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Agroparc, BP 1228

84911 Avignon CEDEX 9, France
{nicolas.scheffer,jean-francois.bonastre}@univ-avignon.fr

ABSTRACT

In the past few years, discriminative approaches to perform
speaker detection have shown good results and an increasing
interest. Among these methods, SVM based systems have
lots of advantages, especially their ability to deal with a
high dimension feature space. Generative systems such as
UBM-GMM systems show the greatest performance among
other systems in speaker verification tasks. Combination of
generative and discriminative approaches is not a new idea
and has been studied several times by mapping a whole
speech utterance onto a fixed length vector.
This paper presents a straight-forward, cost friendly method
to combine the two approaches with the use of a UBM model
only to drive the experiment. We show that the use of
the TFLLR kernel, while closely related to a reduced form
of the Fisher mapping, implies a performance that is close
to a standard GMM/UBM based speaker detection system.
Moreover, we show that a combination of both outperforms
the systems taken independently.

1. INTRODUCTION

Current state-of-the-art speaker detection systems are based
on generative speaker models such as Gaussian Mixture
Models (GMM). Using a UBM/GMM based system [1] is
now compulsory to obtain good performance in evaluation
campaigns such as the NIST-SRE evaluation. Lately,
discriminative approaches to perform speaker detection had
been successfully applied [2] and interests in these methods
do not seem to stop increasing. Among these methods,
Support Vector Machines have lots of advantages, especially
their ability to treat a high dimension feature space, the
realization of Vapnik Structural Risk Minimization principle,
their easy integration as it is generally faster than a UBM-
GMM system and also due to the multiple opensource tools
available to the research community.
Combination of generative and discriminative classifiers is
not a new idea and has been studied in [3], [4] and [5]. by
mapping a variable length input data (such as speech data)

onto a fixed length vector. However, these methods need
the training of a GMM for each speaker, thus increasing
the complexity of the problem. Moreover, the derivation of
this mapping is complex to produce and the choice of the
proper space needs to be done. This paper presents a straight-
forward, cost-friendly method to map the test utterances into
a fixed-length vector with the use of a UBM model only to
drive the experiment. The derivation of the TFLLR (Term
Frequency Log Likelihood Ratio) kernel proposed by [6] is
slightly modified to take the Gaussian component weight of
the UBM into account. Indeed, the useful information to
discriminate speakers in this work is the associated statistics
of the UBM Gaussian component and the speaker training
data.
In section 2, a baseline GMM/UBM speaker verification
system will be presented, as well as the description of a
Universal Background Model. Next, the SVM classifier, the
brief description of sequence discrimination techniques, as
well as the kernel derived for our task will be presented in
section 3. Section 5 presents the experimental protocol as
well as results of this UBM-SVM on a part of the NIST-
SRE-2005 database [7]. We also address the issue of feature
selection at the input of the SVM in this section. We finally
conclude with a combination of a state-of-the-art UBM-
GMM system and the approach presented in this paper.

2. GMM BASED SPEAKER DETECTION SYSTEM

This section describes the UBM-GMM approach, as well as
the LIA SpkDet UBM-GMM system. Performance of the
system is presented in section 6, on NIST-SRE05 protocol,
in order to merge scores of both systems.

2.1. UBM/GMM approach

GMM-UBM is the predominant approach used in speaker
recognition systems, particularly for text-independent task
[8]. Given a segment of speech Y and a speaker S, the speaker
verification task consists in determining if Y was spoken



by S or not. This task is often stated as basic hypothesis
test between two hypotheses: Y is from the hypothesized
speaker S (H0), and Y is not from the hypothesized speaker S
(H1). A likelihood ratio (LR) between these two hypotheses
is estimated and compared to a decision threshold θ. The LR
test is given by:

LR(Y, H0, H1) =
p(Y |H0)
p(Y |H1)

