
Enabling EBGM Face Authentication on mobile devices

Y.S. Moon, K. H. Pun, K.C.Chan, M.F. Wong, T.H.Yu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, HONG KONG

[ysmoon, khpun, kcchan,mfwong3, thyu4]@cse.cuhk.edu.hk

Abstract

This paper presents a systematic optimization

strategy to implement the complicated EBGM face
recognition on low processing power mobile devices
We propose a tailor-made fixed point arithmetic and
various memory access optimization techniques to
speed up an EBGM authentication process from ~550s
down to ~1s in a typical Intel PXA255 400 MHz
mobile platform. The result shows that real time face
recognition can be completed without any noticeable
accuracy loss. This finding not only provides a
guideline for porting various biometric applications in
the mobile systems, but also exploits new opportunities
for different mobile e-commerce applications with
biometric identity checking.

1. Introduction

2D Face recognition systems are often classified by
their representation scheme. The two major classes of
systems are global feature based and local feature
based systems. In global feature based systems, face
images are treated as a whole and statistical
information from the entire face is extracted. Most
systems in this class involve finding an easily
separable subspace. By projecting the high
dimensional face image to a well-selected subspace of
lower dimension, an efficient and possibly
discriminating representation is acquired. Various
subspace selection methods, including Evolution
Pursuit (EP) [1], Independent Component Analysis
(ICA) [2], Principal Component Analysis (PCA) [3]
and Linear Discriminant Analysis (LDA) [4] are
commonly used, with the latter two being the most
popular ones due to their simplicity and reasonable
performance.

In local feature based system, the relative size of and
distance between various facial components like eyes,

nose and mouth are measured and used as features.
Local features are often extracted by means of filter
convolution, such as Gabor filters. The most
representative methods in this class include Elastic
Bunch Graph Matching (EBGM) [5] and Local Feature
Analysis (LFA) [6].

In recent years, we see a proliferation of mobile
devices such as PDAs and cell phones as well as
applications on them. Individuals use them for
electronic transactions such as phone banking and
stock trading, while enterprises issue them as a means
of access to the corporate network. Security concerns
with mobile devices have become an imminent issue as
a poorly protected mobile device may expose sensitive
data such as passwords and credit card information, or
may become a security hole of the entire corporate
network. To provide authentication and authorization
checking in accessing the mobile devices, biometrics,
especially face authentication, seems to be a good
candidate. However, heavy computation requirement
in authentic face authentication algorithms hinders the
use of secure face recognition in the mobile world.

Due to the portability purpose, inherent limitations
such as size, cost and power consumption still persist
for all mobile devices. To conserve battery power and
chip size, typical mobile processors such as the Intel
XScale, have a comparatively small cache size (Figure
1) and do not come with a Floating Point Unit (FPU).
A small cache size means data and instructions are
swapped out of cache more frequently and much
slower off-chip memory will be accessed. To tackle
such problems, optimization must focus on speeding
up the computational operation and improving the
cache performance.

In our previous work, we have already implemented a
real-time mobile face recognition system using PCA
technique [13]. However, its intrinsic slow training
process (registration process) prohibits its use in

changing environments. In this paper, we describe an
alternative, optimized EBGM algorithm, which is more
accurate, does not rely on training process and can be
applied in both registration and verification processes.

Figure 1. Intel XScale Microarchitecture feature [7]

This paper is organized as follows: Section 2 describes
the working principle of EBGM face recognition and
outlines the major components of EBGM
authentication. Section 3 presents our optimization
techniques which are addressed to the weakness of
general mobile devices. In section 4, experimental
results are illustrated to show our improvements of the
face authentication system against the baseline
software. Finally, Section 5 gives a brief conclusion.

2. EBGM System Overview

Elastic Bunch Graph Matching [5] represents faces
using a set of local features located on an elastic
(deformable) graph. Responses to a set of Gabor filters
are collected for each node on the graph and stored in
the face template. Both graph configuration and local
Gabor features are taken into account during matching.
Due to its local and flexible nature, EBGM are in
general less susceptible to variations in lighting, face
position and expression.

