authentication demo in a 
IPAQ 5400 PDA 
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