(1)

where Y is the observed speech segment, p(Y |H0) is the
likelihood function for the hypothesis H0 evaluated for
Y , p(Y |H1) is the likelihood function for H1 and θ is
the decision threshold for accepting or rejecting H0. If
LR(Y, H0,H1) > θ, H0 is accepted else H1 is accepted.
A model denoted λhyp represents H0, it is learned using an
extract of speaker S voice. The model λhyp represents the
alternative hypothesis, H1, and is usually learned using data
gathered from a large set of speakers.
The likelihood ratio statistic becomes p(Y |λhyp)

p(Y |λhyp) . Often, the
logarithm of this statistic is used giving the logLR (LLR):

LLR(Y ) = log(p(Y |λhyp))− log(p(Y |λhyp)). (2)

In the presented approach, the models are Gaussian Mixture
Models which estimate a probability density function by:

p(x|λ) = ΣM
i=1wiN(x|µi, Σi) (3)

where wi, µi and Σi are weights, means and covariances
associated with the Gaussian components in the mixture.
Usually a large number of components in the mixture and
diagonal covariance matrices are used.

Universal Background Model

The UBM has been introduced and successfully applied by
[1] to speaker verification. It aims at representing the inverse
hypothesis in the Bayesian test, i.e. it is designed to compute
the data probability not to belong to the targeted speaker,
ie λhyp. A UBM is learned with multiple audio files from
different speakers, usually several hundreds. For speaker
verification, some approaches consist in having specific UBM
models, such as a UBM model per gender or per channel.
The UBM is trained with the EM algorithm on its training
data. For the speaker verification process, it fulfills two main
roles:

• It is the apriori model for all target speakers when
applying Bayesian adaptation to derive speaker models.

• It helps to compute log likelihood ratio much faster by
selecting the best Gaussian for each frame on which
likelihood is relevant.

This work proposes to use the UBM as a guide to
discriminative training of speakers.

2.2. The LIA SpkDet system

The background model used for the experiments is the same
as the background model used by the LIA for the NIST
SRE 2005 campaign (male only). The training is performed
based on NIST SRE 1999 and 2002 databases, and consists
in 1.3 millions of speech frames (3,5 hours). Training
was performed using the ALIZE and LIA SpkDet toolkits1

[9]. Speaker models are derived by Bayesian adaptation
on the Gaussian component means, with a relevance factor
of 14. Frames are composed of 16 LFCC parameters and
its derivatives. A normalization process is applied, so that
the distribution of each cepstral coefficient is 0-mean and 1-
variance. The background model has 2048 components and
no component variance is above 0.5.

3. DISCRIMINATIVE TRAINING USING UBM/GMM

This section presents the methodology adopted in order to
build a whole speaker detection system. The UBM-GMM
presented in section 2 is the foundation of the system. The
first part briefly describes the SVM classifier that will be
used for the task. Next, techniques consisting in using the
GMM parameters in a SVM (called mapping) are presented.
Finally, the TFLLR kernel is introduced and derived to suit
our problem.

3.1. Support Vector Machine classification

Support Vector Machines are described by Vapnik [10] and
are usually used as a binary classifier in speaker verification
(target/non-target). To answer a linearly separable problem,
the SVM gives the optimal hyperplane that maximizes the
margin between the two classes, among the several possible
hyperplane.
Let the separating hyperplane be defined by xẇ+b = 0 where
w is the normal to the hyperplane. For linearly separable data
labelled {xi, yi}, xi ∈ <N

d , yi ∈ {−1, 1}, i = 1 . . . N , the
optimum boundary chosen according to the maximum margin
criterion is found by minimizing the objective function:

E = ‖w‖22
with (xiw + b)yi ≥ 1 , ∀i

The solution for the optimal boundary, w0, is a linear
combination of a subset of the training data, xs called the
support vectors. Data may be classified depending on the
sign of xw0 + b.

In speaker detection, this means that a speaker is modelled by
its training data and by an optimum subset of impostor data,
the closest impostors. This reduces considerably the problem
size and is one of the reason of the SVM ability of dealing

1http://www.lia.univ-avignon.fr/heberges/ALIZE/



with large size of input training feature set.
Generally, data is not linearly separable, and the introduction
of slack variables is necessary.