EBGM can be divided into 4 stages as shown in Figure
2:

1. Image processing
2. Facial Landmark Localization
3. Gabor Feature Extraction
4. Template matching

Figure 2. EBGM authentication process

During Image processing, face images are normalized
to reduce the variations among them. The
normalization routine performs mean centering, edge
smoothing, geometric normalization, masking and
pixel normalization on the face image [8]. And finally
a 128x128 gray scale pre-processed image is generated
from a 256 x 384 input image.

After the pre-processing, locations of such facial
landmarks as eyes, nose and mouth are found in the
landmark localization stage. This stage contains two
steps. First, rough estimates of the landmark locations
are obtained based on known landmarks, such as the
eyes. Then the estimate is refined by Gabor jet
comparisons. For the EBGM algorithm, 40 complex
Gabor wavelets (or 80 real/imaginary pairs) of
different sizes, wavelengths and orientations are used.

During the feature extraction stage, Gabor Jets are
extracted from the normalized face image at the
landmark locations found in the previous stage. These
Gabor features, together with the locations, are stored
in a structure called face graph which is stored in the
template database for future recognition use and the
original face image is then discarded. Figure 3 shows

an example of resulting face graph generated from an
input face image.

Figure 3. Original image (left) and resulting EBGM
Face Graph (Right)

After a face graph has been created for a novel face
image, its similarity with another registered face graph
(template) can be computed. Given two face graphs, G
and G’, their similarity L can be computed as:

∑
=

′=′
M

i
iiD JJS

M
GGL

0

),(1),(

where M is the number of landmarks, and Ji and Ji’ are
jets from the i-th landmarks of graphs G and G’. SD is
a similarity measure for Gabor jets defined by:

∑ ∑
∑

= =

=

′

⋅+Φ′−Φ′
=′

N

j

N

j jj

N

j jjjjj
D

aa

kdaa
JJS

0 0
22

0
))(cos(

),(

rr

where N is the number of Gabor filters, and aj (aj’) and
Φj (Φj’) are the magnitudes and phases of the jth filter
response from Gabor Jets J(J’). d

r is the estimated
displacement between the two jets and is the spatial
frequency of the jth filter. The term is used to
compensate the phase shifts caused by the
displacement, leading to a phase sensitive similarity
function. A more detailed discussion on the EBGM
algorithm can be found in [9].

3. Optimization Techniques
3.1 Optimization Overview

Optimization of the EBGM algorithm can be classified
into two categories

i) Computation Optimization – We address on the
weak arithmetic power of mobile processors and
re-implement a set of new arithmetic operations to

speed up the computational speed. Related
techniques include Gabor mask values pre-
computation, trigonometric function lookup table
and fixed point arithmetic.

ii) Memory Optimization – We address on
improving the communication efficiency between
the core, on-chip cache and off-chip memory, so
that data utilization in cache can be as full as
possible. Related techniques include tuning the
caching policy, reconstructing the data using
suitable data structure (1 D image array / Multiple
Gabor mask data structure), array alignment to suit
the cache block loading size, etc.

In the following sub-sections, we will focus on some
key techniques that we have employed in our mobile
system.

3.2 Fixed point arithmetic
Since mobile devices do not have floating point units,
computation of floating point operations by using
software emulation becomes a burden for mobile
devices. To speed up the computation, fixed point
arithmetic is applied.

A fixed point data type is implemented using a 32-bit
integer (built-in C type “int”). The fixed point
representation consists of three parts: sign bit, integer
bits and fraction bits. The number of width assigned to
the integer part is called Integer Word Length (IWL).
Similarly, the number of fraction bits is called
Fractional Word Length (FWL). IWL determines the
largest possible range that can be represented by a
fixed-point number, while FWL determines the
precision. [12]

With a limited number of bits to represent the data
range, overflow or underflow might occur during the
numeric computation. To preserve the required
precision, a range estimation process is done to
determine the fixed point format for our EBGM
implementation.