3.2. Discriminative sequence classification

Discriminative classification of sequences with different
length, such as speech data, is a very difficult task. However,
techniques aiming at mapping a complete utterance to a fixed
length vector exist and can achieve speaker detection tasks.
Such methods have been applied in [2], with polynomial
kernels (and the GLDS kernel) showing good performance
at the NIST SRE evaluations.
Such mapping were first developed by Jaakola and Haussler
[11] and is known as Fisher Kernel, then generalized by Smith
and Gales [12] as a technique referred to as score-spaces. The
concept of mapping may be interpreted as an SVM kernel
(such as the Fisher kernel being a dot product between Fisher
mapping).
Interest will be given to the likelihood score space in this
paper. The reader is invited to look at [3] for a detailled
derivation of other spaces.
Let us consider a GMM model M parameterized by θ, the
Fisher mapping of a sequence X of T frames, is known as
being the first derivative of the score function, precisely:

ΨFisher(X) = ∇θlog(`(X|M, θ)) (4)

The resulting vector will contain all the derivatives with
respect to each parameter in θ.
The derivation of this mapping with respect to a GMM
component Gj , with weight αj is given below:

∂

∂αj
log(`(X|M, θ)) =

T∑
t=1

`(xt|Gj)∑Ng

i=1 αi`(xt|Gi)
(5)

Thus, an input vector in the SVM could contain this partial
mapping without the derivatives of means and variances. The
dimension of this vector is equal to the number of component
of the initial GMM.

3.3. Using UBM and SVM for speaker verification

The approach presented in this paper basically relies on the
information given by a single GMM. Instead of learning
client models by MAP adaptation (or MLE criterion) and then
perform discrimination with a SVM, a method using only the
UBM component weights to drive the discriminative learning
is proposed.

3.4. Applying TFLLR kernel to GMM weights

The features used at the input of the SVM - which are
extracted from the UBM parameters - shall represent the
behavior of this model on speaker training data. The TFLLR

kernel method presented in [6] is used to produce feature
vectors for Ngram type approaches. Its formulation is used
to derive a proper kernel to suit our problem.
Let us consider tokens k belonging to a bag-of-Ngram. Let
the token k likelihood on a data sequence X be defined as
p(k|X), the TFLLR kernel is computed as follows:

∑

k

p(k|X1)√
p(k|XW )

p(k|X2)√
p(k|XW )

− 1 (6)

where X1,X2,XW are the respective training data of two
speakers and the background model. The kernel construction
finally resides in the weighting of speaker likelihoods by the
likelihood of the background model.
Let now assume the token is a UBM Gaussian component
(defined as Wk for the kth componenent), and consider its
probability as its associated data occupation. It ends up that
for a specific sequence X , the following quantity is produced:

p(Wk|X)√
p(Wk)

=
T∑

i=1

√
p(Wk)

−1 `(xt|Wk)p(Wk)∑
l `(xt|Wl)p(Wl)

(7)

=
√

p(Wk)
T∑

i=1

`(xt|Wk)∑
l `(xt|Wl)p(Wl)

(8)

=
√

p(Wk)∇αk
log(`(X|W, θW )) (9)

This kernel is closely related to the Fisher mapping
component described in (5). The additional square root of the
Gaussian component weight can be seen as a normalization
in order to smooth the dynamic of the features.
The estimation of p(Wk|X) is the hidden variable computed
during the EM algorithm.

4. PROTOCOL

4.1. Database

Speaker verification experiments, presented in section 5, are
performed based upon the NIST 2005 database, common
condition, male speakers only. This condition consists of 274
speakers. Train and test utterances contain 2.5 minutes of
speech in average (telephone conversation).
The whole speaker detection experiment consists in 13624
tests (951 target tests). Each test is made independently and
the use of information from other tests to take a decision on
the current test is forbidden.

4.2. Using the SVM in a speaker detection experiment

In order to build impostor models (i.e. negative labelled data),
speakers coming from the background model are used, here
161 speakers. During the training, the input of the classifier
is the concatenation of all impostor vectors and the speaker
vector issued from its training data. During the verification



process, the test vector is given as an input to SVM models.
The maximum margin decision is found by processing this
input through a linear kernel.
We used the SVM-Light toolkit by Thorsten Joachims [13]
to induce SVMs and classify instances. To compensate for
the severe imbalance between the target and background data,
we adopted a cost model to weight the positive examples
200-fold with respect to the negative examples. The scores
obtained in this manner were then normalized using TNORM
(except when explicitly mentioned).

5. EXPERIMENTS

For the experiments, two different sizes of UBM models were
used, 128 and 2048 Gaussian component.

Model size effect on performance

Figure 1 show the difference in performance between the two
models. The results clearly shows that a 2048 model size
outperform a 128. Indeed, an absolute gain of 5% is observed.
As in a standard UBM-GMM speaker verification system, the
number of dimensions (Gaussians) is critical and performance
improves as this number increases (at least until 2048).

Effect of score normalization on performance

Figure 2 shows the effect of score normalization known as
T-Normalization. Impostor speakers are the same as the
negative labelled examples, i.e. speakers that composed the
background model. For some SVM based methods, the
TNormalization technique is done implicitly and does not
bring any effect. In our case, it still has two main advantages:
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Fig. 1. Comparing UBM/SVM systems with different UBM
size: 128 (dotted line) and 2048 (dashed line)

• It brings a significant gain, particularly at the DCF,

• It scales scores to the same space as the UBM-GMM,
thus making the fusion process easier.
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Fig. 2. Effect of Tnorm score normalization on two different
model sizes: below 2048, up 128. Tnorm DET curves (thick),
NoNorm DET curves (thin)

6. COMBINATION WITH A UBM-GMM SYSTEM

The baseline system presented in section 2 is the UBM-GMM
submission of the LIA in the NIST SRE 2005 campaign.
Surprisingly, the latter is close to the UBM-SVM system
in terms of performance. Indeed, this UBM-SVM system
performs as well as the GMM at the decision cost point. A
significant gain is then expected when fusing the two systems.
To conclude this work, two fusions are presented, both are an
arithmetic mean of the scores of both systems. The first one
is an equally weighted fusion, the second one is a fusion with
weights of 0.3 for UBM-SVM and 0.7 for UBM-GMM (these
parameters were found empirically where one set optimize the
min DCF while the other optimize the overall performance).
Table 1 and figure 3 show results for the equally weighted
fusion.
A simple fusion shows a significant gain brought by the
combination of the two classifiers. Depending on the fusion
weights, gain can be observed at different operating points.
Equally weighted fusion improves the DCF by a relative gain
of around 12%, the other improves both the DCF and EER by
9% and 6% relative respectively.
This states that complementary information has been found
by adding discriminative information to the UBM-GMM
system.



Table 1. Arithmetic mean fusion between UBM-SVM and
UBM-GMM: 1) Equally weighted 2) 0.3/0.7

System DCF EER
1:UBM-GMM 3.49 8.73
2:UBM-SVM 3.48 10.62
Fusion 1:50% / 2:50% 3.06 8.41
Fusion 2:70% / 2:30% 3.17 8.20
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Fig. 3. UBM-GMM system, SVM-GMM system as well as the
equally weighted fusion

7. CONCLUSION

While the issue of mapping speech data utterances on a fixed
dimension vector has been addressed several times, the work
presented here proposes an easy and very performant scheme
to take benefit from both generative and discriminative
systems by extending the use of the TFLLR kernel.
Indeed, it has been shown in section 3 that the input feature
vectors computed by the TFLLR kernel are closely related
to the Fisher mapping when only weights are derived. It
is very easy to compute and costless if one has already a
GMM/UBM system in its range of speaker detection system.
One originality of this approach is to demonstrate that the
UBM only can be used to perform the verification task.
While other methods have to build and use GMMs (with an
MLE or MAP criterion), we claim that an UBM can produce
sufficient information for the task. Finally, we showed that
this system combined with a pure UBM-GMM based system
can bring a relative gain of around 12% at the DCF by
capturing other information.
This work will be continued with an effort on finding a
analytical criterion for feature selection.
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