The range estimation keeps track of the maximum
absolute integral value for each floating variable in
different stages of EBGM processes and the range
estimation result conducted using FERET database [11]
are summarized in Figure 4. It is found that 13-bit
representation for Integral part is sufficient to represent
all the integral values accurately. Hence, we applied a
(IWL=13, FWL=18) fixed point representation for our
initial stage optimization as illustrated in Figure 5.

Figure 4. Number of Integral bits required for different
floating point variable across the EBGM program.

Figure 5. A 32-bit Fixed point number representation

3.3 Improving Array Access Efficiency using 1D
Array

In general programming practice, storing data of an
image / Gabor filter usually involves a logical 2D
representation constructed by an array of pointers and
a group of one dimensional pixel arrays. The problem
with this scheme is that two pointer indirections are
needed to access one image pixel, creating a heavy
burden on the memory system. To reduce this
overhead, one 1D array is used to store the whole
image as illustrated in Figure 6. Rows of pixels are
now packed sequentially, which means that nearby
pixels can now be accessed with only one pointer
indirection and one increment, thus, effectively
reducing the burden on the memory system.

(a)

(b)

Figure 6 (a) Image pixels stored in a 2 structure (b)

Image pixels stored in 1Dstructure

3.4 Improving access locality

In programming practices, multiple dimension array
elements follow row-major ordering. This means that
array elements adjacent to each other in memory differ
in the second subscript instead of the first. For
example, B(5,10) immediately follows B(5,9) in row-
major ordering whereas B(5,10) would follow B(4,10)
in column-major ordering. By interchanging the loop
order and using suitable array formatting, image pixels
brought into cache by a single memory read operation
can be fully utilized before being evicted. This
improvement essentially reduces the possibility of
cache miss and page faults. Example of the memory
access pattern is illustrated in Figure 7.

IWL=13 FWL=18 1 sign bit

Figure 7 Memory access pattern. The original access
pattern using column-major ordering (upper) and the
optimized access pattern using row-major ordering
(bottom)

3.5 Reducing Redundant Memory Access by Loop
merging

In EBGM, there are a lot of filter convolutions
consisting mainly of addition, multiplication and image
element access. For brevity, the “complexity” of an
algorithm can be simplified to two basic operations,
namely Data Access (DACC) and Multiply and Add
(MADD). Several important quantities and their values
in are defined in Table 1.

Quantity Value(s)

Mask size ()mm× m = {19, 29, 39,53,77}

Face image size () NN × N = 128

NumOfMasks 80 (40 pairs)
NumOfNodes 25 (Landmark localization),

80 (Feature extraction)

Table 1 Quantities used in analysis

It is found that the most time consuming operation in
EBGM is Gabor Jet extraction, involving finding the
convolution responses to a set of Gabor masks (filter)
at a specific location. The complexity of the Gabor jet
extraction function (ExtractGaborJet) is linearly
proportional to the number of Gabor masks used and
the image size as depicted in Table 2. In the original
implementation, each Gabor mask’s element is loaded
in to and out of the cache for convolution purpose,
leading to a lot of page faults. By packing all the
Gabor masks set into a single memory structure, all the
filters can be convolved simultaneously in a
contiguous memory space during each iteration cycle.
This greatly reduces the total number of DACC
operations. Table 3 shows the improved complexity of
Gabor Jet extraction (ExtractGaborJetMultipleMasks)
whose idea is depicted in Figure 8.

 General Original
No. of
DACC

22 mNumOfMasks××
278240

No. of
MADD

2mNumOfMasks×
139120

Table 2 Complexity for ExtractGaborJet

 General Standard
No. of
DACC

211 mNumOfMasks
eMaskSetSiz

××⎟
⎠
⎞

⎜
⎝
⎛ + 147815

No. of
MADD

2mNumOfMasks× 139120

Table 3 Complexity for ExtractGaborJetMultipleMasks

(a)

(b)

Figure 8. (a) Memory access pattern of original
ExtractGaborJet function. (b) Memory access pattern
of the ExtractGaborJetMultipleMasks using loop
merging

3.6 Optimization of Trigonometric Function using
Table look up
In a general purpose programming language, such as C,
trigonometric functions are implemented using
polynomial series. A large amount of floating point

multiplications are involved in the series expansion,
which can result in poor execution time in mobile
devices. To solve this problem, a table lookup
technique is used. Values of trigonometric functions
are pre-computed, stored and loaded into arrays when
EBGM starts. Making use of the periodic nature and
the relationship between trigonometric functions, only
two tables are required to implement the sine, cosine,
and tangent and arctangent functions. All calls to
trigonometric functions are then modified to array
accesses.

4. Experiment results

4.1 Experimental setup
Experiments were carried out to measure the effect of
our optimization strategy. The execution time, space
requirement and verification accuracy of the baseline
and optimized system are compared. An Intel XScale
PXA255 development board for mobile system is used
for evaluation. Table 4 shows its configuration.

Processor Intel XScale PXA255 400Mhz
Memory 64MB 100Mhz SDRAM
Storage 32MB flash ROM
OS Embedded Linux (kernel version 2.4.19)
Compiler arm-linux-gcc
Compile Options -O2 –mtune=xscale

Table 4. Hardware specification of the mobile
development board

4.2 Accuracy Test
To investigate the verification accuracy, the FERET
verification testing protocol for face recognition [11]
was used and four sets of face databases as
summarized in Table 5 were investigated for the
performance of our face authentication accuracy.

Probe category Evaluation Task Gallery size
FB Facial expression 1196

dup1 Aging of subjects 1196
fc Illumination 1196

dup2 Aging of subjects 1196
Table 5 Summary of probe categories used in the
FERET test

In our experiments, the EBGM implementation of the
CSU Face Identification Evaluation System 5.0 [10]
was used as the baseline system. Figure 9 shows the
Receiver Operating Characteristic (ROC) curves of the
optimized code and the baseline system for different
probe sets. The overlapping curves indicate that
verification accuracies of both systems are essentially
identical. These results show that our optimized face

authentication does not incur any noticeable accuracy
lost even on a mobile system.

Figure 9 (a) ROC Curves of EBGM (FB probe set)

Figure 9 (b) ROC Curves of EBGM (dup1 probe set)

Figure 9 (c) ROC Curves of EBGM (fc probe set)

Figure 9 (d) ROC Curves of EBGM (dup2 probe set)

4.3 Speed Test
To analyze the execution speed, we measured the mean
execution time by averaging the total execution time
against the number of face authentications (One face
authentication: one face image matches with one face
template). Table 6 summarizes the optimization
techniques employed and their reductions in the
execution time. Figures shown in bold indicate the
particular stage that has been improved.

Execution Time

Technique
(Section) Im

ag
e

Pr
ep

ro
ce

ss
in

g

L
an

dm
ar

k
L

oc
al

iz
at

io
n

Fe
at

ur
e

E
xt

ra
ct

io
n

T
em

pl
at

e
M

at
ch

in
g

T
ot

al

Original
 8.335s 218.2s 324.8s 1.849s 553.2s

Fixed-point
 1.93s 15.07s 29.45s 0.2812s 46.73s

Pre-computation
 1.93s 12.91s 20.97s 0.2812s 36.09s

1D Array
 0.882s 7.026s 2.989s 0.2970s 11.19s

Cache Policy
 0.882s 6.06s 2.78s 0.2263s 9.948s

Loop Merging
 0.882s 5.87s 2.12s 0.2263s 9.098s

Array Merging
 0.882s 5.85s 1.08 0.2263s 8.043s

Table Lookup
 0.48s 0.52s 0.31s 0.0062s 1.320s

Improvement
(times)

~17X ~420X ~1048X ~298X ~419X

Table 6 Summary of optimization techniques and their
related improvements

Although compiler, such as GNU GCC, can provide a
certain extent of code optimization, generic
optimization techniques do not cater for significant
speed improvement to the EBGM algorithm if no
domain specific optimization techniques are applied.
As shown in Table 6, a single face authentication using
the original EBGM algorithm runs for 553 seconds in a
PXA255 mobile platform if only –O2 optimization flag
is enabled in arm-linux-gcc compiler.

Referring to the above table, improvements to speed
are mainly contributed by two methods. The fixed
point arithmetic contributes to the major improvement
by speeding up the execution time from 553s down to
46.73s (~10 times faster). In addition, the table
lookup method speeds up the execution by ~7 times,
and finally the reconstruction of the Gabor filters’ data
structure using 1D array helps to reduce the execution
by ~ 3 folds. These results show that a thoughtful
understanding of the domain specific requirements can
significantly help an optimizing task.

5. Conclusion

We have developed a real-time face authentication
system in a typical Intel XScale mobile platform as
depicted in Figure 11. Our results enable the practical
use of face authentication on mobile devices,
especially mobile e-commerce system, which requires

secure identity checking and authorization. In addition,
the generic optimization model and techniques
developed in this paper can be easily adapted to other
biometric applications which require real time
performance on speed constrained platforms.

Figure 11. Our EBGM face authentication demo in a
IPAQ 5400 PDA

6. References
 [1] C. J. Liu and H. Wechsler, "Evolutionary Pursuit
and Its Application to Face Recognition," I9
Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, pp. 570-582, 2000.

[2] M. S. Bartlett, H. M. Lades, and T. J. Sejnowski,
"Independent Component Representations for Face
Recognition," Proceedings of the SPIE, Vol 3299:
Conference on Human Vision and Electronic Imaging
3, pp. 528-539, 1998.

[3] M. Turk, A. Pentland, "Face Recognition Using
Eigenface”, Journal of Cognitive Neuroscience, vol. 3,
pp. 71-86, 1991.

[4] P. N. Belhumeur, J. P. Hespanha, D. J. Kriegman,
"Eigenfaces vs. fisherfaces: Recognition using class
specific linear projection," I9 Transaction on Pattern

Analysis and Machine Intelligence, vol. 19, pp. 711-
720, 1997.

[5] L. Wiskott, J. M.Fellous, N. Kruger, C. v. d.
Malsburg, "Face Recognition by Elastic Bunch Graph
Matching," I9 Transactions on Pattern Analysis and
Machine Intelligence, vol. 19, pp. 775-779, 1997.

[6] P. S. Penev and J. J. Atick, "Local Feature
Analysis: A general statistical theory for object
representation," Network: Computation in Neural
Systems, vol. 7, pp. 477-500, 1996.

[7] " Intel XScale® Microarchitecture for the PXA255
Processor User Manual" Intel Corporation, March
2003.

 [8] D. S. Bolme, Thesis: "Elastic Bunch Graph
Matching," Colorado State University, 2003.

[9] J. Zhang, Y. Yan, and M. Lades, "Face Recognition:
Eigenface, Elastic Matching, and Neural Nets,"
Proceedings of the IEEE, No.9, vol. 85, pp. 1423-1435,
1997.

[10] D. S. Bolme, J. R. Beveridge, M. Teixeira, Bruce
A. Draper, “The CSU Face Identification Evaluation
System: Its Purpose, Features, and Structure”, ICVS
2003 .pp. 304-313

[11] S. A. Rizvi, P. J. Phillips, and H. Moon, "The
FERET Verification Testing Protocol for Face
Recognition Algorithms," Proceedings of the
International Conference on Automatic Face and
Gesture Recognition, Nara, Japan, pp. 48-53, 1998.

[12] T. Y. Tang, Y. S. Moon, and K. C. Chan,
"Efficient Implementation of Fingerprint Verification
for Mobile Embedded Systems using Fixed-point
Arithmetic," Proceedings of the 2004 ACM
symposium on Applied computing, Nicosia, Cyprus,
pp. 821-825, 2004.

[13] K. H. Pun, Y. S. Moon, C.C. Tsang, C. T. Chow,
and S. M. Chan, "A Face Recognition Embedded
System," Proceedings of Biometric Technology for
Human Identification II, SPIE Defense and Security
Symposium, Florida, USA, pp. 390-397, 2005.

	1. Introduction
	2. EBGM System Overview
	3. Optimization Techniques
	4. Experiment results
	5. Conclusion
	6. References

